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perfect drag of ultracold atoms in a harmonic trap
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The presence of (approximate) conservation laws can prohibit the fast relaxation of interacting many-particle
quantum systems. We investigate this physics by studying the center-of-mass oscillations of two species of
fermionic ultracold atoms in a harmonic trap. If their trap frequencies are equal, a dynamical symmetry (spectrum-
generating algebra), closely related to Kohn’s theorem, prohibits the relaxation of center-of-mass oscillations.
A small detuning δω of the trap frequencies for the two species breaks the dynamical symmetry and ultimately
leads to a damping of dipole oscillations driven by interspecies interactions. Using memory-matrix methods,
we calculate the relaxation as a function of frequency difference, particle number, temperature, and strength
of interspecies interactions. When interactions dominate, there is almost perfect drag between the two species
and the dynamical symmetry is approximately restored. The drag can either arise from Hartree potentials or
from friction. In the latter case (hydrodynamic limit), the center-of-mass oscillations decay with a tiny rate,
1/τ ∝ (δω)2/�, where � is a single-particle scattering rate.
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How does an interacting many-body quantum system reach
thermal equilibrium? While often a few scattering processes
are sufficient to establish locally an approximate equilibrium
state, in some cases the presence of conservation laws prohibits
equilibration. In one dimension (1D), for example, integrable
quantum systems like the spin-1/2 Heisenberg model or
the fermionic Hubbard model possess an infinite number of
conservation laws. Due to their presence, the system cannot
relax to a simple thermal state described by just a few pa-
rameters like temperature or chemical potential. Instead, only
an equilibration to a generalized Gibbs ensemble (GGE) [1]
is expected where for each conservation law a new Lagrange
parameter is needed to describe the long-time steady state.

Real experimental systems are, however, often only approx-
imately described by integrable models. As a consequence
the corresponding conservation laws are only approximately
valid. For classical systems with a finite number of degrees
of freedom, a famous theorem by Kolmogorov, Arnold, and
Moser (KAM theorem) [2–4] states that even in such a
situation many properties of the integrable point can survive.
The situation for interacting many-particle quantum systems
is less clear. Generally it is, however, expected that due
to integrability-breaking terms the system can relax to a
thermal state but the relaxation is slow and governed by
the slow relaxation of the approximate conservation laws.
A similar question arises in transport studies: Integrable
systems like the 1D Heisenberg model are characterized by
infinite (heat) conductivities even at finite temperature [5–7].
In real materials, however, small integrability-breaking terms
can render the conductivity finite. This has motivated early
studies of the role of integrability-breaking terms for transport
properties [8,9].

Ultracold atoms provide new opportunities to investigate
the question of equilibration and the role of (approximate)
symmetries. For example, in a famous experiment termed
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“quantum Newton’s cradle”[10] it was shown that the breath-
ing mode of a 1D Bose liquid in a harmonic trap does not relax
on experimentally relevant time scales. While in this case the
harmonic traps nominally break integrability this apparently
has little effect on the experiments.

In this paper, we study equilibration in the presence of an
approximate symmetry in a model which is (i) ideally suited
for experimental studies and (ii) conceptually simple due to
the presence of only a single symmetry—instead of infinitely
many. We study the center-of-mass (c.m.) oscillations of
atoms in a harmonic trapping potential. If all atoms have
the same mass and same trapping potential, then the c.m.
oscillation never decays and its frequency is exactly given
by the noninteracting result [11]. A closely related results
is Kohn’s theorem [12], stating that cyclotron resonances of
electrons in a Galileian invariant system are not affected by
interactions. Mathematically, this can be traced back to fact
that the total momentum P, the center-of-mass R, and the
interacting many-particle Hamiltionan in the presence of a
trapping potential 1

2V0r2 form a closed algebra (a so-called
spectrum-generating algebra) given by

[Ri,P j ] = i�δij , [P i,H ] = −i�V0NRi,

[Ri,H ] = i
�

Nm
P i. (1)

This algebra implies that the c.m. motion completely separates
from all many-particle excitations in the trap even in the
presence of a time-dependent trapping potential 1

2V0(t)(r −
r0(t))2. Furthermore, the nonlocal (!) operator Q = P2/(2m) +
1
2V0R2 is a conservation law, [Q,H ] = 0. We study how
these symmetries break down when two species of atoms
with slightly different masses or slightly different trapping
potentials are considered. Such a case has recently been studied
by the Salomon group [13] using mixtures of 6Li and 7Li. This
work investigated, however, mainly the role of superfluidity
on the c.m. oscillations in this system.

The case of a fermionic mixture has been studied theoret-
ically by Chiacchiera et al. [14]. While the methods used by
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the authors are similar to the one used in our study (projection
on the dynamics of slow modes), their paper mainly focuses
on counting the number of relevant modes and contains little
information on the question discussed in this paper, especially
on the behavior of the damping rate as function of the
trap-frequency difference, population difference, interspecies
scattering rate, and temperature. Furthermore, it only considers
the classical high-temperature limit where effects of Pauli
blocking can be ignored.

An alternative option to perturb the dynamical symmetry
of c.m. oscillations is to consider corrections to the confining
harmonic potential, e.g., by adding a r4 term. Such a situation
has very recently be investigated for a quasi-one-dimensional
setup in the hydrodynamic limit by Iqbal et al. [15] using the
Navier-Stokes equation. Similar to the case discussed in this
paper, they obtain a long-lived mode where the decay rates are
controlled by the strength of the anharmonic terms.

A spectrum-generating algebra also characterizes approx-
imately the breathing mode (monopole oscillations) of atoms
in a harmonic trap in two dimensions [16] and of a unitary
gas in arbitrary dimensions [17]. In this case, the shift of the
resonance frequency due to deviations from the unitary limit
has been calculated in one dimension in Refs. [18,19] while
the two-dimensional case was studied in Refs. [20–22] and
investigated experimentally in Refs. [23,24]. Within our study,
we are mainly interested in studying the relaxation rate rather
than the frequency shift.

The relative motion of two species of atoms is mainly
controlled by their mutual interactions. This problem, often
described by the term spin drag, has been investigated both in
the context of electrons in solids [25,26] and also for ultracold
atoms; see, e.g., Refs. [27,28].

In the following, we first introduce the model and our
analytical approach, identify three important physical regimes
(ballistic, frictionless drag, and friction dominated drag), and
finally quantitatively predict how these regimes determine
properties both for the real-time evolution and for the response
as function of the frequency.

I. MODEL AND METHOD

In this article we study two species of ultracold fermions
with creation operators �

†
1(r) and �

†
2(r) captured each in a

perfectly harmonic trap in three dimensions. The system is
described by

H = H0 + H
(11)
int + H

(22)
int + H

(12)
int ;

H0 =
2∑

i=1

∫
d3r �

†
i (r)

[
−�

2∇2

2mi

+ miω
2
i

2
(r − r0

i )2

]
�i(r),

(2)

H
(12)
int = 4π�

2a

2mred

∫
d3r �

†
1(r)�†

2(r)�2(r)�1(r).

Here, a shift of the position of the potential minimum r0
i (t)

can be used to excite dipolar oscillations. In general, the
two fermion species may have different masses mi and
feel different trap potentials with respective trap frequencies
ω1 = ω̄ + δω

2 , ω2 = ω̄ − δω
2 . H

(ii)
int describes the intraspecies

interaction, which we do not specify here as it does not

influence our results in any qualitative way. Furthermore,
for spinless fermions H

(ii)
int can safely be neglected. As we

show, all relaxation arises from the interspecies interaction,
which we parametrize by the s-wave scattering length a with
mred = 1/(m−1

1 + m−1
2 ) being the reduced mass (note that we

use a pseudopotential to describe the scattering; see, e.g.,
Ref. [29]). For δω = 0 the c.m. oscillations do not decay (see
below). We are therefore mainly interested in the limit δω �
ω̄, where a slow decay of the oscillations can be expected.
Experimentally, this can, for example, be realized by using
two isotopes with slightly different mass, m ± δm

2 , but identical
trapping potential. In this case δω

ω̄
= − δm

2m
. Alternatively, one

can use two hyperfine states of the same atom in combination
with a spin-dependent potential [29]. The latter setup has the
advantage that one can directly tune the parameter δω

ω̄
.

Our theoretical approach is based on the idea that for δω
ω̄

�
1 the dynamics is governed by an approximate dynamical
symmetry which prohibits a fast relaxation of the c.m.
oscillations. Furthermore, in the limit of vanishing interspecies
interactions, a → 0, also the c.m. motion of each atomic
species separately decouples. Our central goal is to derive
an effective, hydrodynamic description of the slowly relaxing
modes. We therefore focus on the dynamics in the operator
space spanned by the center-of-mass coordinates Ri and the
total momentum Pi of each of the two species defined by

Ri = 1

Ni

∫
d3r �

†
i (r) r �i(r);

(3)

Pi =
∫

d3r �
†
i (r) (−i�∇) �i(r),

where Ni is the number of particles of type i = 1,2.
For weak excitations of the system, it is sufficient to study

linear response within the Kubo formalism. The main goal is
thereby to calculate the matrix of retarded susceptibilities

χmn(ω) = i

�

∫ ∞

0
dt eiωt 〈[Am(t),An(0)]〉eq. (4)

where 〈·〉eq. denotes the expectation value in equilibrium for
r0
i (t) = 0 ∀t and An = (Rx

1 ,Rx
2 ,P x

1 ,P x
2 ). As for a spherical

potential, the x, y, and z components do not mix within
linear response, and we can focus on the x coordinate only.
χmn allows us to calculate all experiments where the c.m.
oscillations are excited by a shift r0

i (t) of the potential and
where the c.m. and/or the average momenta of the particles
are observed.

To calculate χmn(ω) we use the so-called memory matrix
formalism [30–32]. The memory matrix is a matrix of relax-
ation rates of slow variables, which we evaluate perturbatively
in the strength of the interspecies interaction. This formalism
has the advantages that (i) it is easy to evaluate—without
the need to solve the type of integral equations needed for
Boltzmann approaches or when vertex corrections are taken
into account within the Kubo formalism, (ii) it nevertheless
automatically includes the effect of vertex corrections, which
are essential to describe momentum conservation, which is
also governing the c.m. oscillations [33], (iii) it is accurate in
cases where there is a separation of time scales and all slow
modes are included in the memory matrix, (iv) it can be used to
treat complicated situations like the expansion around a fully
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interacting integrable system [8,9] and has recently been used
to calculate transport properties of exotic non-Fermi liquids
[34–36] (v) in the case considered here, where we effectively
expand around the noninteracting limit, it is equivalent to a
solution of the Boltzmann equation by projection onto the slow
modes [14,37]. In Ref. [38] we have argued that the formalism
gives always a lower limit for conductivities. The situation
investigated here is, however, more complicated compared to
the case considered in Ref. [38] as we are studying here effects
at finite frequency in a system which is not translationally
invariant. This leads to extra dephasing effects discussed in
detail in Appendices B 4 and C.

We refer to Appendix A for a brief review of the memory-
matrix method. It allows us to express the matrix χmn(ω) of
retarded susceptibilities [cf. Eqs. (A4) and (A8)],

χ (ω) = {1 − ω[ω − 	 + i
(ω)]−1}C0, (5)

in terms of an equal-time correlation matrix C0, a constant
matrix 	, and a frequency-dependent matrix-valued complex
function 
(ω). The latter two matrices have a similar role as
the self-energy: They describe directly the shift of frequencies
and the damping of oscillations. They have the advantage
that they can be evaluated directly in perturbation theory,
without the need to resume an infinite series of diagrams.
More precisely, the latter statement holds in the case when all
slow modes have been included in the set of observables An.
We use An = (Rx

1 ,Rx
2 ,P x

1 ,P x
2 ) as the slow modes, which is

sufficient to describe the regime where interactions dominate.
As we discuss in detail in Appendix B 4, in the limit of
vanishing interactions an infinite set of further slow modes
exists, which have to be included to describe details of the
dephasing of oscillations for very weak interactions (ballistic
regime) studied in detail in Appendix C but not captured for
the above choice of An.

In the following our goal is calculate for weak interactions
the frequencies and decay rates of the center-of-mass
oscillations. In Appendix B, we evaluate the matrices 	,

(ω), and C0 in local density approximation for weak
interactions. To linear order in a, using Eqs. (B6) and (B9),
we find 	 = 	(0) + 	(1) with

	(0) =

⎛
⎜⎜⎝

0 0 i/M1 0
0 0 0 i/M2

−iM1ω
2
1 0 0 0

0 −iM2ω
2
2 0 0

⎞
⎟⎟⎠ (6)

and

	(1) = iγM2ω2

⎛
⎜⎝

0 0 0 0
0 0 0 0
1 −1 0 0

−1 1 0 0

⎞
⎟⎠. (7)

Here, Mi = Nimi is the total mass of the fermions of species
i and γ has the unit of a rate and is linear in the scattering
length a but depends in general on temperature and other
parameters (see below).

Physically, Eq. (6) describes independent oscillations of
the two species in the absence of interactions. The eigenfre-
quencies of 	(0) are given by the trap frequencies, ±ω1 and
±ω2. Equation (7) describes how each species introduces a
Hartree potential for the other species. As we discuss below,

this contribution will shift the oscillation frequencies as long
as the two species do not oscillate in parallel. We obtain within
a local density approximation using Eqs. (B9) and (B3) from
the appendix,

γ = akBT ω2
1ω2

3π�4

m
5/2
1 m

3/2
2

N2mred

∫ ∞

0
dr r4g1(r)g2(r) (8)

with

gi(r) = Li 1
2
(−e(μi− 1

2 miω
2
i r

2)/(kBT )), (9)

where Li 1
2

is the polylogarithm of order 1
2 and μi is the

chemical potential for particles of species i in the limit a → 0;
see the discussion in Appendix B 1.

Damping, described by 
(ω), arises only to second order
in the interaction strength. The total momentum is conserved
during scattering processes, ∂tP1 = −∂tP2, which leads to the
simple matrix structure


(ω → 0) ≈ �

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 M2/M1 −1
0 0 −M2/M1 1

⎞
⎟⎠ (10)

with

� = π�

M2kBT

(
4π�

2a

2mred

)2 ∫
d3r

∏
i=1,2;
α=1,2

∫
d3kiα

(2π )3

× δ(�ε)δ(3)(�k)q2
x f11f21(1 − f12)(1 − f22) (11)

to second order in the interaction strength using again the
local density approximation; see Appendix B 3. Here fiα are
Fermi functions evaluated at the energy εiα = �

2k2
iα/(2mi) +

1
2miω

2
i r2 and q = k11 − k12 is the change of momentum

of the first species, while �k and �ε are the change of
total momentum and energy, respectively. As the oscillation
frequency is assumed to be much smaller than all Fermi
energies, we have used the limit ω → 0. Furthermore, we
ignore all frequency shifts to order a2 (arising from the
Kramers-Kronig partner of �). A more subtle issue is that our
approach also neglects the coupling of the c.m. oscillations to
other modes oscillating with frequency ωi for a → 0. This is
justified as, in the presence of interactions, these modes decay
rapidly, but formally breaks down in the limit of vanishing
interactions. As discussed in more detail in Appendix B 4, this
approximation gives rise to small but nominally divergent extra
contributions to 
(ω), which do not affect our results, however.

Finally, the equal-time correlation matrix C0 in Eq. (5) is
evaluated in Appendix B 1. To linear order in a, we obtain
C0 = C

(0)
0 + C

(1)
0 where

C
(0)
0 =

⎛
⎜⎜⎝

1/(M1ω
2
1) 0 0 0

0 1/(M2ω
2
2) 0 0

0 0 M1 0
0 0 0 M2

⎞
⎟⎟⎠ (12)
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and

C
(1)
0 = γ

M1ω
2
1ω2

⎛
⎜⎜⎜⎝

M2ω
2
2

M1ω
2
1

−1 0 0

−1 M1ω
2
1

M2ω
2
2

0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠, (13)

where γ ∝ a is given in Eqs. (8) and (9).

II. ANALYTIC RESULTS

Three different regimes have to be distinguished when
discussing how the interactions affect the c.m. oscillations,
depending on which of the three quantities δω, |γ |, and � is
largest. First, in the ballistic regime (δω � |γ |,�) interaction
effects can approximately be ignored and the oscillations
of the two species are almost independent. Second, in the
frictionless drag regime (|γ | � δω,�) one species drags the
other by the interaction-induced Hartree potential. Finally,
in the friction-dominated drag regime (� � δω,|γ |) the two
clouds are coupled by friction and only a hydrodynamic c.m.
oscillation with small effective damping survives.

For a quantitative calculation we have evaluated the
integrals in Eqs. (8) and (11) numerically; see Sec. III and
Fig. 1. In the limit of very low or very high temperature,
also an analytic calculation is possible. For low temperatures,
kBT � εF,1 and N2 � N1 one finds

γ ≈ 128

35π2
kF,1a ω̄ ≈ 0.37 kF,1a ω̄,

(14)

� ≈ 8π

9

(kBT )2

� εF,1
(kF,1a)2,

where kF,i is the Fermi momentum of species i in the center
of the trap with Fermi energy εF,i = k2

F,i/(2mi) determined
for T → 0. The analytic formulas have been computed in the
limit δω → 0 and for m1 = m2. While the prefactor of � is
valid for arbitrary ratios of N2 and N1 as long as N2 � N1,
the prefactor for γ is only exact for N1 = N2 but increases
by less than a factor of 2 when N2/N1 is reduced; see Fig. 1.
Surprisingly, the estimates given in Eq. (14) are even valid
when the temperature is larger than the Fermi energy of the

FIG. 1. (Color online) Numerical results for the quantities γ

[Eqs. (8)–(9)] and � [Eq. (11)] for different ratios of N2/N1. Dotted
gray lines are analytic predictions for T � εF,1 and T � εF,1, see
Eqs. (14)–(15). The analytic formula for γ in the limit T → 0 given
in Eq. (14) is only exact for N1 = N2 and underestimates the value of
γ for N2/N1 → 0 by a factor of 64/(35π ) ≈ 0.58. All curves were
calculated with m1 = m2, δω

ω̄
= 0.1, and are independent of the total

particle number in the chosen units.

second species. If the temperature is larger than both Fermi
energies, in contrast, the scattering rate � drops with 1/T

while γ vanishes with 1/T 5/2,

γ ≈ kF,1a ω̄

24
√

2π

(
εF,1

kBT

)5/2

= kT a ω̄

24
√

2π

(
εF,1

kBT

)3

,

(15)

� ≈ (kF,1a)2

9π

ε2
F,1

� kBT
= (kT a)2

9π

ε3
F,1

� (kBT )2
,

where kT = √
2mkBT /� is the thermal wave vector. The

prefactors for the high-temperature limit of both γ and � are
valid for arbitrary ratios of N2 and N1 as long as N2 � N1.

In both regimes, � can be identified with the single-particle
scattering rate of a particle of species 2 in the center of the trap.
In the high-temperature regime, this can be seen by rewriting
� ∼ σvthn1 in terms of the scattering cross section σ ∼ a2, the
typical velocity vth ∼ √

kBT /m, and the density of particles of
species 1 in the center, n1 ∼ N1/(T/mω2)3/2 ∼ ε3

F,1(m/T )3/2.

A. Ballistic regime

For very small interactions the two species oscillate
approximately independently of each other. More precisely, we
require that the strength γ of the effective interaction potential
and the single-particle scattering rate � are both smaller
(in magnitude) than the difference of oscillation frequencies,
|γ | � δω and � � δω. While this regime is usually not
realized experimentally at low temperatures (without tuning
interactions close to zero), we discuss it here for completeness.
Note that this regime is always reached in the limit of high
temperatures as long as δω �= 0.

The remaining weak interactions lead to a small shift
of the respective oscillation frequencies relative to the trap
frequencies and to a finite, but long, lifetime of the two
oscillatory modes. The complex eigenfrequencies are given
by the eigenvalues of 	 − i
(ω), where the matrix of
retarded susceptibilities, Eq. (5), has poles. We find for the
eigenfrequencies in the ballistic regime,

ωballistic
i ≈ ωi − M2ω2

Miωi

γ

2
− i

M2

Mi

�

2
, (16)

where we evaluated both the frequency shift (real part) and the
decay rate (imaginary part) to lowest order in the interaction
strength a. Both the frequency shift and the decay rate are
much smaller than δω in the regime where Eq. (16) is valid.
For low temperatures, T � εF,1, one can use Eq. (14) to obtain
for the frequency shift of the order of

�ωi ∼ N2

Ni

kF,1a ω̄ � δω, (17)

while the decay rate of the oscillations is essentially given by
the single-particle scattering rate,

1

τosc,i
∼ N2

Ni

(kBT )2

�2 εF,1
(kF a)2 � δω. (18)

For high temperatures, T � εF,1, the frequency shift drops
faster than the decay rate and is therefore difficult to observe.

In Appendix B 4 we show that in the ballistic regime the
memory matrix formalism does not reproduce a dephasing of
oscillations which gives rise to an extra effective decay rate
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(a)

(b)

(c)

FIG. 2. (Color online) Response to a constant displacement
r0

1(t < 0) = r0êx of the trap potential for species 1 that is switched
of suddenly at time t = 0. The solid black (dashed blue [gray]) line
shows the expectation value 〈Rx

1 (t)〉 (〈Rx
2 (t)〉) of the center position

of the first (second) atomic cloud, respectively; see Eq. (19). The
calculations were done for N1 = N2, m1 = m2, δω

ω̄
= 0.1, and γ

and � as specified for each case. For high friction � (last plot),
the oscillations of the two species synchronize quickly despite the
finite difference δω of the respective trapping frequencies, and the
remaining c.m. oscillation decays only slowly on the time scale
�/δω2; see Eq. (25).

linear in the scattering length a. This failure of the approach
can be traced back to the fact that in the limit a → 0 an infinite
set of further slow modes exists which we did not include into
the set of slow modes An; see Appendix B 4 for details.

In a cold-atom experiment, one can directly observe the
response of the clouds in real time. From the theory side, the
real-time response can be obtained by Fourier transformation
of the susceptibility, Eq. (5). We consider the following setup:
For time t < 0 a constant force is applied to the first species.
Equivalently, we set in the Hamiltionian [Eq. (2)], r0

2(t) = 0
and r0

1(t) = r0 = r0êx with r0 > 0 for t < 0 (êx is the unit
vector in x direction). The force is suddenly switched off,
r0
i (t) = 0, for t � 0. In Fig. 2 the expectation value

〈Ri(t)〉 = M1ω
2
1r0

∫ 0

−∞
χi1(t − t ′)dt ′ (19)

is plotted as a function of time for both species, i = 1,2. In
Fig. 2(a) an example from the ballistic regime is shown. Due
to the finite interactions, the two modes couple and a beating
pattern emerges which is characteristic for the superposition
of the two frequencies ω1 and ω2. All oscillations decay on a
time scale set by 1/�.

B. Frictionless drag regime

In the ballistic regime, the approximate symmetry which
protects c.m. oscillations is of no relevance. This is different

in cases where interactions are sufficiently strong so that
the first species drags the second one either directly by the
Hartree potential (frictionless drag) or by dissipative processes
(friction-dominated drag). In these regimes, the eigenmodes
are characterized by a long-lived mode of c.m. oscillations,
where both atomic clouds oscillate in parallel, and a mode of
relative oscillations, which decays more quickly. If all particles
synchronize their oscillation, then one can expect that the c.m.
mode is approximately described by undamped oscillations
of a rigid body of total mass Mtot = M1 + M2 oscillating
in an effective potential 1

2 (M1ω
2
1 + M2ω

2
2)r2. The oscillation

frequency in this limit is given by

ω(0)
c.m. =

√
M1ω

2
1 + M2ω

2
2

Mtot
. (20)

We first consider the frictionless drag regime, which is
reached when the frequency shift described by Eq. (16) be-
comes larger than the difference δω of the trapping frequencies,
|γ | � δω, and at the same time interaction effects between the
two species are dominated by the effective potential rather than
scattering, i.e., |γ | � �. For low T , this regime is obtained
for δω

ω
� kF a � �ω εF1

(kBT )2 .
In this frictionless drag regime we can use perturbation

theory in δω to calculate the frequency shift and lifetime of
the c.m. oscillations. We obtain

ωc.m. ≈ ω(0)
c.m. +

2M2
1 M2

M3
tot

(
δω2

γ
− i

δω2�

γ 2

)
. (21)

As expected, ωc.m. → ω(0)
c.m. for large γ ∼ a, as the increas-

ing drag effect causes the two atomic clouds to oscillate more
in parallel despite the small difference δω of their trapping
frequencies. Defining �ω by the shift relative to ω(0)

c.m., we
obtain for low T

�ω ∼ N2

N1

1

kF a

δω2

ω
� δω, (22)

where we used again Eq. (14). While the frequency shift is
proportional to 1/kF a, the lifetime turns out to be independent
of the interaction strength in this regime,

1

τc.m.
∼ N2

N1

(
δω

ω

)2 (kBT )2

�2 εF,1
� �ω � δω. (23)

Note that both �ω and 1
τc.m.

are proportional (δω)2 as frequency
shift and decay only arise from the small contributions
violating the symmetry which approximately protects c.m.
oscillations.

For completeness, we mention that the complex frequency
of the mode of relative oscillations [28] is given by

ωrel ≈ ω(0)
c.m. −

Mtot

2M1
(γ + i�). (24)

This mode is damped by the single-particle relaxation time �

and obtains a large frequency shift of the order of kF a ω for low
T . As discussed above, the formula ignores extra dephasing
effects; see Appendix C.

In Fig. 2(b) the real-time response is shown in the
frictionless drag regime using again Eq. (19). Due to the strong
repulsive interactions the two clouds repel each other such
that 〈Rx

1 (t � 0)〉 is larger than r0 and 〈Rx
2 (t � 0)〉 is negative.
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After the external force has been switched off at t = 0, the
first cloud moves towards the center, first pushing the second
cloud further away. After some time, the relative motion of the
two clouds has decayed, the oscillations lock into each other,
and only the c.m. oscillations remain. The decay of the latter
is given by the tiny rate ∼�(δω/γ )2, see Eq. (21), due to the
approximate symmetry.

C. Friction-dominated drag regime

Experimentally, the most important regime is perhaps the
hydrodynamic regime, where friction dominates, � � |γ |,δω.
For kBT � εF1, this condition is fulfilled for kF a � �ω εF,1

(kBT )2

and kF a �
√

�δω εF1
(kBT )2 , which is, e.g., realized with realistic

experimental parameters of kF,1a ≈ 0.2, N1 ≈ N2 ≈ 106,
δω
ω̄

≈ 0.1, and kBT ≈ 0.3εF,1 (the Fermi energies are given by
εF,i = �ωi(6Ni)1/3). Note that this regime is always reached
in the thermodynamic limit defined by Ni → ∞, ωi → 0 with
εF,i = const. Furthermore, we demand as above that kF a � 1.

The complex eigenfrequency of the c.m. mode is again
obtained from perturbation theory in δω and has the form

ω ≈ ω(0)
c.m. +

2M3
2

M3
tot

(
δω2γ

�2
− i

δω2

�

)
. (25)

Similar to the frictionless drag regime, interaction effects
are suppressed for large � as the friction synchronizes the
oscillations of the two atomic clouds. For low T we obtain the
decay rate

1

τc.m.
∼ 1

(kF,1a)2

(
�δω

kBT

)2
εF,1

�
� δω. (26)

The frequency shift is in this regime much smaller than the
decay rate,

�ω � 1

τc.m.
(27)

and therefore difficult to observe. For low T one obtains �ω ∼
�

2(δω)2ε2
F1ω̄

(kBT )4(kF,1a)3 .
Figure 2(c) demonstrates how efficient a large friction is to

lock the motion of the two clouds into each other on a time
scale set by 1/�. After this microscopic time scale, only the
center-of-mass oscillations remain, which decay very slowly
on the time scale �/(δω)2; see Eq. (25). The motion of the two
clouds is locked perfectly into each other.

III. NUMERICAL RESULTS

A. Protocols and possible experimental setups

Depending on the setup of the cold-atom experiment, there
exist various possibilities to access the different physical
regimes described in Sec. II. First, by changing the cooling
protocol, it is possible to access a broad range of temperatures.
Second, by using an Feshbach resonance one can tune the
scattering length. Third, if one has an experimental realization
where the trapping potential of the two species can be varied
independently, one can directly tune δω. In Fig. 3 we show
how each of these methods leads to a different trajectory in the
parameter space spanned by γ /δω and �/δω.

(a) (b) (c)

FIG. 3. (Color online) Depending on which one of the quantities
δω, |γ |, and � is largest, the system is either in the ballistic regime
(B), the frictionless drag regime (FLD), or the friction-dominated
drag regime (FDD). The arrows show the trajectories of the system
in the parameter space when the temperature, the interaction strength
a, or the difference δω of the trapping frequencies are increased.
All trajectories are calculated for N1 = N2 = 106 and m1 = m2.
(a) δω

ω̄
= 0.1 (0.01), kF,1a = 0.13 (0.06), and kBT

εF,1
= 0.05 . . . 10

(0.07 . . . 30) for the solid black (dashed purple [gray]) trajectory,
respectively. (b) δω

ω̄
= 0.1 (0.01), kBT

εF,1
= 0.2 (0.1), and kF,1a runs

from 0 to 0.025 (0.12) for the solid black (dashed purple [gray])
trajectory, respectively. (c) kF,1a = 0.1 (0.02), kBT

εF,1
= 0.2 (0.1), and

δω

ω̄
= 0.03 . . . 0.4 (0.002 . . . 0.03) for the solid black (dashed purple

[gray]) trajectory, respectively.

To illustrate the various regimes, we plot in the following
sections, Figs. 4, 6, and 7, the imaginary part of

χc.m.(ω) = (1,1,0,0) χ (ω) (1,1,0,0)T . (28)

This describes the response of the center of mass to forces
acting on both species simultaneously. Experimentally, the
susceptibility as function of frequency can, e.g., be obtained
by observing the real-time dynamics followed by a Fourier
transformation.

B. Increasing the temperature

While γ decreases monotonically as a function of tem-
perature, � vanishes for both T → 0 and T → ∞ and has a
maximum at kBT ∼ εF,1; see Fig. 1 and Eqs. (14) and (15).
Therefore, two scenarios are possible when one increases T

while keeping all other parameters constant. If interactions
are weak, kF,1|a| � δω

ω̄
[solid black trajectory in Fig. 3(a)],

then the system is in the ballistic regime for low temperatures,
may reach the friction-dominated drag regime at intermediate

temperatures kBT ∼ εF,1 provided that kF,1|a| �
√

�δω
εF,1

, and

returns to the ballistic regime for high temperatures. If, on the
other hand, kF,1|a| � δω

ω̄
[dashed purple (gray) trajectory in

Fig. 3(a)], then the system is in the frictionless drag regime
at low temperatures. Increasing the temperature to the order
of the Fermi energy will typically drive the system into the
friction-dominated drag regime unless kF,1|a| � �ω̄/εF,1 ∼
N

−1/3
1 . At high temperatures, the ballistic regime is always

realized.
For a quantitative analysis, we consider two concrete

systems corresponding to the two trajectories in Fig. 3(a). In
both cases, N1 = N2 = 106 and m1 = m2. In the first system,
δω
ω̄

= 0.1 and kF,1|a| = 0.13, while in the second case we
use δω

ω̄
= 0.01 and kF,1|a| = 0.06. We evaluate the integrals
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FIG. 4. (Color online) Imaginary part of χc.m.(ω), as defined in
Eq. (28), as a function of temperature for attractive (left panels) and
repulsive (right) interactions. The upper (lower) panels correspond
to the solid (dashed) trajectories in Fig. 3(a), respectively. Dashed
vertical lines indicate crossover temperatures where � = |γ | or � =
δω; horizontal dotted lines are the analytical predictions of Eqs. (16),
(20), and (21) using Eqs. (14) and (15). For the top panels, the system
evolves with increasing temperature from the ballistic (B) to the
friction-dominated drag (FDD) and back to the ballistic regime, while
for the lower panels, the frictionless drag regime (FLD) is reached at
low T . Parameters: N1 = N2 = 106, m1 = m2, and δω

ω̄
and kF,1a as

stated above each plot.

FIG. 5. (Color online) Resonance frequencies ωres and decay
rates 1/τ of the two eigenmodes of the system as a function of
temperature, calculated from the real and imaginary parts of the
eigenvalues of 	 − i
, respectively; see Eq. (5). In all four panels,
the blue (gray) graph corresponds to the mode with longer lifetime
τ . Dashed vertical lines indicate crossover temperatures between the
ballistic (B), the frictionless drag (FLD), and the friction-dominated
drag (FDD) regime. The left (right) column corresponds to the top
(bottom) panel in the left column of Fig. 4 and to the solid (dashed)
trajectory in Fig. 3(a), respectively. Parameters: N1 = N2 = 106,
m1 = m2.

FIG. 6. (Color online) Im[χc.m.(ω)], Eq. (28), as a function of the
scattering length a [corresponding to solid line in Fig. 3(b)]. Dashed
vertical lines indicate the scattering length where � = δω and separate
the ballistic (B) from the friction-dominated drag regime (FDD). The
dotted lines are analytic predictions of the eigenfrequencies based
on Eqs. (16) and (25), where we used the low-temperature limit,
Eq. (14), for the values of γ and �. Parameters: N1 = N2 = 106,
m1 = m2, kBT = 0.2εF,1, δω

ω̄
= 0.1.

in Eqs. (8) and (11) numerically for these two systems. Due
to the spherical symmetry of the dispersion relation and the
trapping potentials, the 12-dimensional integral in Eq. (11) can
be reduced to a five-dimensional integral, which we evaluate
using a Monte Carlo integration.

The different regimes can clearly be identified in plots of
Im[χc.m.(ω)], Eq. (28), shown in Fig. 4, describing excitations
of the c.m. motion. The vertical dashed lines in Fig. 4
correspond to the crossovers from one regime to the other, see
Fig. 3(a), while the horizontal dotted lines give the analytical
predictions for oscillation frequencies. The upper two (lower
two) plots in Fig. 4 correspond to the solid (dashed) line in
Fig. 3(a). On the left side, we consider attractive interactions,
and on the right side are repulsive interactions.

The ballistic regime is characterized by the presence of two
peaks: The two clouds oscillate independently with different
frequencies. In contrast, a single peak located approximately
at ωc.m. ≈ ω̄ characterizes the two drag regimes where the
oscillation of the two clouds synchronizes. A second (much

FIG. 7. (Color online) Im[χc.m.(ω)], Eq. (28), as a function of the
frequency difference δω in the case (kBT /εF )2 kF |a|N 1/3

1 = 0.4 >

0.07 [solid black trajectory in Fig. 3(c)]. At the dashed vertical line,
δω = �, separating the friction-dominated drag regime (FDD) from
the ballistic regime (B). The dotted lines are analytic predictions of
the eigenfrequencies based on Eqs. (16) and (25), where we used the
low-temperature limit, Eq. (14), for the values of γ and �. Parameters:
N1 = N2 = 106, m1 = m2, kF a = ±0.1, kBT = 0.2εF . Here, εF and
kF denote the Fermi energy and wave vector evaluated at δω → 0,
respectively.
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broader) mode describing relative oscillations does not show
up as for χc.m.(ω) we only consider a situation where both
clouds are displaced in the same direction (see Fig. 5 for a plot
of both resonance frequencies as a function of temperature).
Note that for the chosen parameters, the system is not very
deep in the ballistic regime for low T . This does not only lead
to considerable shifts of the oscillation frequencies (see below)
but also affects the weight of the two modes: The mode which
is in frequency closer to ω(0)

c.m. clearly dominates.
In the low-temperature ballistic regime, the interactions

increase (decrease) the oscillation frequencies as the curvature
of the potential increases (decreases) due to the attractive
(repulsive) interaction with the other species, respectively.
Interestingly, the effect is opposite for the drag-dominated
regimes, best visible for the low-temperature regime in the
lower two panels of Fig. 4. This higher-order effect, well
described by our analytical formulas [Eqs. (21) and (25), drawn
as dotted lines in Fig. 4], arises from level repulsion from the
mode of relative oscillations.

Figure 5 shows the (real part of the) resonance frequencies
and the decay rates 1/τ of both eigenmodes of the system for
the two cases corresponding to the left panels in Fig. 4. The
maxima of the decay rate of the long-lived mode (lower curve
in the lower panels of Fig. 5) trace the crossover from one
regime to the next. The minimum in the friction-dominated
drag regime, where 1/τc.m. is proportional to the inverse of
the single-particle scattering rate �, thereby arises from the
maximum of � displayed in Fig. 1. While in the ballistic
regime, both modes have a long lifetime, in the drag regimes,
only one long-lived mode remains and the decay rate of the
mode of relative oscillations shoots up.

C. Increasing the interaction strength

As γ ∝ a and � ∝ a2, the system evolves on a parabola in
the parameter space of Fig. 3(b) when the interaction strength
is increased. While for weak interactions the ballistic regime
is always realized and for strong interactions the friction-
dominated drag regime is always realized, the frictionless drag
regime is only reached if δω

ω̄
(kBT /εF,1)2N

1/3
1 � 0.03.

Figure 6 shows numerical results for Im[χc.m.(ω)], cf.
Eq. (28), for the solid black trajectory from Fig. 3(b). Dotted
lines are again analytic results of the eigenfrequencies. The
analytic prediction overestimates the slopes of the eigenfre-
quencies in the ballistic regime since it was made based on the
T → 0 limit of γ given in Eq. (14), while the actual value of
γ at kBT = 0.2εF,1 is by a factor of 0.62 smaller.

D. Increasing the frequency difference δω

Since γ and � depend only weakly on δω for δω
ω̄

� 1,
the trajectories for increasing δω in Fig. 3(c) are almost
straight lines crossing at the origin. For low temperatures and
small δω, the friction-dominated (frictionless) drag regime
is realized if (kBT /εF,1)2 kF,1|a| N1/3

1 is larger (smaller) than
0.07, respectively. For large δω (and weak interactions), the
system enters the ballistic regime. Figure 7 shows numerical
results for Im[χc.m.(ω)], cf. Eq. (28), corresponding to the solid
black trajectory in Fig. 3(c). Dotted lines are analytic predic-
tions of the eigenfrequencies based on the low-temperature

limit, Eq. (14). Going from large to small δω, the ballistic
mode with higher (lower) frequency in the case of attractive
(repulsive) interactions crosses over to the mode of relative
oscillations, described by Eq. (24). The weight by which this
mode contributes to χc.m.(ω) goes to zero as δω → 0 since the
setup described by Eq. (28) does not probe relative oscillations.
This explains why the corresponding branches fade out for
decreasing δω in our numerical results in Fig. 7.

IV. CONCLUSIONS

The presence of approximate symmetries leads to a slow
equilibration of a perturbed system. We suggest that this
physics can be studied with high precision experimentally by
investigating the center-of-mass oscillations of two species of
ultracold atoms with different but similar mass. Alternatively,
one can also investigate, e.g., two spin species with the same
mass but slightly different harmonic confinement. The mass
difference and/or difference in the strength of the parabolic
potential breaks a dynamical symmetry which otherwise
protects the center-of-mass oscillations from decay.

The interactions of the two species synchronizes the
motion of the two clouds and thereby leads to a partial
restoration of the dynamical symmetry: The interacting liquid
can approximately be viewed as having a single average mass
and oscillating in a single average potential. As a consequence,
the decay rate of the center-of-mass oscillations is strongly
reduced and of the order of (δω)2

�
, where δω is the difference

of the trapping frequencies and � is the scattering rate of the
two species. Compared to other hydrodynamic modes (which
can also have decay rates proportional to the inverse of �) one
obtains an extra reduction by the factor (δω/ω)2.

As all other modes have much faster decay rates, the
approximate symmetry leads to an almost perfect drag of the
two clouds: The centers of mass for each of the two species
follow each other after a few scattering times.

For future investigations two directions are especially
interesting: First, one can study the highly nonlinear regime,
where, for example, initially one species is separated far
from the second one and one can study the evolution of the
center-of-mass oscillations after the two clouds have violently
crashed into each other in a setup similar to the one studied
by the Zwierlein group [39]. Second, one can investigate
the interplay of superfluidity and the approximate symmetry,
which is of direct relevance for the experiments of the Salomon
group [13]. Here, in the center of the cloud and for small
relative velocities, the superfluid components move without
friction and only the normal components can scatter from each
other.
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APPENDIX A: MEMORY MATRIX FORMALISM

For a general set of observables An, time-dependent forces
fn(t) on each observable are described by a contribution
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Hext = −∑
n fn(t)An to the Hamiltonian. The response of

some observable Am to the external forces fn(t) is described,
to linear order in fn, by the matrix of retarded susceptibilities
χmn(ω), as defined in Eq. (4), via the relation

〈Am(ω)〉 = 2πδ(ω)〈Am〉eq. +
∑

n

χmn(ω)fn(ω), (A1)

where the Fourier transform of the external forces
(and accordingly of the observable Am) is defined by
fn(ω) = ∫ ∞

−∞ eiωtf (t)dt and 〈·〉 denotes the expectation value
in the perturbed system while 〈·〉eq. is the equilibrium expec-
tation value for fn(t) = 0 ∀t .

To be specific, as described in the main text we study the
dynamics of the (x components of the) c.m. coordinates of
two atomic clouds. Thus, An = (Rx

1 ,Rx
2 ,P x

1 ,P x
2 ) as defined in

Eq. (3). The Hamiltonian, Eq. (2), contains forces on the c.m.
position coordinates Rx

i , i = 1,2 of the two atomic clouds,
which are given by miω

2
i r

0,x
i (t). We do not consider forces

on the c.m. momenta P x
i , but nevertheless include P x

i in the
set of operators An since (i) the momenta can be observed
in time-of-flight measurements and (ii) we expect excitations
of the c.m. momenta to be long lived in the regime δω

ω̄
� 1 and

the applied memory-matrix formalism requires a separation of
time scales where the operators An span the subspace of all
slowly relaxing local observables.

We calculate the matrix of retarded susceptibilities χmn(ω),
Eq. (4), by means of the memory-matrix formalism [30–32].
In the following, we briefly review the central results of this
technique.

A scalar product in the space of quantum-mechanical
operators is defined by

(A|B) :=
∫ β

0
dλ 〈A†B(i�λ)〉eq. − β〈A†〉eq.〈B〉eq. (A2)

where β = 1/(kBT ) is the inverse temperature and B(i�λ) =
e−λH BeλH is the operator in the Heisenberg picture. In-
stead of calculating the matrix of retarded susceptibilities
χmn(ω) directly, it is easier to first derive an expression
for the matrix of retarded correlation functions Cmn(ω)
defined by

Cmn(ω) =
∫ ∞

0
dt eiωt (Am(t)|An). (A3)

It is easy to show that χmn(ω) and Cmn(ω) are related via

χmn(ω) = iω Cmn(ω) + (C0)mn, (A4)

where the entries of the equal-time correlation matrix C0 are
defined by

(C0)mn = (Am|An). (A5)

Time evolution of an operator is described by A(t) = eiLtA

with the Liouville (super)operator L = 1
�

[H, · ]. Thus, Cmn(ω)
is given by

Cmn(ω) =
∫ ∞

0
dt eiωt (Am|e−iLt |An)

= i (Am|(ω − L)−1|An) (A6)

for Im(ω) > 0.

The operators An span a subspace of the space of
quantum-mechanical operators. We define the projection
(super)operator P (Q) onto (away from) this subspace by

P = 1 − Q =
∑
m,n

|Am)
(
C−1

0

)
mn

(An|. (A7)

By inserting L = LQ + LP into Eq. (A6) and following some
simple algebraic manipulations [30] one arrives at a matrix
equation for the retarded correlation functions,

C(ω) = i [ω − 	 + i
(ω)]−1 C0, (A8)

where

	mn = i
∑

s

(Ȧm|As)
(
C−1

0

)
sn

, (A9)


mn(ω) = i
∑

s

(Ȧm|Q(ω − LQ)−1|Ȧs)
(
C−1

0

)
sn

. (A10)

The matrix 	 describes the evolution of the observables
An(t) if there was no coupling to any other degrees of freedom
(i.e., if L would commute with all An). Effects due to the
coupling of the An modes to other modes are encoded in the
memory matrix 
(ω).

APPENDIX B: EVALUATION OF THE
MATRICES C0, �, AND �(ω)

In this section we evaluate the matrices C0, 	, and 
(ω),
Eqs. (A5), (A9), and (A10), for the model described by Eq. (2).
All calculations are done perturbatively for small interaction
strength a. Scalar products are calculated in the local density
approximation, which is valid for N1,N2 � 1.

1. Equal-time correlation matrix C0

The equal-time correlation matrix C0 is defined in Eq. (A5).
Due to their different signatures under time reversal, the
position and momentum operators have vanishing overlap,
(Rx

i |P x
j ) = 0. We expand C0 ≈ C

(0)
0 + C

(1)
0 + O(a2) for small

a. Without interactions, a = 0, the two species decouple from
each other, resulting in a diagonal matrix structure of C

(0)
0 . We

obtain, within a local density approximation,

C
(0)
0 =

⎛
⎜⎜⎝

1/(M1ω
2
1) 0 0 0

0 1/(M2ω
2
2) 0 0

0 0 M1 0
0 0 0 M2

⎞
⎟⎟⎠, (B1)

where Mi = Nimi .
In local density approximation, the momentum-momentum

components of C0 are not changed by interactions to first order
in a. Interactions only affect the position-position components
and we obtain

C
(1)
0 = (

Rx
1 |Rx

2

)
⎛
⎜⎜⎜⎝

−M2ω
2
2

M1ω
2
1

1 0 0

1 −M1ω
2
1

M2ω
2
2

0 0

0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠, (B2)
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where

(
Rx

1 |Rx
2

) ≈ − 1

3π�4

akBT (m1m2)3/2

N1N2mred

∫ ∞

0
dr r4g1(r)g2(r)

gi(r) = Li 1
2
(−e(μi− 1

2 miω
2
i r

2)/(kBT )). (B3)

Here, Li 1
2

is the polylogarithm of order 1
2 and μi is the chemical

potential for particles of species i in the limit a → 0. To arrive
at the diagonal matrix elements of C

(1)
0 given in Eq. (B2) one

has to take into account that the actual chemical potentials
depend on the interaction strength a. Equation (B2) gives the
result for fixed particle numbers, which was derived using the
relation

∂
(
Rx

i

∣∣Rx
i

)
∂a

∣∣∣∣∣
Ni

= ∂
(
Rx

i

∣∣Rx
i

)
∂a

∣∣∣∣∣
μi

− ∂
(
Rx

i

∣∣Rx
i

)
∂Ni

∂Ni

∂a

∣∣∣∣
μi

,

(B4)
where the notation |x denotes that x is kept constant in the
derivative. For the off-diagonal elements of C0, corrections due
to the dependency of the chemical potentials on the interaction
strength are of higher order in a.

2. Eigenfrequency matrix �

We expand 	 ≈ 	(0) + 	(1) + O(a2) for small a. The
temporal derivatives Ȧm = i

�
[H,Am] that appear on the right-

hand side of Eq. (A9) are given by

Ṙx
i = P x

i /Mi,

Ṗ x
i = −Miω

2
i R

x
i + i

�

[
H

(12)
int ,P x

i

] =: Ṗ x
i,trap + Ṗ x

i,int. (B5)

By setting H
(12)
int = 0 in Eq. (B5) and inserting into Eq. (A9)

using Eq. (A5) one arrives directly at the leading-order
contribution to the eigenfrequency matrix,

	(0) =

⎛
⎜⎜⎝

0 0 i/M1 0
0 0 0 i/M2

−iM1ω
2
1 0 0 0

0 −iM2ω
2
2 0 0

⎞
⎟⎟⎠. (B6)

Note that once we set Ṗ x
i,int = 0 in Eq. (B5), all scalar

products that appear in the evaluation of 	(0) are canceled
exactly by the factor C−1

0 on the right-hand side of Eq. (A9).
Thus, all corrections to 	(0) due to interactions originate from
the term Ṗ x

i,int in Eq. (B5). Since (Ṗ x
i,int|P x

j ) = 0 due to different
signature under time reversal, interactions only change the
lower left 2 × 2 corner of the matrix 	. We get, to leading
order in a,(

Ṗ x
1,int

∣∣Rx
1

) = −(
Ṗ x

2,int

∣∣Rx
1

) = −M2ω
2
2

(
Rx

1

∣∣Rx
2

)
,

(B7)(
Ṗ x

2,int

∣∣Rx
2

) = −(
Ṗ x

1,int

∣∣Rx
2

) = −M1ω
2
1

(
Rx

1

∣∣Rx
2

)
,

where (Rx
1 |Rx

2 ) is given in Eq. (B3). Inserting Eqs. (B7) into
Eq. (A9) yields the first order correction to the eigenfrequency
matrix

	(1) = i
(
Rx

1

∣∣Rx
2

)
⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

−M2ω
2
2 M1ω

2
1 0 0

M2ω
2
2 −M1ω

2
1 0 0

⎞
⎟⎟⎠C−1

0 . (B8)

Since the factor (Rx
1 |Rx

2 ) is already first order in a we may
approximate the matrix C0 by C

(0)
0 [Eq. (B1)]. This leads to

	(1) = −iM1ω
2
1M2ω

2
2

(
Rx

1

∣∣Rx
2

)⎛⎜⎝
0 0 0 0
0 0 0 0
1 −1 0 0

−1 1 0 0

⎞
⎟⎠. (B9)

Equations (B6), (B9), and (B3) describe our result for the
leading and next-to-leading order contribution to the eigenfre-
quency matrix 	.

3. Memory matrix �(ω)

The definition of the memory matrix 
(ω) is given in
Eq. (A10). Note that one may insert an additional projection
operator Q to the left of the vector |Ȧs) in the right-hand
side of Eq. (A10) without changing its value. Using Eqs. (B5)
and the fact that Q projects onto the subspace of observables
orthogonal to the space spanned by |An) [see Eq. (A7)] we find
Q|Ṙx

i ) = 0 = Q|Ṗ x
i,trap). Therefore, all contributions to 
(ω)

come from terms quadratic in Ṗ x
i,int and thus at least of second

order in the interaction strength a. Neglecting higher order
terms in a we evaluate all scalar products on the right-hand
side of Eq. (A10) with respect to the noninteracting system
and describe time evolution by the noninteracting Liouvillian
L0 = [H0, · ]. Using further the fact that L0 commutes with Q
and that C0 is diagonal (to lowest order in a) one finds that
only the P,P components of 
(ω) have nonvanishing values
given by


P x
i ,P x

j
(ω) = i

(
Ṗ x

i,int

∣∣Q(ω − L0)−1
∣∣Ṗ x

j,int

)
(
P x

j

∣∣P x
j

) . (B10)

Inserting Q = 1 − P leads to


P x
i ,P x

j
(ω) = 


(a)
P x

i ,P x
j
(ω) + 


(b)
P x

i ,P x
j
(ω) (B11)

with



(a)
P x

i ,P x
j
(ω) = i

(
Ṗ x

i,int

∣∣(ω − L0)−1
∣∣Ṗ x

j,int

)
(
P x

j

∣∣P x
j

)
= 


(a1)
P x

i ,P x
j
(ω) + 


(a2)
P x

i ,P x
j
(ω), (B12)



(b)
P x

i ,P x
j
(ω) = −i

(
Ṗ x

i,int

∣∣P(ω − L0)−1
∣∣Ṗ x

j,int

)
(
P x

j

∣∣P x
j

) . (B13)

Two types of diagrams, shown in Fig. 8, contribute to

(a), which we denote by 
(a1) and 
(a2) in the following.

(a1) describes how the scattering of quasiparticles leads to
momentum transfer from one species to the other. Evaluating
the diagram within the local density approximation (i.e., by
approximating the system locally by a homogeneous one)
results in Eqs. (10) and (11) of the main text.

4. Singular contributions to the memory matrix

The discussion of the second diagram in Fig. 8, 
(a2), and
of 
(b) requires some more care. While both contributions
vanish within the local density approximation, they have both
a divergent contribution for ω = ωi if evaluated exactly (as
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long as intraspecies interactions are absent; see below). We
argue that the divergencies cancel exactly if the full space of
slow operator is considered. This is the reason why we ignore
these contributions for our analysis despite the fact that the
cancellation is only partial for the four modes considered by us.

First, we note that 
(a2) has a simple physical interpretation.
It describes that the momentum decays because, e.g., species
1 is affected by a single-particle Hartree potential VH (r) =
4π�

2a
2mred

〈�†
2(r)�2(r)〉, giving rise to an extra force FH1 =

− ∫
∂VH (r)

∂r �
†
1(r)�1(r) d3r contributing to ∂tP1. We obtain



(a2)
P x

i ,P x
j
(ω) + 


(b)
P x

i ,P x
j
(ω) = i

(
Fx

Hi

∣∣Q(ω − L0)−1
∣∣Fx

Hj

)
(
P x

j

∣∣P x
j

) .

(B14)

In cases where we can approximate VH by a parabola, FH is
proportional to R1 and does not contribute to 
 as QFx

Hi = 0.
Similar, if we include in our list of slow modes An all operators
which oscillate with frequency ωi , then by construction



(a2)
P x

i ,P x
j
(ω) + 


(b)
P x

i ,P x
j
(ω) is nonsingular for ω → ±ωi . The fact

that for our choice of slow modes an extra divergency remains
arises from a peculiar property of the harmonic oscillator.
As all single-particle energy levels are equally spaced, there
is an infinite number of Hermitian operators oscillating with
frequencies ±ωi in the noninteracting limit,

Am,i,1 =
∫

�
†
i (r)rxĥ

m
i �i(r) d3r, (B15)

Am,i,2 = −i

∫
�

†
i (r)

∂

∂rx

ĥm
i �i(r) d3r, (B16)

where ĥi = − �
2

2mi

∂2

∂r2 + 1
2miω

2
i r2 is the single-particle Hamil-

tonian of species i.
In our analysis we have (i) only included the operators

with m = 0 and (ii) neglected the divergent contributions
discussed above. It is therefore important to ask to what extent
our results are modified when further terms with m > 0 are
included. First, the accuracy of the result will increase as by
construction the neglected terms become smaller and smaller.
It is important to note that the more complicated operators
Am,i,j with m > 0 are not protected by any approximate
symmetry. Therefore their decay rate is not suppressed by
factors of (δω/ω)2 and they will neither qualitatively nor

FIG. 8. The two types of diagrams contributing to 
(a), Eq. (B12).
Solid (dashed) lines represent fermions (interspecies interactions),
respectively. The second diagram would vanish in a homogeneous
system due to momentum conservation at the vertices. In a harmonic
trap, however, 
(a2) does not vanish and has poles at the trap
frequencies (for vanishing intraspecies interactions).

quantitatively influence the final results in the limit where
interactions become important (the hydrodynamic friction
dominated drag regime). Furthermore, in situations where
intraspecies interactions are present, these lead to a decay
of Am,i,j with m > 0 but do not affect Am,i,j with m = 0.
Therefore, if the decay rate due to intraspecies interactions
is sufficiently high, our results are again fully valid in all
regimes considered. Technically, this is reflected by the fact
that the omitted terms (B14) are nondivergent if intraspecies
interactions are included in L0.

In the ballistic limit where all friction can be ignored,
however, our results presented in the main text miss a
physically important effect: The decay of oscillations by
dephasing (rather than decay by friction considered by us).
As we show in the following section, this leads in the ballistic
regime to a decay rate which is linear in the scattering length
a and is not covered in memory matrix approximations which
neglect the modes Am,i,j with m > 0 and predict decay rates
proportional to a2.

APPENDIX C: DECAY BY DEPHASING: A TOY MODEL

In this section, we discuss the decay of c.m. oscillations
for a simple toy model where noninteracting fermions scatter
from a weak, smooth, and time-independent potential V (r).
We use the calculation to show that (i) the memory matrix
approach correctly describes the average shift of frequencies
due to the Hartree potentials but (ii) fails to reproduce the
correct lifetime in the ballistic regime due to the problems
discussed in Appendix B 4 above.

In the simplified model considered here, the atoms of the
first species do not move while those of the second species
oscillate in a potential given by the harmonic trap 1

2m2ω
2
2r

2

plus the static Hartree potential V (r) = 4π�
2a

m2
〈n̂1(r)〉, where

〈n̂1(r)〉 is the expectation value of the density of species 1
in equilibrium. Formally, we consider the limit m1 → ∞,
m1ω

2
1 = m2ω

2
2, N1 = N2(m1/m2)3/2, kF,2a � (m2/m1)3/2,

such that the two clouds have the same shape 〈n̂1(r)〉 ≈
(m1/m2)3/2〈n̂2(r)〉.

The imaginary part of the retarded susceptibility for the c.m.
position of the second species is given by the Kubo formula,

Im[χRx
2 ,Rx

2
(ω)] = π

N2
2

∑
α,α′

(f (εα) − f (εα′)) |〈α′|r̂x |α〉|2

× δ[�ω − (εα′ − εα)], (C1)

where f is the Fermi function and |α〉 are single-particle eigen-
states with energies εα . We evaluate Eq. (C1) perturbatively
for small V . As the energy levels ε(0)

n = �ω2(n + 3
2 ) of the

unperturbed three-dimensional isotropic harmonic oscillator
are degenerate, one has to diagonalize the matrix 〈α′|V |α〉
for each n subspace. Since V (r) ∝ 〈n̂1(r)〉 is spherically
symmetric, this is done by the states |α〉 = |nlm〉, where
l and m are the quantum numbers of angular momentum.
To linear order in V , the eigenenergies of these states are
independent of m and given by εn,l = ε(0)

n + 〈nl|V |nl〉, which
we evaluate numerically by a one-dimensional integration
in the radial direction. As we are only interested in the
behavior of Im[χRx

2 ,Rx
2
(ω)] for ω close to ω2 and to linear

order in V , it is sufficient to calculate the matrix elements
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FIG. 9. (Color online) Imaginary part of the retarded suscepti-
bility for a noninteracting gas in a harmonic trap disturbed by a
small extra potential V (r) = 4π�

2a

m2
〈n̂1(r)〉, see Eq. (C1), where the δ

function is approximated by a Gaussian with tiny standard deviation
σω = 0.01|�ω|. The dashed line is the average shift �ω of the
peak position, Eq. (C3), correctly predicted by the memory matrix
method, Eq. (C5). Parameters: kBT /εF,2 = 0.1, N2 = 105 in the
limit m1/m2 → ∞, m1ω

2
1 = m2ω

2
2, N1 = N2(m1/m2)3/2, kF,2a �

(m2/m1)3/2.

〈n′l′m′|r̂x |nlm〉 to order V 0, which leads to the selection rules
n′ = n ± 1, l′ = l ± 1, and m′ = m (with quantization axis in
the x direction). We obtain∑

m

|〈n + 1,l ± 1,m|r̂x |n,l,m〉|2

=
√

� (2l + 1)(2l + 1 ± 1)(2l + 1 ± 2)(2n + 5 ± 2l ± 1)√
m2ω2 24(2l ± 1)(2l + 2 ± 1)

.

(C2)

In Fig. 9 we show the resulting Im[χRx
2 ,Rx

2
(ω)] for ω close to

ω2. The δ peak one would obtain for V = 0 at ω = ω2 is shifted
linearly in the scattering length a and also broadened linearly in
a. Note that the peak shape is not Lorentzian. The broadening
is not caused by inelastic scattering but arises instead from
a simple dephasing effect: The frequency shifts linear in V

affect the energies of different eigenstates in a different way.
The dephasing linear in V is not covered by the version of
the memory matrix approach used by us, which does not take
into account higher modes Am,i,j with m > 0, and ignores
divergent terms in 
(ω) arising in a treatment beyond the local
density approximation. This is the main result of this section.
Note that this dephasing only affects the decay rates in the
ballistic regime, Eq. (16), and the decay rate of the relative
motion of the two species in the drag regimes, Eq. (24). It
is irrelevant in the friction-dominated drag regime, where the
inelastic scattering rate � is much larger than the dephasing
rate. Furthermore, the dephasing effects are expected to be

strongly reduced by the factor (δω/γ )2 for the c.m. mode in the
frictionless drag regime, cf. Eq. (21), as for the synchronized
motion of the two species the Hartree potential cancels to
leading order.

In the following, we show that our memory matrix approach
does, however, correctly predict the average frequency shift;
see dashed line in Fig. 9. The average frequency shift is
defined by

�ω = 1

C

∫ ω2+δ

ω2−δ

dω

2π
(ω − ω2) Im[χRx

2 ,Rx
2
(ω)] (C3)

with the normalization C = ∫ ω2+δ

ω2−δ
dω
2π

Im[χRx
2 ,Rx

2
(ω)] =

1/(4N2m2ω2) and δ < ω2 chosen such that only the weight
of the peak close to ω2 is captured. By inserting Eq. (C1), we
find to linear order in V ,

�ω ≈ 1

�N2

∑
α,α′

(
f

(
ε(0)
α

) − f
(
ε

(0)
α′

)) |〈α′|â†
x |α〉|2

× (〈α′|V |α′〉 − 〈α|V |α〉), (C4)

where â
†
x is the ladder operator of the harmonic oscillator in

the x direction.
Applying our version of the memory matrix, we obtain for

the frequency shift to linear order in V

�ω ≈ −ω2

2�

(
Fx

2

∣∣Rx
2

)
= 1

�N2

∑
α,α′

(
f

(
ε(0)
α

) − f
(
ε

(0)
α′

))〈α′|â†
x |α〉〈α|[âx,V ]|α′〉,

(C5)

where Fx
2 = − ∫

∂V
∂x

�
†
2(x)�2(x) d3r is the force arising from

the Hartree potential, and we used ∂V
∂x

= √
2m2ω2/� [âx,V ]

in the last equality. We factorize the last matrix element in
Eq. (C5) by inserting 1 = ∑

α̃ |α̃〉〈α̃| between the operators âx

and V , and write it explicitly in the eigenstates |nlm〉 of the
harmonic oscillator,

〈α|[âx,V ]|α′〉 =
∑
ñ,l̃,m̃

(〈nlm|âx |ñl̃m̃〉〈ñl̃m̃|V |n′l′m′〉

− 〈nlm|V |ñl̃m̃〉〈ñl̃m̃|âx |n′l′m′〉). (C6)

Inserting Eq. (C6) into Eq. (C5), using the properties
〈nlm|V |ñl̃m̃〉 ∝ δl,l̃ δm,m̃ for the spherically symmetric po-
tential V and 〈nlm|âx |ñl̃m̃〉 ∝ δn+1,ñ, reproduces exactly the
average frequency shift, Eq. (C4), derived from the direct
calculation of Im[χRx

2 ,Rx
2
(ω)].
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