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Abstract

Black box variational inference (BBVI) with reparameterization gradients triggered
the exploration of divergence measures other than the Kullback-Leibler (KL) diver-
gence, such as alpha divergences. In this paper, we view BBVI with generalized
divergences as a form of estimating the marginal likelihood via biased importance
sampling. The choice of divergence determines a bias-variance trade-off between
the tightness of a bound on the marginal likelihood (low bias) and the variance of
its gradient estimators. Drawing on variational perturbation theory of statistical
physics, we use these insights to construct a family of new variational bounds.
Enumerated by an odd integer order K, this family captures the standard KL bound
for K = 1, and converges to the exact marginal likelihood as K — oco. Compared
to alpha-divergences, our reparameterization gradients have a lower variance. We
show in experiments on Gaussian Processes and Variational Autoencoders that the
new bounds are more mass covering, and that the resulting posterior covariances
are closer to the true posterior and lead to higher likelihoods on held-out data.

1 Introduction

Variational inference (VI) (Jordan et al., 1999) provides a way to convert Bayesian inference to
optimization by minimizing a divergence measure. Recent advances of VI have been devoted to
scalability (Hoffman et al., 2013; Ranganath et al., 2014), divergence measures (Minka, 2005; Li and
Turner, 2016; Hernandez-Lobato et al., 2016), and structured variational distributions (Hoffman and
Blei, 2015; Ranganath et al., 2016).

While traditional stochastic variational inference (SVI) (Hoffman et al., 2013) was limited to condi-
tionally conjugate Bayesian models, black box variational inference (BBVI) (Ranganath et al., 2014)
enables SVI on a large class of models. It expresses the gradient as an expectation, and estimates it by
Monte-Carlo sampling. A variant of BBVI uses reparameterized gradients and has lower variance (Sal-
imans and Knowles, 2013; Kingma and Welling, 2014; Rezende et al., 2014; Ruiz et al., 2016). BBVI
paved the way for approximate inference in complex and deep generative models (Kingma and Welling,
2014; Rezende et al., 2014; Ranganath et al., 2015; Bamler and Mandt, 2017).

Before the advent of BBVI, divergence measures other than the KL divergence had been of limited
practical use due to their complexity in both mathematical derivation and computation (Minka, 2005),
but have since then been revisited. Alpha-divergences (Hernandez-Lobato et al., 2016; Dieng et al.,
2017; Li and Turner, 2016) achieve a better matching of the variational distribution to different regions
of the posterior and may be tuned to either fit its dominant mode or to cover its entire support. The
problem with reparameterizing the gradient of the alpha-divergence is, however, that the resulting
gradient estimates have large variances. It is therefore desirable to find other divergence measures
with low-variance reparameterization gradients.

*Equal contributions. First authorship determined by coin flip among first two authors.
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In this paper, we use concepts from perturbation theory of statistical physics to propose a new family
of variational bounds on the marginal likelihood with low-variance reparameterization gradients. The
lower bounds are enumerated by an order K, which takes odd integer values, and are given by

K
1

LI V) =e Z il Z]Eq[(logp(x,z) —logq(z; \) + Vo)k} : (1)
k=0 """

Here, p(x, z) denotes the joint probability density function of the model with observations x and
latent variables z, g is the variational distribution, which depends on variational parameters A, and
Vo € Ris a reference point for the perturbative expansion, see below. In this paper, we motivate
and discuss Eq. 1 (Section 3), and we analyze the properties of the proposed bound experimentally
(Section 4). Our contributions are as follows.

o We establish a view on black box variational inference with generalized divergences as a form
of biased importance sampling (Section 3.1). The choice of divergence allows us to trade-off
between a low-variance stochastic gradient and loose bound, and a tight variational bound
with higher-variance Monte-Carlo gradients. As we explain below, importance sampling
and point estimation are at opposite ends of this spectrum.

e We combine these insights with ideas from perturbation theory of statistical physics to moti-
vate the objective function in Eq. 1 (Section 3.2). We show that, for all odd K, L) (N, Vo) is
a nontrivial lower bound on the marginal likelihood p(x). Thus, we propose the perturbative
black box variational inference algorithm (PBBVI), which maximizes LE) (A, Vo) over A
and V{y with stochastic gradient descent (SGD). For K = 1, our algorithm is equivalent to
standard BBVI with the KL-divergence (KLVI). On the variance-bias spectrum, KLVI is on
the side of large bias and low gradient variance. Increasing K to larger odd integers allows
us to gradually trade in some increase in the gradient variance for some reduction of the bias.

e We evaluate our PBBVI algorithm experimentally for the lowest nonstandard order K = 3
(Section 4). Compared to KLVI (KX = 1), our algorithm fits variational distributions that
cover more of the mass of the true posterior. Compared to alpha-VI, our experiments confirm
that PBBVI uses gradient estimates with lower variance, and converges faster.

2 Related work

Our approach is related to BBVI, VI with generalized divergences, and variational perturbation theory.
We thus briefly discuss related work in these three directions.

Black box variational inference (BBVI). BBVI has already been addressed in the introduction (Sal-
imans and Knowles, 2013; Kingma and Welling, 2014; Rezende et al., 2014; Ranganath et al., 2014;
Ruiz et al., 2016); it enables variational inference for many models. Our work builds upon BBVI in that
BBVI makes a large class of new divergence measures between the posterior and the approximating
distribution tractable. Depending on the divergence measure, BBVI may suffer from high-variance
stochastic gradients. This is a practical problem that we aim to improve in this paper.

Generalized divergences measures. Our work connects to generalized information-theoretic di-
vergences (Amari, 2012). Minka (2005) introduced a broad class of divergences for variational
inference, including alpha-divergences. Most of these divergences have been intractable in large-scale
applications until the advent of BBVI. In this context, alpha-divergences were first suggested by
Hernandez-Lobato et al. (2016) for local divergence minimization, and later for global minimization
by Li and Turner (2016) and Dieng et al. (2017). As we show in this paper, alpha-divergences have the
disadvantage of inducing high-variance gradients, since the ratio between posterior and variational
distribution enters the bound polynomially instead of logarithmically. In contrast, our approach leads
to a more stable inference scheme in high dimensions.

Variational perturbation theory. Perturbation theory refers to methods that aim to truncate a
typically divergent power series to a convergent series. In machine learning, these approaches
have been addressed from an information-theoretic perspective by Tanaka (1999, 2000). Thouless-
Anderson-Palmer (TAP) equations (Thouless et al., 1977) are a form of second-order perturbation
theory. They were originally developed in statistical physics to include perturbative corrections to
the mean-field solution of Ising models. They have been adopted into Bayesian inference in (Plefka,
1982) and were advanced by many authors (Kappen and Wiegerinck, 2001; Paquet et al., 2009; Opper
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Figure 1: Different choices for
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Figure 2: Behavior of different
VI methods on fitting a univariate
Gaussian to a bimodal target distri-
bution (black). PBBVI (proposed,
green) covers more of the mass
of the entire distribution than the
traditional KLVI (red). Alpha-VI
is mode seeking for large v and
mass covering for smaller a.
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Figure 3: Sampling variance of
the stochastic gradient (averaged
over its components) in the opti-
mum, for alpha-divergences (or-
ange, purple, gray), and the pro-
posed PBBVI (green). The vari-
ance grows exponentially with the
latent dimension NN for alpha-VI,
and only algebraically for PBBVIL.

and Vp = 0 for PBBVI here).

et al., 2013; Opper, 2015). In variational inference, perturbation theory yields extra terms to the
mean-field variational objective which are difficult to calculate analytically. This may be a reason why
the methods discussed are not widely adopted by practitioners. In this paper, we emphasize the ease
of including perturbative corrections in a black box variational inference framework. Furthermore, in
contrast to earlier formulations, our approach yields a strict lower bound to the marginal likelihood
which can be conveniently optimized. Our approach is different from the traditional variational
perturbation formulation (Kleinert, 2009), which generally does not result in a bound.

3 Method

In this section, we present our main contributions. We first present our view of black box variational
inference (BBVI) as a form of biased importance sampling in Section 3.1. With this view, we bridge
the gap between variational inference and importance sampling. In Section 3.2, we introduce our
family of new variational bounds, and analyze their properties further in Section 3.3.

3.1 Black Box Variational Inference as Biased Importance Sampling

Consider a probabilistic model with data x, latent variables z, and joint distribution p(x, z). We are
interested in the posterior distribution over the latent variables, p(z|x) = p(x, z)/p(x). This involves
the intractable marginal likelihood p(x). In variational inference (Jordan et al., 1999), we instead
minimize a divergence measure between a variational distribution ¢(z; \) and the posterior. Here, A
are parameters of the variational distribution, and we aim to find the parameters \* that minimize the
distance to the posterior. This is equivalent to maximizing a lower bound on the marginal likelihood.

We call the difference between the log variational distribution and the log joint distribution the
interaction energy,

V(z;\) = logq(z; \) — log p(x, ). 2)
We use V or V(z) interchangeably to denote V' (z; A), and ¢(z) to denote ¢(z; A), when more conve-
nient. Using this notation, the marginal likelihood is
p(x) = E 7], 3)
q(z)
We call e=V(#%) = p(x, 2) /q(z) the importance ratio, since sampling from ¢(z) to estimate the right-
hand side of Eq. 3 is equivalent to importance sampling. As importance sampling is inefficient in
high dimensions, we resort to variational inference. To this end, let f(-) be any concave function
defined on the positive reals. We assume furthermore that for all > 0, we have f(x) < x. Applying
Jensen’s inequality, we can lower-bound the marginal likelihood,

p(x) = f(p(x)) = qg)[f(e’v(z“))] =LA )

Figure 1 shows exemplary choices of f. We maximize £¢(\) using reparameterization gradients,
where the bound is not computed analytically, but rather its gradients are estimated by sampling from



q(z) (Kingma and Welling, 2014). This leads to a stochastic gradient descent scheme, where the noise
is a result of the Monte-Carlo estimation of the gradients.

Our approach builds on the insight that black box variational inference is a type of biased importance
sampling, where we estimate a lower bound of the marginal likelihood by sampling from a proposal
distribution, iteratively improving this distribution. The approach is biased since we do not estimate the
exact marginal likelihood but only a lower bound to this quantity. As we argue below, the introduced
bias allows us to estimate the bound more easily, because we decrease the variance of this estimator.
The choice of the function f thereby trades-off between bias and variance in the following way:

e For f = id being the identity, we obtain importance sampling. (See the black line in
Figure 1). In this case, Eq. 4 does not depend on the variational parameters, so there is
nothing to optimize and we can directly sample from any proposal distribution ¢q. Since the
expectation under ¢ of the importance ratio e =" () gives the exact marginal likelihood, there
is no bias. If the model has a large number of latent variables, the importance ratio e~V (%)
becomes tightly peaked around the minimum of the interaction energy V/, resulting in a very
high variance of this estimator. Importance sampling is therefore on one extreme end of the
bias-variance spectrum.

e For f = log, we obtain the familiar Kullback-Leibler (KL) bound. (See the pink line in
Figure 1; here we add a constant of 1 for comparison, which does not affect the optimization).
Since f(e~V(®)) = —V (z), the bound is

Lxr(N) = E [-V(2)] = E llogp(x,2) ~loga(z)) ®
The Monte-Carlo expectation of E,[— V] has a much smaller variance than E,[e~"'], implying
efficient learning (Bottou, 2010). However, by replacing e~V with —V we introduce a bias.
We can further trade-off less variance for even more bias by dropping the entropy term
on the right-hand side of Eq. 5. A flexible enough variational distribution will shrink
to zero variance, which completely eliminates the sampling noise. This is equivalent to
point-estimation, and is at the opposite end of the bias-variance spectrum.

e Now, consider any f which is between the logarithm and the identity, e.g., the green line
in Figure 1 (this is the regularizing function we propose in Section 3.2 below). The more
similar f is to the identity, the less biased is our estimate of the marginal likelihood, but the
larger the variance. Conversely, the more f behaves like the logarithm, the easier it is to
estimate f(e*V(z)) by sampling, while at the same time the bias grows.

One example of alternative divergences to the KL divergence that have been discussed in the literature
are alpha-divergences (Minka, 2005; Hernandez-Lobato et al., 2016; Li and Turner, 2016; Dieng
et al., 2017). Up to a constant, they correspond to the following choice of f:

f(a)(e—V) x e—(l—(y)v. (6)

The real parameter o determines the distance to the importance sampling case (« = 0). As «
approaches 1 from below, this bound leads to a better-behaved estimation problem of the Monte-Carlo
gradient. However, unless taking the limit of & — 1 (where the objective becomes the KL-bound),
V still enters exponentially in the bound. As we show, this leads to a high variance of the gradient
estimator in high dimensions (see Figure 3 discussed below). The alpha-divergence bound is therefore
similarly as hard to estimate as the marginal likelihood in importance sampling.

Our analysis relies on the observation that expectations of exponentials in V' are difficult to estimate,
and expectations of polynomials in V' are easy to estimate. We derive a family of new variational
bounds which are polynomials in V', where increasing the order of the polynomial reduces the bias.

3.2 Perturbative Black Box Variational Inference

Perturbative bounds. We now motivate the family of lower bounds proposed in Eq. 1 in the
introduction based on the considerations outlined above. For fixed odd integer K and fixed real value
Vo, the bound £ (X, V) is of the form of Eq. 4 with the following regularizing function f:

K K

_ Vo + log z)* B B Vo — V)*
k=0 : k=0 :



Algorithm 1: Perturbative Black Box Variational Inference (PBBVI)

Input: joint probability p(x, z); order of perturbation K (odd integer); learning rate schedule p;;
number of Monte Carlo samples .S; number of training iterations 7'; variational family ¢(z, \)
that allows for reparameterization gradients, i.e., z ~ q( -, ) <= z = g(€, \) where € ~ p,
with a fixed noise distribution p, and a differentiable reparameterization function g.

Output: fitted variational parameters A*.

1 initialize A randomly and V{, < 0;

fort < 1toT do

draw S samples €1, ..., €g ~ p, from the noise distribution;

// obtain reparameterization gradient estimates using automatic differentiation:
BN k
gy LW V) =Wy [E55 500 (log p(x, gles, ) —log a(g(ess s N+ Vo)
. k
g, Vi LI Vo) = Vi[4S (1og p(x, gles, X)) —log a(g(es N5 N+ Vo)

// perform variable updates (see second to last paragraph of Section 3.2):
A = A4 pegn;

k
Vo < Vo e gve — % 50 000 1 (108 p(x, gles, A)) — Togalgles, ) A) + Vo)

end

Here, the second (equivalent) formulation makes it explicit that f‘(/f) is the K" order Taylor expansion

of its argument e~" in V around some reference energy V;. Figure 1 shows f‘(,f) (z) for K =1

(red) and K = 3 (green). The curves are concave and lie below the identity, touching it at z = e~ V0.
We show in Section 3.3 that these properties extend to every odd K and every V| € R. Therefore,
L) (X, Vp) is indeed a lower bound on the marginal likelihood.

The rationale for the design of the regularizing function in Eq. 7 is as follows. On the one hand, the
gradients of the resulting bound should be easy to estimate via the reparameterization approach. We

achieve low-variance gradient estimates by making f‘(/f) (e~V) a polynomial in V, i.e., in contrast to
the alpha-bound, V' never appears in the exponent.

On the other hand, the regularizing function should be close to the identity function so that the resulting
bound has low bias. For K = 1, we have L) (), 1)) = e~ "0 E,[logp — log g + Vp]. Maximizing
L™ over X is independent of the value of V; and equivalent to maximizing the standard KL bound
L1, see Eq. 5, which has low gradient variance and large bias. Increasing the order K to larger odd
integers makes the Taylor expansion tighter, leading to a bound with lower bias. In fact, in the limit
K — oo, the right-hand side of Eq. 7 is the series representation of the exponential function, and

thus f‘(/f) converges pointwise to the identity. In practice, we propose to set K to a small odd integer
larger than 1. Increasing K further reduces the bias, but it comes at the cost of increasing the gradient
variance because the random variable V' appears in higher orders under the expectation in Eq. 4.

As discussed in Section 3.1, the KL bound L k1, can be derived from a regularizing function f = log
that does not depend on any further parameters like V{;. The derivation of the KL bound therefore
does not require the first inequality in Eq. 4, and one directly obtains a bound on the model evidence
log p(x) = f(p(x)) from the second inequality alone. For K > 1, the bound £(%) (X, ;) depends
nontrivially on V{, and we have to employ the first inequality in Eq. 4 in order to make the bounded
quantity on the left-hand side independent of Vj. This expenses some tightness of the bound but
makes the method more flexible by allowing us to optimize over Vj, as well, as we describe next.

Optimization algorithm. We now propose the perturbative black box variational inference (PBBVI)
algorithm. Since £ (), V}) is a lower bound on the marginal likelihood for all A and all V;, we
can find the values \* and V(" for which the bound is tightest by maximizing simultaneously over \

and Vj. Algorithm 1 summarizes the PBBVI algorithm. We minimize —£) (), V;) using stochastic
gradient descent (SGD) with reparameterization gradients and a learning rate p; that decreases with
the training iteration ¢ according to Robbins-Monro bounds (Robbins and Monro, 1951). We obtain

unbiased gradient estimators (denoted by “VU”) using standard techniques: we replace the expectation



E,[-]in Eq. 1 with the empirical average over a fixed number of S samples from ¢, and we calculate
the reparameterization gradients with respect to A and Vj using automatic differentiation.

In practice, we typically discard the value of V' once the optimization is converged since we are
only interested in the fitted variational parameters A*. However, during the optimization process,
V4 is an important auxiliary quantity and the inference algorithm would be inconsistent without an
optimization over Vj: if we were to extend the model p(x, z) by an additional observed variable &
which is statistically independent of the latent variables z, then the log joint (as a function of z alone)
changes by a constant positive prefactor. The posterior remains unchanged by the constant prefactor,
and a consistent VI algorithm must therefore produce the same approximate posterior distribution ¢
for both models. Optimizing over V{) ensures this consistency since the log joint appears in the lower
bound only in the combination log p(x, z) + Vj. Therefore, a rescaling of the log joint by a constant
positive prefactor can be completely absorbed by a change in the reference energy V.

We observed in our experiments that the reference energy V|, can become very large (in absolute
value) for models with many latent variables. To avoid numerical overflow or underflow from the
prefactor e~ V0, we consider the surrogate objective £ (X, V5) = "0 L) (X, Vp). The gradients
with respect to A of LF) (X, Vp) and LU (X, Vp) are equal up to a positive prefactor, so we can
replace the former with the latter in the update step (line 6 in Algorithm 1). The gradient with respect
to Vo is Vi, LN, Vo) o< Wy, LE) (A, Vo) — LE) (X, Vo) (line 7). Using the surrogate £U5) (X, Vp)
avoids numerical underflow or overflow, as well as exponentially increasing or decreasing gradients.

Mass covering effect. In Figure 2, we fit a Gaussian distribution to a one-dimensional bimodal
target distribution (black line), using different divergences. Compared to BBVI with the standard
KL divergence (KLVI, pink line), alpha-divergences are more mode-seeking (purple line) for large
values of «, and more mass-covering (orange line) for small o (Li and Turner, 2016). Our PBBVI
bound (K = 3, green line) achieves a similar mass-covering effect as in alpha-divergences, but with
associated low-variance reparameterization gradients. This is seen in Figure 3, discussed in Section 4.2,
which compares the gradient variances of alpha-VI and PBBVI as a function of dimensions.

3.3 Proof of Correctness and Nontriviality of the Bound

To conclude the presentation of the PBBVI algorithm, we prove that the objective in Eq. 1 is indeed a
lower bound on the marginal likelihood for all odd orders K, and that the bound is nontrivial.

Correctness. The lower bound £ (), ;) results from inserting the regularizing function f‘(/ﬁ()
from Eq. 7 into Eq. 4. For odd K, it is indeed a valid lower bound because f‘(/f) is concave and

lies below the identity. To see this, note that the second derivative §? f‘(/f) (2)/0x? = —e=Vo(Vy +
log )% ~1/((K — 1)!2?) is non-positive everywhere for odd K. Therefore, the function is concave.
Next, consider the function g(z) = f‘(/f) (x) — x, which has a stationary point at z = o = e~ "0.
Since g is also concave, xg is a global maximum, and thus g(z) < g(zg) = 0 for all z, implying
that f‘(,ﬁ() () < x. Thus, for odd K, the function f‘(/f) satisfies all requirements for Eq. 4, and

LI\, V) = By f‘(,f) (e=V)] is a lower bound on the marginal likelihood. Note that an even order
K does not lead to a valid concave regularizing function.

Nontriviality. Since the marginal likelihood p(x) is always positive, a lower bound would be trivial
if it was negative. We show that once the optimization algorithm has converged, the bound at the
optimum is always positive. At the optimum, all gradients vanish. By setting the derivative with
respect to Vo of the right-hand side of Eq. 1 to zero we find that E,«[(V;" — V)&] = 0, where

* = g(-; A*) is the variational distribution at the optimum. Thus, the lower bound at the optimum is
LN Vg) =e V0 Eg[h(V)] with h(V) = kl,(;()l L (Vg = V)¥, where the sum runs only to K — 1
because the term with & = K vanishes at Vo = V. We show that (V') is positive for all V. If
K =1, then h(V') = 1 s a positive constant. For K > 3, h(V) is a polynomial in V" of even order
K — 1, whose highest order term has a positive coefficient 1 /(K — 1)!. Therefore, as V' — +oo0, the
function h(V') goes to positive infinity and it thus has a global minimum at some value V e R. At
the global minimum, its derivative vanishes, 0 = Vi h(V) = — S0 2 L (Vg — V)*. Thus, at the
global minimum of the polynomial h, all terms except the highest order term cancel, and we find
h(V) = ﬁ(vo* —V)E=1 >0, which is nonnegative because K — 1 is even. The case h(V) = 0

is achieved if and only if V = V4", but this would violate the condition V; h(f/) = 0. Therefore,
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Figure 4: Gaussian process regression on synthetic data (green dots). Three standard deviations are shown in
varying shades of orange. The blue dashed lines show three standard deviations of the true posterior. The red
dashed lines show the inferred three standard deviations using KLVI (a) and PBBVI (b). We see that the results
from our proposed PBBVI are close to the analytic solution while traditional KLVI underestimates the variances.

Method  Avg variances
Analytic 0.0415 Dataset Crab Pima  Heart Sonar

KLVI 0.0176 KLVI 022 0245 0.148 0212
PBBVI 0.0355 PBBVI  0.11 0.240 0.1333 0.1731

Table 1: Average variances across training ex-  Table 2: Error rate of GP classification on the test set. The
amples in the synthetic data experiment. The lower the better. Our proposed PBBVI consistently obtains
closer to the analytic solution, the better. better classification results.

h(V') is strictly positive, and since V is a global minimum of h, we have h(V) > h(V) > 0 for all
V € R. Inserting into the expression for £(A*, V{;") concludes the proof that the lower bound at the
optimum is positive.

4 Experiments

We evaluate PBBVI with different models. First we investigate its behavior in a controlled setup of
Gaussian processes on synthetic data (Section 4.1). We then evaluate PBBVI based on a classification
task using Gaussian processes classifiers, where we use data from the UCI machine learning repository
(Section 4.2). This is a Bayesian non-conjugate setup where black box inference is required. Finally,
we use an experiment with the variational autoencoder (VAE) to explore our approach on a deep
generative model (Section 4.3). This experiment is carried out on MNIST data. We use the perturbative
order K = 3 for all experiments with PBBVI. This corresponds to the lowest order beyond standard
KLVI, since KLVI is equivalent to PBBVI with K = 1, and K has to be an odd integer. Across all
the experiments, PBBVI demonstrates advantages based on different metrics.

4.1 GP Regression on Synthetic Data

In this section, we inspect the inference behavior using a synthetic data set with Gaussian processes
(GP). We generate the data according to a Gaussian noise distribution centered around a mixture of
sinusoids, and sample 50 data points (green dots in Figure 4). We then use a GP to model the data,
thus assuming the generative process f ~ GP(0,A) and y; ~ N (f;, €).

We first compute an analytic solution of the posterior of the GP, (three standard deviations shown in
blue dashed lines) and compare it to approximate posteriors obtained by KLVI (Figure 4 (a)) and the
proposed PBBVI (Figure 4 (b)). The results from PBBVI are almost identical to the analytic solution.
In contrast, KLVI underestimates the posterior variance. This is consistent with Table 1, which shows
the average diagonal variances. PBBVI results are much closer to the exact posterior variances.

4.2 Gaussian Process Classification

We evaluate the performance of PBBVI and KLVI on a GP classification task. Since the model is
non-conjugate, no analytical baseline is available in this case. We model the data with the following

generative process:
f~GP(0,A), =z =o0o(fi), wyi~ Bern(z).
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outperforms KLVI mainly when the size of the training
data set is small. The fewer the training data, the more
advantage PBBVI obtains.

Above, A is the GP kernel, ¢ indicates the sigmoid function, and Bern indicates the Bernoulli
distribution. We furthermore use the Matern 32 kernel,

L),y =/

1
Data. We use four data sets from the UCI machine learning repository, suitable for binary classification:
Crab (200 datapoints), Pima (768 datapoints), Heart (270 datapoints), and Sonar (208 datapoints). We
randomly split each of the data sets into two halves. One half is used for training and the other half
is used for testing. We set the hyper parameters s = 1 and [ = /D /2 throughout all experiments,
where D is the dimensionality of input x.

Ay =s*(1+ @) exp(— — ;)T (z; — xj).

Table 2 shows the classification performance (error rate) for these data sets. Our proposed PBBVI
consistently performs better than the traditional KLVI.

Convergence speed comparison. We also carry out a comparison in terms of speed of convergence,
focusing on PBBVI and alpha-divergence VI. Our results indicate that the smaller variance of the
reparameterization gradient leads to faster convergence of the optimization algorithm.

We train the GP classifier from Section 4.2 on the Sonar UCI data set using a constant learning rate.
Figure 5 shows the test log-likelihood under the posterior mean as a function of training iterations.
We split the data set into equally sized training, validation, and test sets. We then tune the learning
rate and the number of Monte Carlo samples per gradient step to obtain optimal performance on the
validation set after minimizing the alpha-divergence with a fixed budget of random samples. We use
a = 0.5 here; smaller values of « lead to even slower convergence. We optimize the PBBVI lower
bound using the same learning rate and number of Monte Carlo samples. The final test error rate is
22% on an approximately balanced data set. PBBVI converges an order of magnitude faster.

Figure 3 in Section 3 provides more insight in the scaling of the gradient variance. Here, we fit GP
regression models on synthetically generated data by maximizing the PBBVI lower bound and the
alpha-VI lower bound with @ € {0.2,0.5,2}. We generate a separate synthetic data set for each
N € {1,...,200} by drawing N random data points around a sinusoidal curve. For each N, we fit
a one-dimensional GP regression with PBBVI and alpha-VI, respectively, using the same data set
for both methods. The variational distribution is a fully factorized Gaussian with /N latent variables.
After convergence, we estimate the sampling variance of the gradient of each lower bound with respect
to the posterior mean. We calculate the empirical variance of the gradient based on 10° samples from
q, and we average over the N coordinates. Figure 3 shows the average sampling variance as a function
of N on a logarithmic scale. The variance of the gradient of the alpha-VI bound grows exponentially
in the number of latent variables. By contrast, we find only algebraic growth for PBBVI.

4.3 Variational Autoencoder

We experiment on Variational Autoencoders (VAEs), and we compare the PBBVI and the KLVI
bound in terms of predictive likelihoods on held-out data (Kingma and Welling, 2014). Autoencoders
compress unlabeled training data into low-dimensional representations by fitting it to an encoder-
decoder model that maps the data to itself. These models are prone to learning the identity function



when the hyperparameters are not carefully tuned, or when the network is too expressive, especially
for a moderately sized training set. VAEs are designed to partially avoid this problem by estimating
the uncertainty that is associated with each data point in the latent space. It is therefore important that
the inference method does not underestimate posterior variances. We show that, for small data sets,
training a VAE by maximizing the PBBVI lower bound leads to higher predictive likelihoods than
maximizing the KLVI lower bound.

We train the VAE on the MNIST data set of handwritten digits (LeCun et al., 1998). We build on
the publicly available implementation by Burda et al. (2016) and also use the same architecture and
hyperparamters, with L = 2 stochastic layers and S = 5 samples from the variational distribution per
gradient step. The model has 100 latent units in the first stochastic layer and 50 latent units in the
second stochastic layer.

The VAE model factorizes over all data points. We train it by stochastically maximizing the sum of
the PBBVI lower bounds for all data points using a minibatch size of 20. The VAE amortizes the
gradient signal across data points by training inference networks. The inference networks express the
mean and variance of the variational distribution as a function of the data point. We add an additional
inference network that learns the mapping from a data point to the reference energy V. Here, we use
a network with four fully connected hidden layers of 200, 200, 100, and 50 units, respectively.

MNIST contains 60,000 training images. To test our approach on smaller-scale data where Bayesian
uncertainty matters more, we evaluate the test likelihood after training the model on randomly
sampled fractions of the training set. We use the same training schedules as in the publicly available
implementation, keeping the total number of training iterations independent of the size of the training
set. Different to the original implementation, we shuffie the training set before each training epoch as
this turns out to increase the performance for both our method and the baseline.

Figure 6 shows the predictive log-likelihood of the whole test set, where the VAE is trained on random
subsets of different sizes of the training set. We use the same subset to train with PBBVI and KLVI for
each training set size. PBBVI leads to a higher predictive likelihood than traditional KLVI on subsets
of the data. We explain this finding with our observation that the variational distributions obtained
from PBBVI capture more of the posterior variance. As the size of the training set grows—and the
posterior uncertainty decreases—the performance of KLVI catches up with PBBVI.

As a potential explanation why PBBVI converges to the KLVI result for large training sets, we note
that E,-[(Vy — V)?] = 0 at the optimal variational distribution ¢* and reference energy V' (see
Section 3.3). If V becomes a symmetric random variable (such as a Gaussian) in the limit of a large
training set, then this implies that E«[V] = V", and PBBVI reduces to KLVI for large training sets.

5 Conclusion

We first presented a view on black box variational inference as a form of biased importance sampling,
where we can trade-off bias versus variance by the choice of divergence. Bias refers to the deviation
of the bound from the true marginal likelihood, and variance refers to its reparameterization gradient
estimator. We then proposed a family of new variational bounds that connect to variational perturbation
theory, and which include corrections to the standard Kullback-Leibler bound. Our proposed PBBVI
bound converges to the true marginal likelihood for large order K of the perturbative expansion,
and we showed both theoretically and experimentally that it has lower-variance reparameterization
gradients compared to alpha-VI. In order to scale up our method to massive data sets, future work will
explore stochastic versions of PBBVI. Since the PBBVI bound contains interaction terms between all
data points, breaking it up into mini-batches is non-straightforward. Besides, while our experiments
used a fixed perturbative order of K = 3, it could be beneficial to increase the perturbative order
at some point during the training cycle once an empirical estimate of the gradient variance drops
below a certain threshold. Furthermore, the PBBVI and alpha-bounds can also be combined, such
that PBBVI further approximates alpha-VI. This could lead to promising results on large data sets
where traditional alpha-VI is hard to optimize due to its variance, and traditional PBBVI converges
to KLVI. As a final remark, a tighter variational bound is not guaranteed to always result in a better
posterior approximation since the variational family limits the quality of the solution. However, in
the context of variational EM, where one performs gradient-based hyperparameter optimization on
the log marginal likelihood, our bound gives more reliable results since higher orders of K can be
assumed to approximate the marginal likelihood better.
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Proof that PBBVI minimizes a divergence

In this supplement we show that perturbative black box variational inference (PBBVI) minimizes a
valid divergence from the variational distribution ¢(z) to the true posterior distribution p(z|x). This
has the important consequence that PBBVI converges to exact inference in the limit of an arbitrarily
flexible variational family. In contrast to traditional Kullback-Leibler variational inference (KLVI)
and «a-VI, the divergence minimized by PBBVI depends on the choice of variational family.

Let f be any regularizing function that satisfies the conditions for Eq. 4 of the main text (i.e., f is
concave and smaller than the identity). Let £;(q) be the associated lower bound on the marginal
likelihood. We prefer this notation over the notation £y (M) used in the main text here, because, at this
stage, we do not restrict ¢ to a specific family of variational distributions indexed by A. We define a
divergence Dy from g to the true posterior p(z|x) by

Dy (pllg) = f(p(x)) — L (q)- (S1)
Here, the model marginal likelihood p(x) is unknown to us, but it is a well-defined constant assuming
that the model parameters are kept constant. We show that D is indeed a valid divergence. From
Eq. 4 of the main text, we find £(q) < f(p(x)) and therefore D is non-negative. The lower bound
L(q) is defined in Eqs. 2 and 4 of our paper as

cin=2e 2520)]

Setting ¢(z) to the true posterior, p(x,z)/p(x), yields L(q) = f(p(x)), and therefore sets D¢ (p||q)
to zero. Thus, Dy is indeed a valid divergence.

Consider now the specific family of regularizing functions f‘(/ﬁ{) defined in Eq. 7 of the main text.

We now also restrict ¢ to be a member of some predefined variational family parameterized by .

Maximizing the corresponding lower bound £5)(\, V) = £ FUO (¢) simultaneously over A and
Vo

Vj yields an optimal reference energy V;* and an optimal member ¢* = ¢( -, \*) of the variational
family. Both depend not only on the model but also on the variational family to which q is restricted.
Evidently, ¢* is the member of the variational family that minimizes the divergence

D0 (plla) = 11 (0(x)) = £ 00 (a). (3)

Here, the first term on the right-hand side is a constant (since Vi is). Its value is not known to us,
but well defined. Thus, PBBVI minimizes a valid divergence to the true posterior. As a practical
consequence this implies that the exact maximum of the PBBVI lower bound is the true posterior
if the variational family is sufficiently flexible to contain it. Note that the choice of divergence that
PBBVI minimizes depends on the perturbative order K, and also on the model and the variational
family (via their influence on V).

*Equal contribution

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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