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Abstract. Variational inference has become one of the most widely used methods

in latent variable modeling. In its basic form, variational inference employs a fully

factorized variational distribution and minimizes its KL divergence to the posterior.

As the minimization can only be carried out approximately, this approximation induces

a bias. In this paper, we revisit perturbation theory as a powerful way of improving the

variational approximation. Perturbation theory relies on a form of Taylor expansion of

the log marginal likelihood, vaguely in terms of the log ratio of the true posterior and its

variational approximation. While first order terms give the classical variational bound,

higher-order terms yield corrections that tighten it. However, traditional perturbation

theory does not provide a lower bound, making it inapt for stochastic optimization.

In this paper, we present a similar yet alternative way of deriving corrections to the

ELBO that resemble perturbation theory, but that result in a valid bound. We show in

experiments on Gaussian Processes and Variational Autoencoders that the new bounds

are more mass covering, and that the resulting posterior covariances are closer to the

true posterior and lead to higher likelihoods on held-out data.
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1. Introduction

Bayesian inference is the task of reasoning about random variables that can only

be measured indirectly. Given a probabilistic model and a data set of observations,

Bayesian inference seeks the posterior probability distribution over the remaining,

i.e., unobserved or ‘latent’ variables. The computational bottleneck is calculating the

marginal likelihood, the probability of the data with latent variables being integrated

out. The marginal likelihood is also an important quantity for model selection. It is the

objective function of the expectation-maximization (EM) algorithm [8], which has seen

a recent resurgence with the popularity of variational autoencoders (VAEs) [16].

Variational inference (VI) [14, 13, 46] scales up approximate Bayesian inference

to large data sets by framing inference as an optimization problem. VI derives and

maximizes a lower bound to the log marginal likelihood, termed ’evidence’, and uses this

so-called ’evidence lower bound’ (ELBO) as a proxy for the true evidence. In its original

formulation, VI was limited to a restricted class of so-called conditionally conjugate

models [13], for which a closed-form expression for the ELBO can be derived by solving

known integrals. More recently, black box variational inference (BBVI) approaches

have become more popular [34, 37], which lift this restriction by approximating the

gradient of the ELBO by Monte Carlo samples. BBVI also enables the optimization

of alternative bounds that do not possess closed-form integrals. With Monte Carlo

gradient estimation, the focus shifts from tractability of these integrals to the variance

of the Monte Carlo gradient estimators, asking for bounds with low-variance gradients.

In this article, we propose a family of new lower bounds that are tighter than the

standard ELBO while having lower variance than previous alternatives and admitting

unbiased Monte Carlo estimation of the gradients of the bound. We derive these new

bounds by introducing ideas from so-called variational perturbation theory into BBVI.

Variational perturbation theory provides an alternative to VI for approximating the

evidence [31, 30, 29, 41]. It is based on a Taylor expansion of the evidence around the

variational distribution, i.e., a parameterized approximate posterior distribution. The

lowest order of the Taylor expansion recovers the standard ELBO, and higher order

terms correct for the mismatch the between variational distribution and true posterior.

Variational perturbation theory based on so-called cumulant expansions [29]

requires a fair amount of manual derivations and puts strong constraints on the

tractability of certain integrals. A cumulant expansion also generally does not result in a

lower bound, making it impossible to minimize the approximation error with stochastic

gradient descent. In this article, we propose a new variant of perturbation theory that

addresses these issues. Our proposed perturbative expansion leads to a family of lower

bounds on the marginal likelihood that can be optimized with the same black box

techniques as the standard ELBO. The proposed bounds L(K) are enumerated by an

odd integer K, the order of the perturbative expansion, and are given by

L(K)(λ, V0) = e−V0
K∑
k=0

1

k!
Ez∼qλ

[
(V0 + log p(x, z)− log qλ(z))k

]
≤ p(x). (1)



Tightening Bounds for Variational Inference by Revisiting Perturbation Theory 3

Here, p(x, z) is the joint distribution of the probabilistic model with observed variables x

and latent variables z, qλ(z) is the variational distribution with variational parameters λ,

and p(x) is the marginal likelihood. Further, the reference energy V0 ∈ R is an additional

free parameter over which we optimize jointly with λ.

The proposed bounds in Eq. 1 generalize the standard ELBO, which one obtains

for K = 1. Higher order terms make the bound successively tighter while guaranteeing

that it still remains a lower bound for all odd orders K. In the limit K → ∞, Eq. 1

becomes an asymptotic series to the exact marginal likelihood p(x).

Our main contributions are as follows:

• We revisit variational perturbation theory [31, 30, 29] based on cumulant

expansions, which does not result in a bound. By introducing a generalized

variational inference framework, we propose a similar yet alternative construction

to cumulant expansions which results in a valid lower bound of the evidence.

• We furthermore show that the new bound admits unbiased Monte Carlo gradients

with low variance, making it well suited to stochastic optimization. Unbiasedness

is an important property and is necessary to guarantee convergence [38]. Biased

gradients may destroy the bound and may lead to divergence problems [7, 10, 11].

• We evaluate the proposed method experimentally both for inference and for

model selection. Already the lowest nonstandard order K = 3 is less prone to

underestimating posterior variances than standard VI, and it fits better models in

a variational autoencoder (VAE) on small data sets. While this reduction in bias

comes at the cost of larger gradient variance, we show experimentally and explain

theoretically that the gradient variance is still smaller than in previously proposed

alternatives [27, 12, 10] to the standard ELBO, resulting in faster convergence.

This paper is an extended version of a proceeding conference paper by the same

authors [4], which also gave the first reference to variational inference as a form of

biased importance sampling, where the tightness of the bound is traded off against a

low-variance stochastic gradient.

Our paper is structured as follows. In Section 2, we revisit the cumulant expansion

for variational inference. In Section 3, we derive a new family of bounds with

similar properties, but which is amenable to stochastic optimization. We then discuss

theoretical properties of the bounds. Experiments are presented in Section 4. Finally,

we discuss related work in Section 5 and open questions in Section 6.

2. Background: Perturbation Theory for Variational Inference

We begin by reviewing variational perturbation theory as introduced in [29]. We consider

a probabilistic model with data x, latent variables z, and joint distribution p(x, z). The

goal of Bayesian inference is to find the posterior distribution,

p(z|x) =
p(x, z)

p(x)
where p(x) =

∫
p(x, z) dz. (2)



Tightening Bounds for Variational Inference by Revisiting Perturbation Theory 4

Exact posterior inference is impossible in all but the most simple models because

of the intractable integral defining the marginal likelihood p(x) in Eq. 2. Variational

perturbation theory approximates the log marginal likelihood, or evidence, log p(x), via a

Taylor expansion. We introduce a so-called variational distribution qλ(z), parameterized

by variational parameters λ, and we write the evidence as follows:

log p(x) = log

(
Ez∼qλ

[
p(x, z)

qλ(z)

])
= log

(
Ez∼qλ

[
e−βV (x,z)

])∣∣
β=1

. (3)

Above, the ‘interaction energy’ V is defined as

V (x, z) ≡ log qλ(z)− log p(x, z), (4)

and the notation (· · ·)|β=1 on the right-hand side of Eq. 3 denotes that we introduced

an auxiliary real parameter β, which we set to one at the end of the calculation.

The reason for this notation is as follows. We approximate the right-hand side of

Eq. 3 by a finite order Taylor expansion in β before setting β = 1. While β is not a

small parameter, it is a placeholder that keeps track of appearances of V (x, z) which

we consider to be small for all z in the support of qλ. More precisely, it is enough to

demand that V (x, z) is almost constant in z with small deviations, as is the case when

qλ(z) is close to the posterior p(z|x). (This will become clear in Eq. 6 below.) Hence,

we can think of this approximation informally as an expansion in terms of the difference

between the log variational distribution and the log posterior.

The first order term of the Taylor expansion is the evidence lower bound, or ELBO,

L(λ) ≡ Ez∼qλ [−V (x, z)] = Ez∼qλ [log p(x, z)− log qλ(z)] . (5)

As is well known in variational inference (VI) [14, 5, 46], the ELBO is a lower bound on

the evidence, i.e., L(λ) ≤ log p(x) for all λ. VI maximizes the ELBO over λ, and thus

tries to find the best approximation of the evidence that is possible within a first order

Taylor expansion in V .

Higher order terms of the Taylor expansion lead to corrections to the standard

ELBO. Suppressing the dependence of V on x and z to simplify the notation, we obtain

log p(x) ≈ Eqλ [−V ] +
1

2
Eqλ
[
(V − Eqλ [V ])2

]
− 1

3!
Eqλ
[
(V − Eqλ [V ])3

]
+

1

4!
Eqλ
[
(V − Eqλ [V ])4

]
− 1

2

(
1

2
Eqλ
[
(V − Eqλ [V ])2

])2
+ . . . (6)

Eq. 6 is called the cumulant expansion of the evidence [29]. Due to the higher

order correction terms, it can potentially approximate the true evidence better than the

ELBO.

Variational perturbation theory has not found its way into mainstream machine

learning, which arguably has to do with two major problems of the cumulant expansion

and related approaches. First, in contrast to the ELBO, a higher order cumulant

expansion does not result in a lower bound on the evidence. This prevents the usage of

gradient-based optimization methods (as opposed to, e.g., coordinate updates), which
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is currently the mainstream approach to VI. A second drawback that will be discussed

below is that the cumulant expansion cannot be estimated efficiently using Monte Carlo

sampling, as we discuss in Section 3.3 below. In the following sections, we will present a

similar construction of an improved variational objective that does not suffer from these

shortcomings, and that is compatible with black-box optimization approaches. To this

end, we have to start from a generalized formulation of VI.

3. Perturbative Black Box Variational Inference

This section presents our main results. We derive a family of new objective functions for

Black Box Variational Inference (BBVI) which are amenable to stochastic optimization.

We begin by deriving a generalized ELBO for VI based on concave functions. We then

show that, in a special case, we obtain a strict bound with resemblance to variational

perturbation theory.

3.1. Variational Inference with Generalized Lower Bounds

Variational inference (VI) approximates the evidence log p(x) of the model in Eq. 2 by

maximizing the ELBO L(λ) (Eq. 5) over variational parameters λ. A more common

approach to derive the ELBO is through Jensen’s inequality [14, 5, 46]. Here, we present

a similar derivation for a broader family of lower bounds.

To this end, we consider an arbitrary concave function f over the positive reals,

i.e., f : R>0 → R with second derivative f ′′(ξ) ≤ 0 ∀ξ ∈ R>0. As an example, f could

be the logarithm. We now consider the marginal likelihood p(x) = Ez∼qλ [p(x, z)/qλ(z)],

and we derive a lower bound on f(p(x)) using Jensen’s inequality:

f(p(x)) ≥ Ez∼qλ

[
f

(
p(x, z)

qλ(z)

)]
=: Lf (λ). (7)

As stated above, for f(·) = log(·) (which is a concave function), the bound in

Eq. 7 is the standard ELBO from Eq. 5. In this case, we refer to the corresponding

VI scheme as KLVI, as maximizing the standard ELBO is equivalent to minimizing the

Kullback-Leibler (KL) divergence from qλ(z) to the true posterior p(z|x).

The above class of generalized bounds Lf (λ) is compatible with current mainstream

optimization schemes for VI, oftentimes summarized as Black Box Variational Inference

(BBVI) [37, 34]. For the reader’s convenience, we briefly review these techniques. BBVI

optimizes the ELBO via stochastic gradient descent (SGD) based on noisy estimates of

its gradient. Crudely speaking, BBVI obtains its gradient estimates in three steps:

(1) by drawing Monte Carlo (MC) samples z ∼ qλ, (2) by averaging the bound over

these samples, and (3) by computing the gradient on the resulting average. A slight

complication arises as both the expression inside the expectation in Eq. 7 as well as the

distribution of MC samples itself depend on λ. The two main solutions to this problem

are as follows:
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• Score function gradients [34], or the REINFORCE method, use the chain rule to

relate the change in MC samples to a change in the log variational distribution,

∇λLf (λ) = Ez∼qλ

[
(∇λ log qλ(z)) f

(
p(x, z)

qλ(z)

)
+∇λf

(
p(x, z)

qλ(z)

)]
. (8)

• Reparameterization gradients [16] can be used if the samples z ∼ qλ can be

expressed as some deterministic differentiable transformation z = g(ε;λ) of

auxiliary random variables ε drawn from some λ-independent distribution q̃(ε).

Under these conditions, the gradient of the bound can be written as

∇λLf (λ) = Eε∼q̃

[
∇λf

(
p(x, g(ε;λ))

qλ(g(ε;λ))

)]
. (9)

One obtains an unbiased estimate of ∇λLf (λ) by approximating the expectation on the

right-hand side of Eq. 8 or 9 via MC samples z ∼ qλ or ε ∼ q̃, respectively. Empirically,

reparameterization gradients often have smaller variance than score function gradients.

Based on these new bounds Lf (λ), we make the following observations.

Variational Inference and Importance Sampling. The generalized family of bounds,

Eq. 7, shows that VI and importance sampling are closely connected [4, 11]. For f(·)
being the identity, the variational bound becomes independent of λ and instead becomes

an unbiased importance sampling estimator of p(x), with the proposal distribution qλ(z)

and the importance ratio p(x, z)/qλ(z) = e−V (x,z). For other choices of f , the bound is

no longer an unbiased estimator of p(x). This way, we can identify BBVI as a form of

biased importance sampling.

Bias Variance Trade-off. Importance sampling suffers from high variance in high

dimensions because the log importance ratio V (x, z) (Eq. 4) scales approximately

linearly with the size of the model. (To see this, consider a setup where both p and q

factorize over all N data points, in which case V is proportional to N .)

The choice of function f in Eq. 7 trades off some of this variance for a bias. KLVI

uses f(·) = log(·), which leads to low variance gradient estimates in Eqs. 8-9 that

depend only linearly on V , rather than exponentially. This makes the KLVI bound easy

to optimize, at the cost of some bias. An alternative to KLVI that has been explored

in the literature is α-VI [27, 12, 21, 10], which corresponds to setting f(ξ) = ξ1−α

with some α ∈ (0, 1), and thus f(e−V ) = e−(1−α)V . This choice has an alternative bias-

variance trade-off, as V enters in the exponent, leading to more variance than KLVI. Our

empirical results in Figure 4, discussed in Section 4.3, confirm this picture by showing

that α-VI suffers from slow convergence due to large gradient variance.

According to our new findings, a good alternative bound should perform favorably

on the bias-variance trade-off. It should ideally depend on V only polynomially as

opposed to exponentially. Such a family of bounds will be introduced next. We also

show how they connect to variational perturbation theory (Section 2).
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ξ

−1

0

1

2

3

4

f
(ξ

)
importance sampling: f(ξ) = ξ

KLVI: f
(1)
0 (ξ) = 1 + log(ξ)

PBBVI (proposed): f
(3)
0 (ξ)

Figure 1. Different choices for the concave fucntion f(ξ) in Eq. 7. For f(ξ) = ξ

(black), the bound is tight but independent of λ. KLVI corresponds to f(ξ) =

log(ξ) + const. (pink). Our proposed PBBVI bound uses f
(K)
V0

(ξ) (green, Eq. 10),

which is tighter than KLVI for ξ ≈ e−V0 (we set K = 3 and V0 = 0 for PBBVI here).

3.2. Perturbative Lower Bounds

We now propose a family of concave functions f for the bound in Eq. 7 that is inspired by

ideas from perturbation theory (Section 2). The choice of the function f determines the

tightness of the bound Lf (λ). A tight bound, i.e., a good approximation of the marginal

likelihood, is important for the variational expectation-maximization (EM) algorithm,

which uses the bound as a proxy for the marginal likelihood. The bound Lf (λ) becomes

perfectly tight if we set f = id to the identity function, id(ξ) = ξ (black line in Figure 1).

However, as we discussed, this is a singular limit in which the bound Lid(λ) = p(x) does

not depend on λ, and therefore does not provide any gradient signal to learn an optimal

variational distribution qλ.

Ideally, the bound should be as tight as possible if qλ(z) is close to the

posterior p(z|x). In order to obtain a gradient signal, the bound should be lower if

qλ(z) is very different from the posterior. To achieve this, we recall that the argument ξ

of the function f(ξ) in Eq. 7 is the fraction p(x, z)/qλ(z), which equals p(x) if qλ(z) is

the true posterior. Thus, the concave function f should be close to the identity function

for arguments close to p(x). Since the only things we know about p(x) are that it is

positive and independent of z, we parameterize it as e−V0 with a real parameter V0, over

which we optimize.

For any V0 ∈ R, and any odd integer K ≥ 1, we propose the following concave

function:

f
(K)
V0

(ξ) = e−V0
K∑
k=0

1

k!
(V0 + log ξ)k

K→∞−→ id(ξ) (pointwise ∀ξ). (10)

The pink and green lines in Figure 1 plot f
(K)
V0

(ξ) for V0 = 0 and for K = 1 and

K = 3, respectively. The function f
(K)
V0

converges pointwise to the identity function
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Algorithm 1: Perturbative Black Box Variational Inference (PBBVI)

Input: joint probability p(x, z); order of perturbation K (odd integer);

learning rate schedule ρt; number of Monte Carlo samples S;

number of training iterations T ; variational family qλ(z) that admits

reparameterization gradients as in Eq. 9.

Output: fitted variational parameters λ∗.

1 Initialize λ randomly and V0 ← 0;

2 for t← 1 to T do

3 Draw S samples ε1, . . . , εS ∼ q̃ from the noise distribution (see Eq. 9);

// Obtain gradient estimates of surrogate objective L̃(K)(λ, V0), see Eq. 12:

4 gλ ← ∇λ
[
1
S

∑S
s=1

∑K
k=0

1
k!

(V0 + log p(x, g(εs;λ))− log qλ(g(εs;λ)))k
]
;

5 gV0 ← ∇V0
[
1
S

∑S
s=1

∑K
k=0

1
k!

(V0 + log p(x, g(εs;λ))− log qλ(g(εs;λ)))k
]
;

// Perform update steps with rescaled gradients, see Eq. 13:

6 λ ← λ+ ρtgλ;

7 V0 ← V0+ρt

[
gV0− 1

S

∑S
s=1

∑K
k=0

1
k!

(V0+log p(x, g(εs;λ))−log qλ(g(εs;λ)))k
]
;

end

(black line in Figure 1) for K → ∞ because it is the Kth order Taylor expansion

of id(ξ) = e−V0eV0+log ξ in log ξ around the reference point −V0. For any finite K, the

Taylor expansion approximates the identity function (black line in Figure 1) most closely

if the expansion parameter |V0 + log ξ| is small. We provide further intuition for Eq. 10

in Section 3.3 below.

An important result of this section is that the functions f
(K)
V0

define a lower bound

on the marginal likelihood for any choice of λ and V0,

p(x) ≥ f(p(x)) ≥ L
f
(K)
V0

(λ) =: L(K)(λ, V0) (for odd K). (11)

Here, the last equality merely introduces a more convenient notation for the bound

defined by Eqs. 7 and 10. An explicit form for L(K)(λ, V0) was given in Eq. 1 in

the introduction. Eq. 11 follows from Eq. 7 and from the fact that f
(K)
V0

is concave

and lies below the identity function, which we prove formally in Section 3.4 below.

Since L(K)(λ, V0) is a lower bound on p(x) for all V0, we can find the optimal reference

point V0 that leads to the tightest bound by maximizing L(K)(λ, V0) jointly over both λ

and V0. We also prove in Section 3.4 that the bound on p(x) is nontrivial, i.e., that

L(K)(λ, V0) is positive at its maximum. (A negative bound would be vacuous since p(x)

is trivially larger than any negative number.)

To optimize the bound, we use SGD with reparameterization gradients, see

Section 3.1. Score function gradients can be used in a similar way. Algorithm 1 explains

the optimization in detail. We name the method ‘Perturbative Black Box Variational

Inference’ (PBBVI). The algorithm implicitly scales all gradients by a factor of eV0 to
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avoid a potential exponential explosion or decay of gradients due to the factor e−V0 in

the bound, Eq. 1. We calculate these rescaled gradients in a numerically stable way by

considering the surrogate objective function

L̃(K)(λ, V0) ≡ eV0L(K)(λ, V0)

=
K∑
k=0

1

k!
Ez∼qλ

[
(V0 + log p(x, z)− log qλ(z))k

]
. (12)

The rescaled gradients are thus

eV0∇λL(K)(λ, V0) = ∇λL̃(K)(λ, V0);

eV0∇V0L(K)(λ, V0) = ∇V0L̃(K)(λ, V0)− L̃(K)(λ, V0). (13)

Eqs. 12-13 allow us to estimate the rescaled gradients (see lines 4-7 in Algorithm 1)

without having to evaluate any potentially overflowing or underflowing expressions e±V0 .

3.3. Connection to Variational Perturbation Theory

We now provide more intuition for the choice of the functions f
(K)
V0

in Eq. 10 by

comparing the resulting bounds, Eq. 1, to the cumulant expansion, Eq. 6. We will

show that the bounds enjoy similar benefits as the cumulant expansion while being

valid lower bounds and providing unbiased Monte Carlo gradients.

Both the cumulant expansion and the proposed bounds L(K)(λ, V0) are Taylor

expansions in V (x, z) = log qλ(z) − log p(x, z). The cumulant expansion in Eq. 6 is

a Taylor expansion of the evidence log p(x). By contrast, the bound L(K)(λ, V0) in Eq. 1

is a Taylor expansion of the marginal likelihood p(x), and the expansion starts from a

reference point V0 over which we optimize.

Despite this difference, the two expansions are remarkably similar up to

order K = 3. Up to this order, the cumulant expansion, Eq. 6, coincides with a

Taylor expansion of p(x) in (V − Eqλ [V ]). It is thus a special case of the proposed

lower bound L(3)(λ, V0) if we set V0 = Eqλ [V ]. For K > 3, the cumulant expansion

contains additional terms that do not appear in the bound L(K)(λ, V0), such as the

last spelled out term on the right-hand side of Eq. 6. These terms contain products

of expectations under qλ, which are difficult to estimate with Monte Carlo techniques

without introducing an additional bias. The bounds L(K)(λ, V0), by contrast, depend

only linearly on expectations under qλ, which means that they can be estimated without

bias with a single sample from qλ.

In addition, the main advantage of L(K)(λ, V0) over the cumulant expansion is that

L(K)(λ, V0) is a lower bound on the marginal likelihood for all λ and all V0. This allows us

to make the bound as tight as possible by maximizing it over λ and V0 using stochastic

gradient estimates. By contrast, variational perturbation theory with the cumulant

expansion requires either optimizing towards saddle points, or optimizing a separate

objective function, such as the ELBO, to find a good variational distribution [29].

The lack of a lower bound in the cumulant expansion is a particular limitation

when performing model selection with the variational expectation-maximization (EM)
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algorithm. Variational EM fits a model by maximizing an approximation of the marginal

likelihood or the model evidence over model parameters. Such an optimization can

diverge if the approximation is not a lower bound. This makes perturbative BBVI an

interesting alternative for improved evidence approximations [7, 10, 21, 11, 33].

3.4. Proofs of the Theorems

We conclude the presentation of the proposed bounds L(K)(λ, V0) by providing proofs

of the claims made in Section 3.2.

Theorem 1. For all V0 ∈ R and all odd integers K ≥ 1, the function f
(K)
V0

defined in

Eq. 10 satisfies the following properties:

(i) f
(K)
V0

is concave; and

(ii) f
(K)
V0

(ξ) ≤ ξ ∀ξ ∈ R>0.

As a corollary, Eq. 11 holds.

Proof.

(i) The first derivative of f
(K)
V0

is

f
(K)
V0

′
(ξ) = e−V0

K−1∑
k=0

1

k!

(V0 + log ξ)k

ξ
. (14)

For the second derivative, the two contributions from the denominator and the

enumerator cancel for all but the highest order term, and we obtain

f
(K)
V0

′′
(ξ) = − e−V0

(K − 1)!

(V0 + log ξ)K−1

ξ2
≤ 0 (15)

which is nonnegative everywhere for odd K. Therefore, f
(K)
V0

is concave.

(ii) Consider the function g(ξ) = f
(K)
V0

(ξ) − ξ, which is also concave since it has the

same second derivative as f
(K)
V0

. Further, g has a stationary point at ξ = e−V0 since

f
(K)
V0

′
(e−V0) = 1, which can be verified by inserting into Eq. 14. For a concave

function, a stationary point is a global maximum. Therefore, we have

g(ξ) ≤ g(e−V0) = 0 ∀ξ ∈ R>0 (16)

which is equivalent to the proposition f
(K)
V0

(ξ) ≤ ξ ∀ξ ∈ R>0.

Thus, the first inequality in Eq. 11 holds by property (ii), and the second inequality in

Eq. 11 follows from property (i) and Jensen’s inequality.

Theorem 2. The bound on the positive quantity p(x) is nontrivial, i.e., the maximum

value of the bound, maxλ,V0 L(K)(λ, V0), is positive for all odd integers K ≥ 1.

Proof. At the maximum position (λ∗, V ∗0 ) of L(K)(λ, V0), its gradient is zero. Taking the

gradient with respect to V0 in Eq. 1 and using the product rule for the prefactor e−V0
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and the remaining expression, we find that all terms except the contribution from k = K

cancel. We thus obtain, at the maximum position (λ∗, V ∗0 ),

Ez∼qλ∗

[
(V ∗0 + log p(x, z)− log qλ∗(z))K

]
= 0. (17)

Thus, when we evaluate L(K) at (λ∗, V ∗0 ), the term with k = K on the right-hand side

of Eq. 1 evaluates to zero, and we are left with

L(K)(λ∗, V ∗0 ) = e−V
∗
0 Ez∼qλ∗ [h(V ∗0 + log p(x, z)− log qλ∗(x, z))] (18)

with

h(u) =
K−1∑
k=0

uk

k!
(19)

where the sum runs only to K − 1.

We now show that h(u) is positive for all u and all odd K. If K = 1, then h(u) = 1

is trivially positive. For K ≥ 3, h(u) is a polynomial in u of even order K − 1, whose

highest order term has a positive coefficient 1
(K−1)! . Therefore, h(u) goes to positive

infinity for both u → ∞ and u → −∞. It thus has a global minimum at some value

ũ ∈ R. At the global minimum, its derivative is zero, i.e.,

0 = h′(ũ) =
K−2∑
k=0

ũk

k!
. (20)

Subtracting Eq. 20 from Eq. 19, we find that the value of h at its global minimum ũ is

h(ũ) =
ũK−1

(K − 1)!
≥ 0 (21)

which is nonnegative because K − 1 is even. Further, h(ũ) is not zero since this would

imply ũ = 0 by Eq. 21, but h(0) = 1 by Eq. 19. Therefore, h(ũ) is strictly positive, and

since ũ is a global minimum of h, we have h(u) > 0 for all u ∈ R. Inserting into Eq. 18

concludes the proof that the lower bound at the optimum is positive.

4. Experiments

We evaluate PBBVI with different models. We begin with a qualitative comparison on

a simple one-dimensional toy problem (Section 4.1). We then investigate the behavior of

BBVI in a controlled setup of Gaussian processes on synthetic data (Section 4.2). Next,

we evaluate PBBVI based on a classification task using Gaussian processes classifiers,

where we use data from the UCI machine learning repository (Section 4.3). This is a

Bayesian non-conjugate setup where black box inference is required. Finally, we use an

experiment with the variational autoencoder (VAE) to explore our approach on a deep

generative model (Section 4.4). This experiment is carried out on MNIST data. We use

the perturbative order K = 3 for all experiments with PBBVI. This corresponds to the

lowest order beyond standard VI with the KL divergence (KLVI), since K has to be an
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Figure 2. Behavior of different VI methods on fitting a univariate Gaussian to a

bimodal target distribution (black). PBBVI (proposed, green) covers more of the

mass of the entire distribution than the traditional KLVI (pink). α-VI is mode seeking

for large α (blue) and mass covering for smaller α (orange).

odd integer, and PBBVI with K = 1 is equivalent to KLVI. Across all the experiments,

PBBVI demonstrates advantages based on different metrics.

4.1. Mass Covering Effect

In Figure 2, we fit a Gaussian distribution to a one-dimensional bimodal target

distribution (black line), using different divergences. Compared to BBVI with the

standard KL divergence (KLVI, pink line), α-divergences [27] are more mode-seeking

(purple line) for large values of α, and more mass-covering (orange line) for small α [21]

(the limit α → 1 recovers KLVI [27]). Our PBBVI bound (K = 3, green line) achieves

a similar mass-covering effect as in α-divergences, but with associated low-variance

reparameterization gradients. This is seen in Figure 4 (b), discussed in Section 4.3

below, which compares the gradient variances of α-VI and PBBVI as a function of

latent dimensions.

4.2. GP Regression on Synthetic Data

In this section, we inspect the inference behavior using a synthetic data set with Gaussian

processes (GP). We generate the data according to a Gaussian noise distribution

centered around a mixture of sinusoids, and we sample 50 data points (green dots in

Figure 3). We then use a GP to model the data, thus assuming the generative process

f ∼ GP(0,Λ) and yi ∼ N (fi, ε).

In this experiment, the model admits an analytic solution (three standard

deviations shown in blue dashed lines in Figure 3). We compare the analytic solution

to approximate posteriors using a fully factorized Gaussian variational distribution

obtained by KLVI (Figure 3 (a)) and by the proposed PBBVI (Figure 3 (b)). The

results from PBBVI are almost identical to the analytic solution. In contrast, KLVI
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Observations
Mean

Analytic 3std

Inferred 3std

(a) KLVI

Observations
Mean

Analytic 3std

Inferred 3std

(b) PBBVI with K = 3

Figure 3. Gaussian process regression on synthetic data (green dots). Three standard

deviations are shown in varying shades of orange. The blue dashed lines show three

standard deviations of the true posterior. The red dashed lines show the inferred

three standard deviations using KLVI (a) and PBBVI (b). We see that the results

from our proposed PBBVI are close to the analytic solution while traditional KLVI

underestimates the variances.

(a) GP regression

Method Avg variances

Analytic 0.0415

KLVI 0.0176

PBBVI 0.0355

(b) GP classification

Data set Crab Pima Heart Sonar

KLVI 0.22 0.245 0.148 0.212

PBBVI 0.11 0.240 0.133 0.173

Table 1. Results for Gaussian process (GP) experiments. (a) Average marginal

posterior variances at the positions of data points for GP regression with synthetic

data (see Figure 3). The proposed PBBVI is closer to the analytic solution than

standard KLVI. (b) Error rate of GP classification on the test set. The lower the

better. Our proposed PBBVI consistently obtains better classification results.

underestimates the posterior variance. This is consistent with Table 1 (a), which shows

the average marginal variances. PBBVI results are much closer to the analytic results.

4.3. Gaussian Process Classification

We evaluate the performance of PBBVI and KLVI on a GP classification task. Since

the model is non-conjugate, no analytical baseline is available in this case. We model

the data with the following generative process:

f ∼ GP(0,Λ), zi = σ(fi), yi ∼ Bern(zi). (22)

Above, Λ is the GP kernel, σ indicates the sigmoid function, and Bern indicates the

Bernoulli distribution. We furthermore use the Matern-32 kernel,

Λij = s2
(

1 +

√
3 rij
l

)
exp

(
−
√
3 rij
l

)
, rij = ||xi − xj||2 . (23)



Tightening Bounds for Variational Inference by Revisiting Perturbation Theory 14

0 2 · 104 4 · 104 6 · 104 8 · 104 105

training iteration

−0.68

−0.66

−0.64

−0.62
n

or
m

al
iz

ed
te

st
lo

g-
lik

el
ih

o
o

d
u

n
d

er
p

os
te

ri
or

m
ea

n PBBVI (K=3, proposed)

α-VI with α = 0.5

(a) Speed of convergence

1 50 100 150 200

number N of latent variables

10−7

10−1

105

1011

1017

1023

av
er

ag
e

va
ri

an
ce

of
∇L̃

[l
og

] α-divergence with α = 0.2
α-divergence with α = 2
α-divergence with α = 0.5
PBBVI (K=3, proposed)

(b) Gradient variance

Figure 4. Comparisons between PBBVI (proposed) and α-VI. (a) Training curves

(test log-likelihood per data point) for GP classification on the Sonar data set. PBBVI

converges faster than α-VI even though we tuned the number of MC samples per

training step (100) and the constant learning rate (10−5) so as to maximize the

performance of α-VI on a validation set. (b) Sampling variance of the stochastic

gradient (averaged over its components) in the optimum of a GP regression model

with synthetic data, for α-divergences (orange, purple, gray), and the proposed PBBVI

(green). The variance grows exponentially with the latent dimension N for α-VI, and

only algebraically for PBBVI.

Data. We use four data sets from the UCI machine learning repository, suitable

for binary classification: Crab (200 datapoints), Pima (768 datapoints), Heart (270

datapoints), and Sonar (208 datapoints). We randomly split each of the data sets into

two halves. One half is used for training and the other half is used for testing. We set

the hyper parameters s = 1 and l =
√
D/2 throughout all experiments, where D is the

dimensionality of the input x.

Table 1 (b) shows the classification performance (error rate) for these data sets.

Our proposed PBBVI consistently performs better than the traditional KLVI.

Convergence speed comparison. We also carry out a comparison in terms of speed

of convergence, focusing on PBBVI and α-VI. Our results indicate that the smaller

variance of the reparameterization gradient in PBBVI leads to faster convergence of the

optimization algorithm.

We train the GP classifier from Eqs. 22-23 on the Sonar UCI data set using a

constant learning rate. Figure 4 (a) shows the test log-likelihood under the posterior

mean as a function of training iterations. We split the data set into equally sized

training, validation, and test sets. We then tune the learning rate and the number of

Monte Carlo samples per gradient step to obtain optimal performance on the validation

set after optimizing the α-VI bound with a fixed budget of random samples. We use

α = 0.5 here; smaller values of α (i.e., stronger mass-covering effect) leads to even slower

convergence. We then optimize the PBBVI lower bound with the same learning rate

and number of Monte Carlo samples. The final test error rate is 22% (the data set has

binary labels and is approximately balanced). Although the hyperparameters are tuned
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Figure 5. Predictive likelihood of a VAE trained on data sets of different sizes. The

higher value the better. The training data are randomly sampled subsets of the MNIST

training set. Our proposed PBBVI method outperforms KLVI mainly when the size of

the training data set is small. The fewer the training data, the more advantage PBBVI

obtains.

for α-VI, the proposed PBBVI converges an order of magnitude faster (Figure 4 (a)).

Figure 4 (b) provides more insight in the scaling of the gradient variance. Here,

we fit GP regression models on synthetically generated data by maximizing the PBBVI

lower bound and the α-VI lower bound with α ∈ {0.2, 0.5, 2}. We generate a separate

synthetic data set for each N ∈ {1, . . . , 200} by drawing N random data points around

a sinusoidal curve. For each N , we fit a one-dimensional GP regression with PBBVI

and α-VI, respectively, using the same data set for both methods. The variational

distribution is a fully factorized Gaussian with N latent variables. After convergence,

we estimate the sampling variance of the gradient of each lower bound with respect to

the posterior mean. We calculate the empirical variance of the gradient based on 105

samples from qλ, and we average over the N coordinates. Figure 4 shows the average

sampling variance as a function of N on a logarithmic scale. The variance of the gradient

of the α-VI bound grows exponentially in the number of latent variables. By contrast,

we find only algebraic growth for PBBVI.

4.4. Variational Autoencoder

We experiment on Variational Autoencoders (VAEs), and we compare the PBBVI and

the KLVI bound in terms of predictive likelihoods on held-out data [16]. Autoencoders

compress unlabeled training data into low-dimensional representations by fitting it to an

encoder-decoder model that maps the data to itself. These models are prone to learning

the identity function when the hyperparameters are not carefully tuned, or when the

network is too expressive, especially for a moderately sized training set. VAEs are

designed to partially avoid this problem by estimating the uncertainty that is associated

with each data point in the latent space. It is therefore important that the inference

method does not underestimate posterior variances. We show that, for small data

sets, training a VAE by maximizing the PBBVI lower bound leads to higher predictive



Tightening Bounds for Variational Inference by Revisiting Perturbation Theory 16

likelihoods than maximizing the KLVI lower bound.

We train the VAE on the MNIST data set of handwritten digits [19]. We build on

the publicly available implementation by [7] and we also use the same architecture and

hyperparamters, with L = 2 stochastic layers and S = 5 samples from the variational

distribution per gradient step. The model has 100 latent units in the first stochastic

layer and 50 latent units in the second stochastic layer.

The VAE model factorizes over all data points. We train it by stochastically

maximizing the sum of the PBBVI lower bounds for all data points using a minibatch size

of 20. The VAE amortizes the gradient signal across data points by training inference

networks. The inference networks express the mean and variance of the variational

distribution as a function of the data point. We add an additional inference network that

learns the mapping from a data point to the reference energy V0. Here, we use a network

with four fully connected hidden layers of 200, 200, 100, and 50 units, respectively.

MNIST contains 60,000 training images. To test our approach on smaller-scale

data where Bayesian uncertainty matters more, we evaluate the test likelihood after

training the model on randomly sampled fractions of the training set. We use the same

training schedules as in the publicly available implementation, keeping the total number

of training iterations independent of the size of the training set. Different to the original

implementation, we shuffle the training set before each training epoch as this turns out

to increase the performance for both our method and the baseline.

Figure 5 shows the predictive log-likelihood of the whole test set, where the VAE is

trained on random subsets of different sizes of the training set. We use the same subset

to train with PBBVI and KLVI for each training set size. PBBVI leads to a higher

predictive likelihood than traditional KLVI on subsets of the data. We explain this

finding with our observation that the variational distributions obtained from PBBVI

capture more of the posterior variance. As the size of the training set grows—and the

posterior uncertainty decreases—the performance of KLVI catches up with PBBVI.

As a potential explanation why PBBVI converges to the KLVI result for large

training sets, we note that Eqλ∗ [(V ∗0 − V )3] = 0 at the optimal variational distribution

qλ∗ and reference energy V ∗0 (see Section 3.4). If V becomes a symmetric random

variable (such as a Gaussian) in the limit of a large training set, then this implies that

Eqλ∗ [V ] = V ∗0 , and PBBVI with K = 3 reduces to KLVI for large training sets.

5. Related work

Our approach is related to BBVI, VI with generalized divergences, and variational

perturbation theory. We thus briefly discuss related work in these three directions.

Black box variational inference (BBVI). BBVI has already been addressed in the

introduction [40, 16, 37, 34, 39]; it enables variational inference for many models [35, 2,

3, 9, 20, 26, 23]. Recent developments include variance reduction and improvements in

reparameterization and amortization [17, 45, 36, 24, 39, 6, 25] which are all compatible
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with our approach. Our work builds upon BBVI in that BBVI makes a large class

of new divergence measures between the posterior and the approximating distribution

tractable. Depending on the divergence measure, BBVI may suffer from high-variance

stochastic gradients. This is a practical problem that we address in this paper.

Generalized divergences measures. Our work connects to generalized information-

theoretic divergences [1]. [27] introduced a broad class of divergences for variational

inference, including α-divergences. Most of these divergences have been intractable

in large-scale applications until the advent of BBVI. In this context, α-divergences

were first suggested by [12] for local divergence minimization, and later for global

minimization by [21] and [10]. As we show in this paper, α-divergences have the

disadvantage of inducing high-variance gradients, since the ratio between posterior and

variational distribution enters the bound polynomially instead of logarithmically. In

contrast, our approach leads to a more stable inference scheme in high dimensions.

Variational perturbation theory. Perturbation theory refers to methods that aim to

truncate a typically divergent power series to a finite series. In machine learning,

these approaches have been addressed from an information-theoretic perspective

by [42, 43]. Thouless-Anderson-Palmer (TAP) equations [44] are a form of second-

order perturbation theory. They were originally developed in statistical physics to

include perturbative corrections to the mean-field solution of Ising models. They

have been adopted into Bayesian inference in [32] and were advanced by many

authors [15, 31, 30, 28]. In variational inference, perturbation theory yields extra terms

to the mean-field variational objective which are difficult to calculate analytically. This

may be a reason why the methods discussed are not widely adopted by practitioners. In

this paper, we emphasize the ease of including perturbative corrections in a black box

variational inference framework. Furthermore, in contrast to earlier formulations, our

approach yields a strict lower bound to the marginal likelihood which can be conveniently

optimized. Our approach is different from the traditional variational perturbation

formulation [18, 41], which generally does not result in a bound.

6. Conclusion

We first presented a view on black box variational inference as a form of biased

importance sampling, where we can trade off bias versus variance by the choice of

divergence. Bias refers to the deviation of the bound from the true marginal likelihood,

and variance refers to its reparameterization gradient estimator. We then proposed

a family of new variational bounds that connect to variational perturbation theory,

and which include corrections to the standard Kullback-Leibler bound. Our proposed

PBBVI bound is an asymptotic series to the true marginal likelihood for large order K of

the perturbative expansion, and we showed both theoretically and experimentally that it

has lower-variance reparameterization gradients compared to α-VI. In order to scale up
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our method to massive data sets, future work will explore stochastic versions of PBBVI.

Since the PBBVI bound contains interaction terms between all data points, breaking

it up into mini-batches is not straightforward. Besides, while our experiments used a

fixed perturbative order of K = 3, it could be beneficial to increase the perturbative

order at some point during the training cycle once an empirical estimate of the gradient

variance drops below a certain threshold. It would also be interesting to investigate a K-

independent formulation of PBBVI using Russian roulette estimates [22]. Furthermore,

the PBBVI and α-bounds can also be combined, such that PBBVI further approximates

α-VI. This could lead to promising results on large data sets where traditional α-VI is

hard to optimize due to its variance, and traditional PBBVI converges to KLVI. As

a final remark, a tighter variational bound is not guaranteed to always result in a

better posterior approximation since the variational family limits the quality of the

solution. However, in the context of variational EM, where one performs gradient-

based hyperparameter optimization on the log marginal likelihood, our bound gives more

reliable results since higher orders of K can be assumed to approximate the marginal

likelihood better.
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