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Abstract

Bayesian neural networks (BNN) promise to com-
bine the predictive performance of neural networks
with principled uncertainty modeling crucial for
safety-critical systems and decision making. How-
ever, posterior uncertainties depend on the choice
of prior, and finding informative priors in weight-
space has proven difficult. This has motivated vari-
ational inference (VI) methods that pose priors
directly on the function represented by the BNN
rather than on weights. In this paper, we address
a fundamental issue with such function-space VI
approaches pointed out by Wild et al. [2022a], who
showed that the objective function (ELBO) is nega-
tive infinite for most priors of interest. Our solution
builds on generalized VI with the regularized KL
divergence and is, to the best of our knowledge,
the first well-defined variational objective for infer-
ence in BNNs with Gaussian process (GP) priors.
Experiments show that our method successfully
incorporates the properties specified by the GP
prior, and that it provides competitive uncertainty
estimates for regression, classification and out-of-
distribution detection compared to BNN baselines
with both function and weight-space priors.

1 INTRODUCTION

Neural networks have shown impressive results in many
fields but fail to provide well-calibrated uncertainty esti-
mates, which are essential in applications associated with
risk, such as healthcare [Abdullah et al., 2022] or finance
[Bew et al., 2019]. Bayesian neural networks (BNNs) of-
fer to combine the scalability and predictive performance
of neural networks with principled uncertainty modeling
by explicitly capturing epistemic uncertainty, which results
from finite training data. While the choice of prior strongly

affects posterior uncertainties, specifying informative priors
on BNN weights has proven difficult and is hypothesized to
have limited their practical applicability [Knoblauch et al.,
2022, Tran et al., 2022]. For instance, the default isotropic
Gaussian prior, which is often chosen for tractability rather
than for the beliefs it carries [Knoblauch et al., 2022], is
known to have pathological behavior in some cases [Cin-
quin et al., 2021, Tran et al., 2022]. A promising approach to
solve this issue is to place priors directly on the function rep-
resented by the BNN instead of the weights. Function-space
priors allow incorporating interpretable knowledge, for in-
stance using the Gaussian Process (GP) literature to improve
prior design and selection [Williams and Rasmussen, 2006].

A recent line of work has focused on using function-space
priors in BNNs with variational inference (VI) [Sun et al.,
2019]. VI is appealing because of its successful application
to BNNs, its flexibility in terms of approximate posterior
parameterization, and its scalability to large datasets and
models [Hoffman et al., 2013, Blundell et al., 2015]. Unfor-
tunately, for BNNs with function-space priors, the Kullbach-
Leibler (KL) divergence term in the VI objective (ELBO)
involves two intractabilities: (i) a supremum over infinitely
many subsets and (ii) access to the density of the distri-
bution of the BNN’s function, which has no closed-form
expression. Sun et al. [2019] propose to address problem (i)
by approximating the supremum in the KL divergence by
an expectation, and problem (ii) by using implicit score
function estimators (which make this method difficult to
use in practice [Ma and Hernández-Lobato, 2021]). How-
ever, the problem is actually more severe. Not only is the
KL divergence intractable, it is infinite in most cases of
interest [Wild et al., 2022a], such as when the prior is a non-
degenerate GP or a BNN with a different architecture. Thus,
in these (and many more) situations, the KL divergence can-
not even be approximated. As a consequence, more recent
work abandons using BNNs and instead uses deterministic
neural networks to parameterize basis functions [Ma and
Hernández-Lobato, 2021] or a GP mean [Wild et al., 2022b].
The only prior work [Rudner et al., 2022b] that overcomes
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Figure 1: Inference with our GFSVI on synthetic data (gray circles) with Gaussian process priors encoding different
properties such as smoothness (increasing from Matérn-1/2 to RBF) and periodicity (last panel).

the issue pointed out by Wild et al. [2022a] does so by de-
liberately limiting itself to cases where the KL divergence is
known to be finite (by defining the prior as the pushforward
of a weight-space distribution). Therefore, the method by
Rudner et al. [2022b] suffers from the same issues regarding
prior specification as other weight-space inference method.

In this paper, we address the argument by Wild et al. [2022a]
that VI does not provide a valid objective for inference in
BNNs with genuine function-space priors, and we propose
to apply the framework of generalized VI [Knoblauch et al.,
2022]. We present a simple method for function-space in-
ference with GP priors that builds on the regularized KL
divergence [Quang, 2019], which generalizes the conven-
tional KL divergence and is finite for any pair of Gaussian
measures. We obtain a Gaussian measure for the variational
posterior by considering the linearized BNN from Rudner
et al. [2022b], and we are free to choose a function-space
prior from a large set of GPs which have an associated
Gaussian measure on the considered function space. While
the regularized KL divergence is still intractable, it can be
consistently estimated from samples with a known error
bound. We find that our method effectively incorporates the
beliefs specified by GP priors (see Figure 1, discussed fur-
ther in Section 4) and that it yields competitive performance
compared to BNN baselines. To the best of our knowledge,
our method is the first to provide a well-defined objective
for function-space inference in BNNs with informative GP
priors. Our contributions are summarized below:

1. We use generalized VI with the regularized KL diver-
gence to mitigate the issue of an infinite KL divergence
when using VI in BNNs with function-space priors.

2. We present a new and well-defined objective for
function-space inference in the linearized BNN with
GP priors, resulting in a simple algorithm.

3. We show that our method accurately captures struc-
tural properties specified by the GP prior and provides
competitive uncertainty estimates for regression, classi-
fication, and out-of-distribution detection compared to
baselines with both function- and weight-space priors.

The paper is structured as follows: Section 2 introduces
function-space VI and the regularized KL divergence; Sec-
tion 3 presents our method for generalized function-space VI
(GFSVI) in BNNs; Section 4 reports experimental results;
Section 5 discusses related work; and Section 6 concludes.

2 BACKGROUND

In this section, we provide background on function-space
variational inference in BNNs and discuss the fundamen-
tal issue of an infinite KL divergence. We then introduce
the regularized KL divergence, which is the basis for our
solution presented in Section 3.

2.1 FUNCTION-SPACE VI IN BNNS

We consider a neural network f( · ;w) with weights
w ∈ Rp, and a data set D = {(xi, yi)}Ni=1 with fea-
tures xi ∈ X ⊂ Rd and values yi ∈ Y . Bayesian Neu-
ral Networks are specified further by a likelihood function
p(D |w) =

∏N
i=1 p(yi | f(xi;w)) and—traditionally—a

prior p(w) on the weights, and one seeks the posterior
distribution p(w | D) ∝ p(D |w) p(w). The method pro-
posed in this paper builds on variational inference, which ap-
proximates p(w | D) with a variational distribution qφ(w),
whose variational parameters φ maximize the evidence
lower bound (ELBO),

L(φ) := Eqφ(w)[log p(D |w)]−DKL(qφ ‖ p) (2.1)

where DKL is the Kullback-Leibler divergence,

DKL(qφ ‖ p) := Eqφ(w)

[
log

(
qφ(w)

/
p(w)

)]
. (2.2)

At test time, we approximate the predictive dis-
tribution for given features x∗ as p(y∗ |x∗) =
Ep(w | D)

[
p(y∗ | f(x∗;w))

]
≈ Eqφ(w)

[
p(y∗ | f(x∗;w))

]
.

Function-space variational inference. Since neural net-
work weights are not interpretable, we replace the weight-
space prior p(w) with a prior P directly on the function
f( · ;w), which we denote simply as f when there is
no ambiguity. Here, the symbol P denotes a probability
measure that does not admit a density since the function
space is infinite-dimensional. We compute the expected log-
likelihood as in the first term of Eq. 2.1. For the KL-term
(Eq. 2.2), a naive VI-method would use the pushforward of
qφ(w) along w 7→ f( · ;w), which defines the variational
measure Qφ, resulting in the ELBO in function space,

L(φ) := Eqφ(w)[log p(D |w)]−DKL(Qφ ‖P) (2.3)

with DKL the KL divergence between measures

DKL(Qφ ‖P) :=
∫

log

(
dQφ

dP
(f)

)
dQφ. (2.4)



Here, the Raydon-Nikodym derivative dQφ/dP generalizes
the density ratio from Eq. 2.2. Like Eq. 2.1, the ELBO in
Eq. 2.3 is a lower bound on the evidence [Wild et al., 2022a].
In fact, if P is the push-forward of p(w) then Eq. 2.3 is a
tighter bound than Eq. 2.1 by the data processing inequal-
ity, DKL(Qφ ‖P) ≤ DKL(qφ ‖ p). However, we motivated
function-space VI to avoid weight-space priors, and in this
case the bound in Eq. 2.3 can be looser. We will indeed see
below that the bound becomes infinitely loose in practice,
and we thus propose a different objective in Section 3.

Two intractabilities prevent directly maximizing the ELBO
in function space (Eq 2.3). First, it is not obvious how to
evaluate or estimate the KL divergence between two mea-
sures in Eq 2.4. Sun et al. [2019] showed that it can be
expressed as a supremum of KL divergences between finite-
dimensional distributions,

DKL(Qφ ‖P) = sup
x∈XM ,M∈N

DKL(qφ(f(x)) ‖ p(f(x))).

(2.5)
Here, x = {x(i)}Mi=1 ∈ XM is a set of M points in feature
space X , and qφ(f(x)) and p(f(x)) are densities of the
marginals of Qφ and P on {f(x(i))}Mi=1 respectively. Sun
et al. [2019] approximates the supremum over infinitely
many sets by an expectation, and Rudner et al. [2022b]
estimates it from samples.

Second, we cannot express the pushforward measure Qφ in
closed form because the neural network is nonlinear. Previ-
ous work has proposed to mitigate this issue using implicit
score function estimators [Sun et al., 2019] or a linearized
BNN fL to obtain a closed-form Gaussian variational mea-
sure [Rudner et al., 2022a,b]. Our proposal in Section 3
follows the linearized BNN approach as it only minimally
modifies the BNN, preserving most of its inductive bias
[Maddox et al., 2021] while considerably simplifying the
problem by turning the pushforward of qφ(w) into a GP.
More specifically, we consider a Gaussian variational distri-
bution qφ(w) = N (m,S) with parameters φ = {m,S},
and we define a linearized BNN fL by linearizing f as a
function of the weights around w = m,

fL(x;w) := f(x;m) + J(x;m)(w −m) (2.6)

with J(x;m) = ∇wf(x;w)|w=m. Thus, w ∼ qφ(w) im-
plies fL(x;w) ∼ N

(
f(x;m), J(x;m)SJ(x;m)>

)
for

all x ∈ X , and so the function fL( · ;w) is a degenerate GP
(as rank(J( · ;m)SJ( · ;m)>) ≤ p < ∞),

fL ∼ GP
(
f( · ;m), J( · ;m)SJ( · ;m)>

)
. (2.7)

DKL(Qφ ‖P) is infinite in most relevant cases. Wild
et al. [2022a] point out an even more severe issue of function-
space VI in BNNs: DKL(Qφ ‖P) (Eq. 2.4) is in fact infinite
in most relevant cases, in particular for non-degenerate GP-
priors. Thus, approximating DKL(Qφ ‖P) in these settings
is futile. Their proof is somewhat involved, but the fun-
damental reason for DKL(Qφ ‖P) = ∞ is that Qφ has

support on a finite-dimensional submanifold of the infinite-
dimensional function space, while the measure P induced
by a (non-degenerate) GP prior has support on the entire
function space. That such a dimensionality mismatch can
lead to infinite KL divergence can already be seen in a finite-
dimensional example: consider the KL-divergence between
two Gaussians in Rn for n ≥ 2, one of which has sup-
port on the entire Rn (i.e., its covariance matrix Σ1 has
full rank) while the other one has support only on a proper
subspace of Rn (i.e., its covariance matrix Σ2 is singular).
The KL divergence between multivariate Gaussians has a
closed form expression (Eq. 2.9 with γ = 0) that contains
log det

(
Σ−1

2 Σ1

)
, which is infinite for singular Σ2.

We find that the fact that DKL(Qφ ‖P) = ∞ has severe
practical consequences even when the KL divergence is only
estimated from finite samples. It naturally explains the sta-
bility issues discussed in Appendix D.1 of Sun et al. [2019]
(we compare the authors’ solution to this stability issue to
our method in Section 3.2). Surprisingly, similar complica-
tions arise even in the setup by Rudner et al. [2022b], which
performs VI in function space with the pushforward of a
weight-space prior. While this makes the KL divergence
technically finite because prior and variational posterior
have the same support, numerical errors lead to mismatch-
ing supports and thus to stability issues even there.

In summary, the ELBO for VI in BNNs is not well-defined
for most interesting function-space priors. In Section 3, we
propose a solution by using the so-called regularized KL
divergence, which we introduce next.

2.2 REGULARIZED KL DIVERGENCE

Our solution to the negative infinite function-space ELBO
builds on a regularized KL divergence, which is expressed in
terms of Gaussian measures for the variational posterior and
prior. We obtain these Gaussian measures from GPs. We first
discuss under which conditions a GP induces a Gaussian
measure, and then present the regularized KL divergence.

Gaussian measures and Gaussian processes. The reg-
ularized KL divergence is defined in terms of Gaussian
measures, and thus we need to verify that the GP variational
posterior induced by the linearized BNN (Eq. 2.7) has an
associated Gaussian measure. We consider the Hilbert space
L2(X , ρ) of square-integrable functions with respect to a
probability measure ρ on a compact set X ⊂ Rd, with inner
product 〈f, g〉 =

∫
X f(x)g(x)dρ(x). This assumption is

not restrictive since we can typically bound the region in
feature space that contains the data and any points where
we might want to evaluate the BNN.

Definition 2.1 (Gaussian measure, Kerrigan et al. [2023],
Definition 1). Let (Ω,B,P) be a probability space. A mea-
surable function F : Ω 7→ L2(X , ρ) is called a Gaussian
random element (GRE) if for any g ∈ L2(X , ρ) the random



variable 〈g, F 〉 has a Gaussian distribution on R. For every
GRE F , there exists a unique mean element m ∈ L2(X , ρ)
and a finite trace linear covariance operator C : L2(X , ρ) 7→
L2(X , ρ) such that 〈g, F 〉 ∼ N (〈g,m〉, 〈Cg, g〉) for all
g ∈ L2(X , ρ). The pushforward of P along F , denoted
PF := F#P, is a Gaussian measure on L2(X , ρ).

Gaussian measures generalize Gaussian distributions to
infinite-dimensional function spaces where measures do
not have associated densities since there is no Lebesgue
measure. Following Wild et al. [2022b], we notate the Gaus-
sian measure obtained from the GRE F with mean ele-
ment m and covariance operator C as PF := N (m,C).
GPs provide a practical tool to specify Gaussian mea-
sures via mean and covariance functions [Kerrigan et al.,
2023]. A GP f ∼ GP(µ,K) has an associated Gaus-
sian measures in L2(X , ρ) if its mean function satisfies
µ ∈ L2(X , ρ) and its covariance function K is trace-class,
i.e., if

∫
X K(x, x)dρ(x) < ∞ [Wild et al., 2022b, Theo-

rem 1]. The GP variational posterior induced by the lin-
earized BNN satisfies both properties as neural networks
are well-behaved functions on the compact X ⊂ Rd. It
thus induces a Gaussian measure QF

φ ∼ N (mQ, CQ) with
mean element mQ = f( · ;m) and covariance operator
CQg(·) =

∫
X J( · ;m)SJ(x′,m)>g(x′)dρ(x′). The infi-

nite KL divergence discussed in Section 2.1 is easier to
prove for the special case of Gaussian measures, and we
provide the proof in Appendix A.1.

Definition 2.2 (Regularized KL divergence, Quang [2022]
Definition 5). Let ν1 = N (m1, C1) and ν2 = N (m2, C2)
be two Gaussian measures with m1,m2 ∈ L2(X , ρ) and
C1, C2 bounded, self-adjoint, positive and trace-class linear
operators on L2(X , ρ). Let γ ∈ R>0 be fixed. The regular-
ized KL divergence is defined as follows,

Dγ
KL(ν1 ‖ ν2) :=

1

2
〈m1 −m2, (C2 + γI)−1(m1 −m2)〉

+
1

2
TrX

[
(C2 + γI)−1(C1 + γI)− I

]
− 1

2
log detX

[
(C2 + γI)−1(C1 + γI)

]
. (2.8)

Here TrX and detX are the extended trace and extended
Fredholm determinant [Quang, 2022]. For any γ > 0, the
regularized KL divergence is well-defined and finite (fol-
lowing Quang [2017, Proposition 1]), even if the Gaussian
measures are singular [Quang, 2019]. It converges to the
conventional KL divergence (if it is well-defined) for γ → 0
(Quang, 2022, Theorem 6). Furthermore, if the Gaussian
measures ν1 and ν2 are induced by GPs GP(µi,Ki) for
i = 1, 2, respectively, then Dγ

KL(ν1 ‖ ν2) is consistently
estimated [Quang, 2022] by

D̂γ
KL(ν1 ‖ ν2) :=

1

2
(m1 −m2)

>(Σ
(γ)
2 )−1(m1 −m2)

+
1

2
Tr

[
(Σ

(γ)
2 )−1Σ

(γ)
1 − IM

]

− 1

2
log det

[
(Σ

(γ)
2 )−1Σ

(γ)
1

]
(2.9)

with mi := µi(x) and Σ
(γ)
i := Ki(x,x) + γM IM

where µi(x) and Ki(x,x) are the mean vector and the
covariance matrix obtained by evaluating µi and Ki respec-
tively, at measurement points x = {x(i)}Mi=1

i.i.d∼ ρ(x). The
right-hand side of Eq. 2.9 is the expression for the KL-
divergence between Gaussian distributions N (m1,Σ

(γ)
1 )

and N (m2,Σ
(γ)
2 ). Quang [2022] shows that the absolute

error of the estimator is bounded by O(
√
1/M) with high

probability with constants depending on γ and properties of
the GP mean and covariance functions (see Appendix A.2
for the exact bound).

3 GENERALIZED FUNCTION-SPACE VI
WITH THE REGULARIZED KL
DIVERGENCE

This section presents our proposed generalized function-
space variational inference (GFSVI) method, which ad-
dresses the problem of the infinite KL divergence discussed
in Section 2.1, which we take for an indication that VI is
too restrictive if one wants to use genuine function-space
priors. We instead consider generalized variational infer-
ence [Knoblauch et al., 2022], which reinterprets the ELBO
in Eq. 2.1 as a regularized expected log-likelihood and ex-
plores alternative divergences for the regularizer. Specif-
ically, we propose to use the regularized KL divergence.
This section builds heavily on tools introduced in Section 2,
which turn out to fit together perfectly: the pushforward of
a Gaussian variational distribution in weight-space through
the linearized neural network (Eq. 2.6) induces a GP vari-
ational posterior (Eq. 2.7) that admits a Gaussian measure
on L2(X , ρ). Further, selecting a GP prior which has an
associated Gaussian measure on L2(X , ρ) allows us to use
the regularized KL divergence (Eq. 2.8). We present GFSVI
in Section 3.1 and compare it to prior work in Section 3.2.

3.1 GENERALIZED FUNCTION-SPACE VI

We present a well-defined objective for function-space in-
ference, and a simple algorithm for its optimization.

Objective function. We start from the ELBO in Eq. 2.3,
where we use the Gaussian variational measure QF

φ induced
by the pushforward of a Gaussian variational distribution
qφ(w) = N (w |m,S) along the linearized network fL
(Eq. 2.6). The function-space prior may be any GP that has
an associated Gaussian measure PF on L2(X , ρ). We now
replace the KL divergence in the ELBO with the regularized
KL divergence Dγ

KL (Eq. 2.8), which is well-defined and
finite for any pair of Gaussian measures. For a likelihood



function p(D |w) =
∏N

i=1 p(yi | fL(xi;w)), we obtain

L(φ) :=
N∑
i=1

Eqφ(w)[log p(yi|fL(xi;w))]−Dγ
KL

(
QF

φ ‖PF
)
.

(3.1)

Estimation and optimization. The expected log-
likelihood (first term in Eq. 3.1) can be estimated by
sampling from qφ(w). For a Gaussian likelihood, it can
also be computed in closed form as (unlike Rudner et al.
[2022b]) we use the linearized network fL, which made
training more stable in our experiments. We estimate the
regularized KL divergence (second term in Eq. 3.1) using
its consistent estimator (see Eq. 2.9), with m1 = f(x;m),
Σ

(γ)
1 = J(x;m)SJ(x;m)> + γMIM , m2 = µ(x),

and Σ
(γ)
2 = K(x,x) + γMIM , where µ and K are

the mean and covariance functions of the GP prior, and
x = {x(i)}Mi=1

i.i.d∼ ρ(x) are measurement points. We
maximize the estimated objective over the mean m and
covariance S of the Gaussian variational distribution qφ(w),
and over any likelihood parameter (e.g., the variance of
a Gaussian likelihood), see Algorithm 1. Appendix B
provides expressions for the estimator with Gaussian and
Categorical likelihoods as well as an analysis of their
computational complexity.

Technical details (γ and ρ). It turns out that increasing γ
reduces the influence of the prior on inference (see Fig-
ure 20). At the same time, γ acts as jitter that prevents
numerical errors (see Section 3.2). We recommend setting γ
large enough to avoid numerical errors but sufficiently small
to strongly regularize the objective in Eq. 3.1 (see Figure 18
in appendix) and setting M to the largest value allowed
by the computational budget. We found that the estimator
D̂γ

KL

(
QF

φ

∣∣∣∣PF
)

converges quickly to a finite value (espe-
cially for smooth kernels, see Figure 20 in appendix), and
that GFSVI is robust to a wide range of values (we fixed
γ = 10−10). The probability measure ρ for L2(X , ρ) has
to assign non-zero probability to any open set of X to reg-
ularize the BNN on all of its support. Following Rudner
et al. [2022b], we draw measurement points from a uniform
distribution over X when using tabular data and explore
different configurations (samples from other data sets) for
high-dimensional image data (see Appendix C.4).

3.2 CONNECTIONS TO PRIOR WORK

TFSVI [Rudner et al., 2022b] and FVI [Sun et al., 2019]
solve stability issues by introducing jitter/white noise, which
has a similar effect as the regularization in Eq. 2.8. How-
ever, TFSVI introduces jitter only to overcome numerical
issues and is fundamentally restricted to prior specifica-
tion in weight space since its function-space prior is the
pushforward of a weight-space prior. Conversely, FVI adds
white noise to prevent the KL divergence (Eq. 2.4) to blow

Algorithm 1 Generalized function-space variational infer-
ence (GFSVI)

Require: Linearized BNN fL with measure QF
φ , GP prior

GP(µ,K) with measure PF , measurement point
distribution ρ(x), data D = {(xi, yi)}Ni=1, batch
size B, γ > 0.

1: for all minibatch (xB, yB) ∼ D do
2: Calculate ˆ̀

1 = N
BEqφ(w)[log p(yB | fL(xB,w))];

3: Draw measurement points x = {x(i)}Mi=1
i.i.d.∼ ρ(x);

4: Calculate ˆ̀
2 = D̂γ

KL

(
QF

φ

∣∣∣∣PF
)

using x (Eq. 2.9);
5: Calculate L̂(φ) = ˆ̀

1 − ˆ̀
2

6: Update φ using a step in the direction ∇φL̂(φ)

up as M increases. However, FVI does not linearize the
BNN, and hence does not have access to an explicit varia-
tional measure in function space. This severely complicates
the estimation of (gradients of) the KL divergence in FVI,
and the authors resort to implicit score function estimators,
which make their method difficult to use in practice [Ma
and Hernández-Lobato, 2021]. Our proposed GFSVI does
not suffer from these difficulties as the variational posterior
is an explicit Gaussian measure. This allows us to estimate
the regularized KL divergence without sampling any noise
or using implicit score function estimators.

4 EXPERIMENTS

In this section, we evaluate our generalized function-space
variational inference (GFSVI) method qualitatively on syn-
thetic data and quantitatively on real-world data. GFSVI
accurately captures structural properties specified by the GP
prior, and that it performs competitively on regression, clas-
sification and out-of-distribution detection tasks. We also
discuss the influence of the BNN’s inductive biases.

Baselines. We compare GFSVI to two weight-space infer-
ence methods: mean-field VI (MFVI) [Blundell et al., 2015]
and linearized Laplace [Immer et al., 2021]; and to three
function-space inference methods: FVI [Sun et al., 2019],
TFVSI [Rudner et al., 2022b] and VIP [Ma et al., 2019]
(TFSVI performs inference in function space but with the
pushforward of a weight-space prior; VIP uses a BNN prior).
All BNNs have the same architecture and fully-factorized
Gaussian approximate posterior. We also include results for
a sparse GP with a posterior mean parameterized by a neural
network (GWI) [Wild et al., 2022b], and for a Gaussian Pro-
cess (GP) [Williams and Rasmussen, 2006] (when the size
of the dataset allows it), and for a sparse GP [Hensman et al.,
2013] for regression tasks. We consider the GP, sparse GP
and GWI as gold standards as they represent the exact (or
near exact) posterior for models with GP priors.
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Figure 2: Inference on synthetic data (gray circles) using a Matérn-1/2 prior for function-space methods GFSVI and FVI.
The proposed GFSVI provides the best approximation of the exact GP posterior.
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squared errors. Unlike TFSVI, we find that GFSVI accurately captures ocean current dynamics.

Qualitative results on synthetic data. We consider a 1-
dimensional regression task where the values yi are sampled
around sin(2πxi) (circles in Figures 1-8 and 11) and the two
moons 2-dimensional binary classification task [Pedregosa
et al., 2011] (see Figures 9 and 10). For regression, the green
lines show functions sampled from the (approximate) pos-
teriors, and the red lines are the inferred mean functions.
For classification, the first and second row show the inferred
mean probability of class 1 (blue dots) and its 2-standard
deviations with respect to posterior samples. More details
in Appendix C.1. We find that GFSVI captures the beliefs
of the RBF and Matérn-1/2 GP priors better than BNN-
baselines in the regression setting (see Figures 2 and 5) as
well as in classification (see Figures 9 and 10), and shows
greater uncertainty outside of the support of the data. Fig-
ures 1 and 6 show that GFSVI notably adapts to varying
prior assumptions (varying smoothness and length scale,
respectively). In addition, Figures 4 and 8 in the Appendix
show that GFSVI provides strong regularization when the
data generative process is noisy, and that it can be trained
with fewer measurement points M than FVI without signifi-
cant degradation.

Inductive biases. Figure 11 in the Appendix compares
GFSVI to the exact GP-posterior across two different priors
and three model architectures (details in Appendix C.1). We
find that, with ReLU activations, small models are prone
to underfitting for smooth priors (RBF), and to collapsing

uncertainty for rough priors (Matérn-1/2). By contrast, with
smooth activations (Tanh), smaller models suffice, and they
are compatible with most standard GP priors (the results
shown in Figure 11 extend to RBF, Matérn, and Rational
Quadratic in our experiments). We also analyzed how the
number M of measurement points affects performance. Fig-
ures 7 and 17 in the appendix show that capturing the beliefs
of rough GP priors and estimating Dγ

KL with these priors
requires larger M .

4.1 QUANTITATIVE RESULTS ON REAL-WORLD
DATA

We evaluate GFSVI on regression, classification, and out-of-
distribution detection. In all tables, we bold the highest score
and any score whose error bar (standard error) overlaps with
the highest score’s error bar.

Ocean current modeling. We measure how well GFSVI
can incorporate knowledge specified via a GP prior on real-
world data by considering the problem of modeling ocean
currents in the Gulf of Mexico. We follow the setup by Sha-
lashilin [2024] and use the GulfDrifters dataset [Lilly and
Pérez-Brunius, 2021] to estimate ocean currents from 20
2-dimensional velocity vectors collected from drifter buoys.
We embed physical properties of fluid motions into the GP
prior and to the neural networks by applying the Helmholtz
decomposition [Berlinghieri et al., 2023, Cinquin et al.,



Table 1: Test expected log-likelihood (higher is better) of evaluated methods on regression datasets. GFSVI performs
competitively compared to all BNN baselines and obtains the best mean rank.

DATASET FUNCTION-SPACE PRIORS WEIGHT-SPACE PRIORS GAUSSIAN PROCESSES (GOLD STANDARDS)

GFSVI (OURS) FVI TFSVI MFVI VIP LAPLACE GWI SPARSE GP GP

BOSTON -0.733 ± 0.144 -0.571 ± 0.113 -1.416 ± 0.046 -1.308 ± 0.052 -0.722 ± 0.196 -0.812 ± 0.205 -0.940 ± 0.145 -0.884 ± 0.182 -1.594 ± 0.556
CONCRETE -0.457 ± 0.041 -0.390 ± 0.017 -0.983 ± 0.012 -1.353 ± 0.018 -0.427 ± 0.050 -0.715 ± 0.025 -0.744 ± 0.079 -0.966 ± 0.025 -2.099 ± 0.421
ENERGY 1.319 ± 0.052 1.377 ± 0.042 0.797 ± 0.098 -0.926 ± 0.197 1.046 ± 0.378 1.304 ± 0.043 0.461 ± 0.093 -0.206 ± 0.027 -0.205 ± 0.022
KIN8NM -0.136 ± 0.013 -0.141 ± 0.023 -0.182 ± 0.011 -0.641 ± 0.225 -0.102 ± 0.013 -0.285 ± 0.014 -0.708 ± 0.054 -0.443 ± 0.014 (infeasible)
NAVAL 3.637 ± 0.132 2.165 ± 0.194 2.758 ± 0.044 1.034 ± 0.160 1.502 ± 0.061 3.404 ± 0.084 -0.301 ± 0.254 4.951 ± 0.014 (infeasible)
POWER 0.044 ± 0.011 0.031 ± 0.021 0.007 ± 0.013 -0.003 ± 0.015 0.036 ± 0.018 -0.002 ± 0.019 0.043 ± 0.009 -0.100 ± 0.010 (infeasible)
PROTEIN -1.036 ± 0.005 -1.045 ± 0.005 -1.010 ± 0.004 -1.112 ± 0.007 -0.994 ± 0.007 -1.037 ± 0.006 -1.050 ± 0.009 -1.035 ± 0.002 (infeasible)
WINE -1.289 ± 0.040 -1.215 ± 0.007 -2.138 ± 0.221 -1.248 ± 0.018 -1.262 ± 0.025 -1.249 ± 0.025 -1.232 ± 0.038 -1.240 ± 0.037 -1.219 ± 0.035
YACHT 1.058 ± 0.080 0.545 ± 0.735 -1.187 ± 0.064 -1.638 ± 0.030 -0.062 ± 1.378 0.680 ± 0.171 0.441 ± 0.138 -0.976 ± 0.092 -0.914 ± 0.045
WAVE 5.521 ± 0.036 6.612 ± 0.008 5.148 ± 0.117 6.883 ± 0.008 4.043 ± 0.093 4.658 ± 0.027 1.566 ± 0.123 4.909 ± 0.001 (infeasible)
DENMARK -0.487 ± 0.013 -0.801 ± 0.005 -0.513 ± 0.013 -0.675 ± 0.007 -0.583 ± 0.021 -0.600 ± 0.008 -0.841 ± 0.026 -0.768 ± 0.001 (infeasible)

MEAN RANK 1.545 2.000 2.727 3.455 2.091 2.455 - - -

Table 2: Test expected log-likelihood, accuracy, expected calibration error and OOD detection accuracy on MNIST and
Fashion MNIST.

METRIC FUNCTION-SPACE PRIORS WEIGHT-SPACE PRIORS GP-BASED

GFSVI (RND) GFSVI (KMNIST) FVI (RND) FVI (KMNIST) TFSVI (RND) TFSVI (KMNIST) MFVI VIP LAPLACE GWI

M
N

IS
T LOG-LIKE. (↑) -0.033 ± 0.000 -0.041 ± 0.000 -0.145 ± 0.005 -0.238 ± 0.006 -0.047 ± 0.003 -0.041 ± 0.001 -0.078 ± 0.001 -0.033 ± 0.001 -0.108 ± 0.002 -0.090 ± 0.003

ACC. (↑) 0.992 ± 0.000 0.991 ± 0.000 0.976 ± 0.001 0.943 ± 0.001 0.989 ± 0.000 0.989 ± 0.000 0.990 ± 0.000 0.989 ± 0.000 0.984 ± 0.000 0.971 ± 0.001
ECE (↓) 0.002 ± 0.000 0.006 ± 0.000 0.064 ± 0.001 0.073 ± 0.003 0.007 ± 0.000 0.006 ± 0.000 0.021 ± 0.000 0.002 ± 0.001 0.048 ± 0.001 0.003 ± 0.000
OOD ACC. (↑) 0.921 ± 0.008 0.980 ± 0.004 0.894 ± 0.010 0.891 ± 0.006 0.887 ± 0.011 0.893 ± 0.005 0.928 ± 0.002 0.871 ± 0.012 0.903 ± 0.007 0.829 ± 0.007

F
M

N
IS

T LOG-LIKE. (↑) -0.260 ± 0.003 -0.294 ± 0.006 -0.300 ± 0.002 -0.311 ± 0.005 -0.261 ± 0.001 -0.261 ± 0.002 -0.290 ± 0.002 -0.252 ± 0.001 -0.426 ± 0.009 -0.260 ± 0.001
ACC. (↑) 0.910 ± 0.001 0.909 ± 0.001 0.910 ± 0.002 0.906 ± 0.002 0.909 ± 0.001 0.907 ± 0.001 0.913 ± 0.001 0.911 ± 0.001 0.886 ± 0.001 0.906 ± 0.000
ECE (↓) 0.020 ± 0.003 0.042 ± 0.002 0.027 ± 0.005 0.024 ± 0.002 0.022 ± 0.002 0.021 ± 0.002 0.010 ± 0.001 0.024 ± 0.001 0.060 ± 0.004 0.016 ± 0.001
OOD ACC. (↑) 0.853 ± 0.005 0.997 ± 0.001 0.925 ± 0.005 0.975 ± 0.002 0.802 ± 0.006 0.779 ± 0.010 0.805 ± 0.010 0.790 ± 0.010 0.826 ± 0.006 0.792 ± 0.005

Table 3: Results for the ocean current modeling task.

METRIC GFSVI (OURS) TFSVI VIP GP

LOG-LIKE. -6.627 ± 0.753 -22.651 ± 2.947 -11.631 ± 3.171 -0.507 ± 0.000
MSE 0.021 ± 0.002 0.034 ± 0.003 0.026 ± 0.001 0.013 ± 0.000

2024]. We compare our GFSVI to a GP, to TFSVI and to
VIP. More details can be found in Appendix C.2. We find
that incorporating knowledge via an informative GP prior
in GFSVI improves performance over weight-space priors
in TFSVI and VIP (see Table 3 and Figure 3). However,
the GP outperforms both BNNs, which suggests that the
physically motivated kernel describes the fluid dynamics
well enough that the additional inductive bias introduced by
a neural network hurts performance rather than helping it. In
the following, we consider experiments with larger datasets
(making exact GP inference computationally infeasible in
many cases), and where structural prior knowledge in func-
tion space exists but is not derived from laws of nature.

Regression. We assess the predictive performance of
GFSVI on data sets from the UCI repository [Dua and Graff,
2017]. Table 1, and Table 6 in the appendix, show expected
log-likelihood and mean squared error, respectively. We per-
form 5-fold cross validation and report means and standard
errors across the test folds. We also rank the methods for
each dataset and report the mean rank of each method across
all datasets. See Appendix C.3 for more details. We find that
GFSVI performs competitively compared to baselines and
obtains the best mean rank for both metrics, matching the

top performing methods on nearly all datasets. In particular,
we find that using GP priors in the linearized BNN with
GFSVI yields improvements over the weight-space priors
used in TFSVI, and that GFSVI performs slightly better
than FVI despite being simpler. Further, we find that GFSVI
approximates the exact GP-posterior more accurately that
FVI (see Table 7 and Appendix D.3), and that it converges
in slightly more steps than TFSVI (Figure 15).

Classification. We further evaluate classification perfor-
mance of our method on the MNIST [LeCun et al., 2010]
and FashionMNIST [Xiao et al., 2017] image data sets. We
fit the models on a random subset of 90% of the training
set, use the remaining 10% as validation data, and evaluate
on the provided test split. We repeat with 5 different ran-
dom seeds and report the mean and standard error of the
expected log-likelihood, accuracy, and expected calibration
error (ECE) in Table 2. For GFSVI, FVI, and TFSVI, we
tested measurement points from both a uniform random
(RND) distribution ρ(x) and from KMNIST. Details in Ap-
pendix C.4. We find that GFSVI performs competitively on
MNIST, exceeding the expected log-likelihood and accuracy
of top-scoring baselines and similarly to best baselines on
FashionMNIST. GFSVI also yields well-calibrated models
with low ECE.

Out-of-distribution detection. We next evaluate our
method by testing if its epistemic uncertainty is predictive of
out-of-distribution (OOD) data. We consider two settings: (i)
with tabular data and a Gaussian likelihood [Malinin et al.,
2021], and (ii) with image data and a categorical likelihood



Table 4: Out-of-distribution accuracy (higher is better) of evaluated methods on regression datasets. GFSVI (ours) performs
competitively on OOD detection and obtains the highest mean rank.

DATASET FUNCTION-SPACE PRIORS WEIGHT-SPACE PRIORS GAUSSIAN PROCESSES (GOLD STANDARDS)

GFSVI (OURS) FVI TFSVI MFVI VIP LAPLACE GWI SPARSE GP GP

BOSTON 0.893 ± 0.011 0.594 ± 0.024 0.705 ± 0.107 0.563 ± 0.013 0.628 ± 0.010 0.557 ± 0.009 0.817 ± 0.017 0.947 ± 0.011 0.952 ± 0.003
CONCRETE 0.656 ± 0.016 0.583 ± 0.022 0.511 ± 0.003 0.605 ± 0.012 0.601 ± 0.024 0.578 ± 0.015 0.730 ± 0.020 0.776 ± 0.006 0.933 ± 0.004
ENERGY 0.997 ± 0.002 0.696 ± 0.017 0.997 ± 0.001 0.678 ± 0.014 0.682 ± 0.037 0.782 ± 0.020 0.998 ± 0.001 0.998 ± 0.001 0.998 ± 0.001
KIN8NM 0.588 ± 0.007 0.604 ± 0.023 0.576 ± 0.008 0.570 ± 0.009 0.563 ± 0.015 0.606 ± 0.009 0.602 ± 0.011 0.608 ± 0.014 (infeasible)
NAVAL 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.919 ± 0.017 0.621 ± 0.059 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 (infeasible)
POWER 0.698 ± 0.006 0.663 ± 0.021 0.676 ± 0.008 0.636 ± 0.019 0.514 ± 0.004 0.654 ± 0.013 0.754 ± 0.004 0.717 ± 0.004 (infeasible)
PROTEIN 0.860 ± 0.011 0.810 ± 0.022 0.841 ± 0.018 0.693 ± 0.020 0.549 ± 0.020 0.629 ± 0.013 0.942 ± 0.002 0.967 ± 0.001 (infeasible)
WINE 0.665 ± 0.013 0.517 ± 0.004 0.549 ± 0.015 0.542 ± 0.009 0.706 ± 0.028 0.531 ± 0.007 0.810 ± 0.008 0.781 ± 0.014 0.787 ± 0.007
YACHT 0.616 ± 0.030 0.604 ± 0.025 0.659 ± 0.043 0.642 ± 0.035 0.688 ± 0.040 0.612 ± 0.024 0.563 ± 0.014 0.762 ± 0.018 0.787 ± 0.011
WAVE 0.975 ± 0.005 0.642 ± 0.004 0.835 ± 0.034 0.658 ± 0.026 0.500 ± 0.000 0.529 ± 0.005 0.903 ± 0.001 0.513 ± 0.001 (infeasible)
DENMARK 0.521 ± 0.006 0.612 ± 0.008 0.519 ± 0.006 0.513 ± 0.003 0.500 ± 0.000 0.529 ± 0.008 0.688 ± 0.003 0.626 ± 0.002 (infeasible)

MEAN RANK 1.455 2.364 1.909 2.909 3.364 2.909 - - -

[Osawa et al., 2019]. We report the accuracy of classifying
OOD vs. in-distribution (ID) data using a (learned) threshold
on the predictive uncertainty. More details in Appendix C.5.
In setting (i), GFSVI performs competitively and obtains
the highest mean rank (Table 4). Likewise in setting (ii),
GFSVI strongly outperforms all baselines when using the
KMNIST measurement point distribution ρ(x) (Figure 12,
Tables 2 and 8). We find that with high-dimensional image
data, the choice of measurement point distribution highly
influences OOD detection accuracy (see Appendix D.5 for
a discussion). In both settings, using GP priors with GFSVI
rather than weight-space priors with TFSVI is beneficial,
and GFSVI also improves over FVI. GFSVI’s uncertainty
is also well-calibrated under distribution shift of the input
features (see Appendix D.6).

5 RELATED WORK

In this section, we review related work on function-space VI
with neural networks, and on approximating functions-space
measures with weight-space priors.

Function-space inference with neural networks. Prior
work on function-space VI in BNNs has addressed issues
(i) intractable variational posterior in function space and (ii)
intractable KL divergence discussed in Section 2.1. Sun
et al. [2019] address (i) by using implicit score function
estimators, and (ii) by replacing the supremum with an
expectation. Rudner et al. [2022b] address (i) by using a
linearized BNN [Khan et al., 2019, Immer et al., 2021, Mad-
dox et al., 2021], and (ii) by replacing the supremum with
a maximum over a finite set. Other work abandons approx-
imating the neural network’s posterior and instead uses a
BNN to specify a prior [Ma et al., 2019], or deterministic
neural networks as features for Bayesian linear regression
[Ma and Hernández-Lobato, 2021] or the mean of a gen-
eralized sparse GP [Wild et al., 2022b]. Unlike our more
expressive GP posterior covariance, Wild et al. [2022b] uses
a simple stationary sparse GP posterior covariance (Table 2)
which has higher sampling cost and can lead to model mis-

specification (Figure 14). Our work combines linearized
BNNs with generalized VI, but we use the regularized KL
divergence [Quang, 2019], which naturally generalizes the
KL divergence and allows for informative GP priors.

Approximating function-space measures with weight-
space priors. Flam-Shepherd et al. [2017], Tran et al.
[2022] minimize a divergence between the BNN’s prior pre-
dictive and a GP before performing inference on weights,
while Wu et al. [2023] directly incorporate the bridging
divergence inside the inference objective. Alternatively,
Pearce et al. [2020] derive BNN architectures mirroring
GPs, and Matsubara et al. [2021] use the Ridgelet trans-
form to design weight-spaces priors approximating a GP
in function space. Similarly, Rudner et al. [2023] and Sam
et al. [2024] use empirical weight-space priors to regularize
in function space and encode domain knowledge specified
via a loss function, respectively. Yang et al. [2020] instead
imposes functional constraints directly via the prior.

6 DISCUSSION

We proposed a simple inference method with a well-defined
variational objective function for BNNs with GP priors in
function-space. As standard VI with functions-space priors
suffers from an infinite KL divergence problem, we propose
to follow the generalized VI framework. Specifically, we
substitute the conventional KL divergence in the ELBO by
the regularized KL divergence, which is always finite, and
which can be estimated consistently within the linearized
BNN approximation. We demonstrated that our method al-
lows to incorporate interpretable structural properties via a
GP prior, accurately approximates the true GP posterior on
synthetic and small real-world data sets, and provides com-
petitive uncertainty estimates for regression, classification
and out-of-distribution detection compared to BNNs with
both function-space and weight-space priors. Future work
should investigate the use of more expressive variational
distributions, such as Gaussian with low-rank plus diagonal
covariance proposed by Tomczak et al. [2020].
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A DIVERGENCES BETWEEN GAUSSIAN MEASURES

A.1 THE KL DIVERGENCE IS INFINITE

In this section, we show that the Kullbach-Liebler (KL) divergence between the Gaussian measures QF
φ ∼ N (mQ, CQ)

and PF ∼ N (mP , CP ), respectively induced by the linearized BNN in Eq 2.7 and by a non-degenerate Gaussian process
satisfying conditions given in Section 2.2, is infinite. While this has already been shown by Wild et al. [2022a], the proof is
easier for Gaussian measures. We first need the Feldman-Hàjek theorem which tells us when the KL divergence between
two Gaussian measures is well-defined.

Theorem A.1 (Feldman-Hàjek, Quang [2022] Theorem 2, Simpson [2022] Theorem 7). Consider two Gaussian measures
ν1 = N (m1, C1) and ν2 = N (m2, C2) on L2(X , ρ). Then ν1 and ν2 are called equivalent if and only if the following
holds:

1. m1 −m2 ∈ Im(C
1/2
2 )

2. The operator T such that C1 = C
1/2
2 (I − T )C

1/2
2 is Hilbert-Schmidt, that is T has a countable set of eigenvalues λi

that satisfy λi < 1 and
∑∞

i=1 λ
2
i < ∞.

otherwise ν1 and ν2 are singular. If ν1 and ν2 are equivalent, then the Radon-Nikodym derivative exists and DKL(ν1 ‖ ν2)
admits an explicit formula. Otherwise, DKL(ν1 ‖ ν2) = ∞.

Let us now show that the KL divergence between QF
φ and PF is indeed infinite.

Proposition 1. The Gaussian measures QF
φ and PF are mutually singular and DKL(QF

φ ||PF ) = ∞.

Proof. The proof follows from the Feldman-Hàjek theorem (Theorem A.1). In our case, CQ has at most p non-zero
eigenvalues as the covariance function of the GP induced by the BNN is degenerate, while CP has a set of (countably)
infinite non-zeros eigenvalues (prior is non-degenerate as per assumption). Hence, for the equality in condition (2) to hold,
T must have eigenvalue 1 which violates the requirement that T is Hilbert-Schmidt i.e. that its eigenvalues {λi}∞i=1 satisfy
λi < 1 and

∑∞
i=1 λ

2
i < ∞. Therefore, QF

φ and PF are mutually singular and DKL(QF
φ ||PF ) = ∞.

A.2 THE REGULARIZED KL DIVERGENCE

We provide the bound describing the asymptotic convergence of the regularized KL divergence estimator in Equation (A.1).
The error results from the fact that taking a finite number M of context points effectively cuts off the spectra of the
covariance operators and the estimator D̂γ

KL converges to Dγ
KL as M → ∞ with high probability.
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Theorem A.2 (Convergence of estimator, Quang [2022] Theorem 45). Assume the following:

1. Let T be a σ − compact metric space, that is T = ∪∞
i=1Ti, where T1 ⊂ T2 ⊂ · · · with each Ti being compact.

2. ρ is a non-degenerate Borel probability measure on T, that is ρ(B) > 0 for each open set B ⊂ T .
3. K1,K2 : T × T → R are continuous, symmetric, positive definite kernels and there exists κ1 > 0, κ2 > 0 such that∫

T
Ki(x, x)dρ(x) ≤ κ2

i for i = 1, 2.
4. supx∈T Ki(x, x) ≤ κ2

i for i = 1, 2.
5. fi ∼ GP (µi,Ki), where µi ∈ L2(T, ρ) for i = 1, 2.
6. ∃Bi > 0 such that ‖µi‖∞ ≤ Bi for i = 1, 2.

Let x = {x(i)}Mi=1, x(1), . . . ,x(M) i.i.d∼ ρ(x). If Gaussian measures N (mi, Ci) are induced by GPs fi ∼ GP(µi,Ki) for
i = 1, 2, then for any 0 < δ < 1, with probability at least 1− δ,

|DKL(N (µ1(x),K1(x,x) +MγIM ) ‖N (µ2(x),K2(x,x) +MγIM ))−Dγ
KL(N (m1, C1) ‖N (m2, C2))|

≤ 1

2γ
(B1 +B2)

2[1 + κ2
2/γ]

2

2 log 48
δ

M
+

√
2 log 48

δ

M


+

1

2γ2
[κ4

1 + κ4
2 + κ2

1κ
2
2(2 + κ2

2/γ)]

2 log 12
δ

M
+

√
2 log 12

δ

M

 (A.1)

Note that Equation (A.1) provides a very general bound on the error that does not make assumptions on the spectral decay,
and it may therefore dramatically overestimate the error. Indeed, we analyze convergence empirically in Figure 20 and
observe that the estimator converges quickly except for very rough priors (e.g., Matérn-1/2) with very small γ.

B ADDITIONAL DETAILS ON THE GFSVI OBJECTIVE ESTIMATOR

In this section, we present details on the estimation of the generalized function-space variational inference (GFSVI)
objective. Let fL( · ;w) be the linearized BNN (Eq 2.6) with weights w ∈ Rp, and D = {(xi, yi)}Ni=1 a data set with
features xi ∈ X ⊂ Rd and associated values yi ∈ Y . Assuming a likelihood p(D |w) =

∏N
i=1 p(yi | f(xi;w)) and a

Gaussian variational distribution on model weights qφ(w) = N (w |m,S), the GFSVI objective function is

L(φ) =
N∑
i=1

Eqφ(w)[log p(yi | fL(xi;w))]−Dγ
KL

(
QF

φ ‖PF
)

(B.1)

where QF
φ and PF are the Gaussian measures induced by the linearized BNN and a Gaussian process prior respectively.

Expected log-likelihood When considering a Gaussian likelihood, we use the closed form expression available due to the
Gaussian variational measure over functions induced by the linearized BNN

Eqφ(w)

[
logN

(
yi | fL(xi;w), σ2

y

)]
= −1

2
log

(
2πσ2

y

)
− (yi − f(xi;m))2 + J(xi;m)SJ(xi;m)>

2σ2
y

. (B.2)

When considering a Categorical likelihood with C different classes, we estimate the expected log-likelihood term using
Monte-Carlo integration as

Eqφ(w)[logCat(yi |σ(fL(xi;w)))] =
1

K

K∑
k=1

C∑
c=1

I[yi = c]

[
f c
L(xi;w

(k))− log

[
C∑

c′=1

exp
(
f c′

L (xi;w
(k))

)]]
(B.3)

where w(k) ∼ qφ(w) for k = 1, . . . ,K, I[·] is the indicator function, σ(·) is the softmax function and f c
L( · ;w) is the logit

for class c obtained from fL.

Regularized KL divergence We estimate the regularized KL divergence using its consistent estimator (Eq. 2.9)

D̂γ
KL

(
QF

φ ‖PF
)
=

1

2
(f(x;m)− µ(x))>(K(x,x) + γMIM )−1(f(x;m)− µ(x))



+
1

2
Tr

[
(K(x,x) + γMIM )−1(J(x;m)SJ(x;m)> + γMIM )− IM

]
− 1

2
log det

[
(K(x,x) + γMIM )−1(J(x;m)SJ(x;m)> + γMIM )

]
(B.4)

with measurement points x = {x(i)}Mi=1, x(1), . . . ,x(M) i.i.d∼ ρ(x) sampled from a probability measure on X .

Computational complexity Evaluating the objective in Eq. B.1 has complexity O(BKC+M3) for Categorical likelihoods
and O(B +M3) for Gaussian likelihoods, where B is the batch size, K the number of variational posterior samples, C the
number of classes, and M the number of context points. The first term corresponds to the expected log-likelihood in our
objective and the second term to the regularized KL divergence estimator. We note that evaluating the linearized neural
network can be efficiently done in about 3x the cost of one forward pass using the Jacobian-vector product computational
primitive.

C ADDITIONAL DETAILS ON THE EXPERIMENTAL SETUP

C.1 EXPERIMENTS ON SYNTHETIC DATA

Regression We consider the following generative model for the toy data

yi = sin(2πxi) + ε with ε ∼ N
(
0, σ2

n

)
(C.1)

and draw xi ∼ U([−1,−0.5] ∪ [0.5, 1]). When not otherwise specified, we use σn = 0.1. On the plots, the data points
are shown as gray circles, inferred mean functions as red lines, their 2-standard-deviations interval around the mean in
light green, and functions sampled from the approximate posterior as green lines. In general, we consider two hidden-layer
BNNs with 30 neurons per layer and hyperbolic tangent activation (Tanh) functions. Specifically in Figure 11, the small
BNN has the same architecture as above while the large BNN has 100 neurons per layer. All the BNN baselines have the
same architecture and fully-factorized Gaussian approximate posterior. The prior scale of TFSVI [Rudner et al., 2022b]
is set to σp = 0.2 and σp = 0.75 for MFVI [Blundell et al., 2015] and Laplace [Immer et al., 2021]. For the Gaussian
process posterior baseline, we fit the prior parameters by maximizing the log-marginal likelihood [Williams and Rasmussen,
2006]. Apart from the cases where the parameters of the GP prior used for GFSVI (our method) and FVI [Sun et al., 2019]
are explicitly stated, we consider a constant zero-mean function and find the parameters of the covariance function by
maximizing the log-marginal likelihood from mini-batches [Chen et al., 2022]. Except where otherwise stated, we estimate
the functional KL divergences with 500 measurement points and use the regularized KL divergence with γ = 10−10.

Classification We sample 100 data points perturbed by Gaussian noise with σn = 0.1 from the two moons data [Pedregosa
et al., 2011]. On the plots, the data points are shown as red (class 0) and blue (class 1) dots. We plot the mean and
2-standard-deviations of the probability that x belongs to class 1 with respect to the posterior (i.e. p(y = 1 |w(k),x)) which
we estimate from K = 100 samples w(k) ∼ qφ(w) for k = 1, . . . ,K. We consider two hidden-layer BNNs with 100
neurons per layer and hyperbolic tangent activation (Tanh) functions. All the BNN baselines have the same architecture
and fully-factorized Gaussian approximate posterior. The prior scale of MFVI [Blundell et al., 2015] is set to σp = 0.8 and
σp = 1.0 for TFSVI [Rudner et al., 2022b] and Laplace [Immer et al., 2021]. For the Gaussian process posterior baseline,
we approximate the intractable posterior using the Laplace approximation and find the prior parameters by maximizing the
log-marginal likelihood [Williams and Rasmussen, 2006]. The GP prior for GFSVI (our method) and FVI [Sun et al., 2019]
has a constant zero-mean function and we find the parameters of the covariance function by maximizing the log-marginal
likelihood from mini-batches [Chen et al., 2022] using the method to transform classifications labels into regression targets
from Milios et al. [2018]. We estimate the functional KL divergences with 500 measurement points and use the regularized
KL divergence with γ = 10−10.

C.2 OCEAN CURRENT MODELING EXPERIMENT

Following Cinquin et al. [2024], we apply the Helmholtz decomposition to the neural network f as

f(·,w) = gradΦ(·,w1) + rotΨ(·,w2) (C.2)

where w = {w1,w2} and, Φ(·,w1) and Ψ(·,w2) are 2-layer fully-connected neural networks with 50 hidden units per
layer and hyperbolic tangent activation functions. GFSVI and TFSVI both use 160 fixed context points. The prior scale



Table 5: UCI regression dataset description

DATASET BOSTON NAVAL POWER PROTEIN YACHT CONCRETE ENERGY KIN8NM WINE WAVE DENMARK

NUMBER SAMPLES 506 11 934 9 568 45 730 308 1 030 768 8 192 1 599 288 000 434 874
NUMBER FEATURES 13 16 4 9 6 8 8 8 11 49 2

of TFSVI is set to σp = 0.5. We fit the neural networks on the entire dataset and average the scores with respect to five
different random seeds.

C.3 REGRESSION EXPERIMENTS WITH TABULAR DATA

Datasets and pre-processing We evaluate the predictive performance of our model on regression datasets from the UCI
repository [Dua and Graff, 2017] described in Table 5. These datasets are also considered in Sun et al. [2019], Wild et al.
[2022b] but we include two additional larger ones (Wave and Denmark). We perform 5-fold cross validation, leave out one
fold for testing, consider 10% of the remaining 4 folds as validation data and the rest as training data. We report mean and
standard-deviation of the average expected log-likelihood and average mean square error on the test fold. We also report the
mean rank of the methods across all datasets by assigning rank 1 to the best scoring method as well as any method who’s
error bars overlap with the highest score’s error bars, and recursively apply this procedure to the methods not having yet
been assigned a rank. The expected log-likelihood is estimated by Monte Carlo integration when it is not available in closed
form (MFVI, TFSVI and FVI) with 100 posterior samples. We preprocess the dataset by encoding categorical features as
one-hot vectors and standardizing the features and labels.

Baseline specification We compare our GFSVI method to two weight-space inference methods (mean-field variational
inference [Blundell et al., 2015] and linearized Laplace [Immer et al., 2021]) and two function-space inference methods
(FVI [Sun et al., 2019] and TFSVI [Rudner et al., 2022b]). While FVI uses GP priors, TFSVI performs inference in function
space but with the pushforward to function space of the variational distribution and prior on the weights. We compute the
function-space (regularized) KL divergence using a set of 500 measurement points sampled from a uniform distribution
for GFSVI and TFSVI, and 50 points drawn from a uniform distribution along with 450 samples from the training batch
for FVI as specified in Sun et al. [2019]. All the BNN baselines have the same architecture and fully-factorized Gaussian
approximate posterior. We also provide results with a GP [Williams and Rasmussen, 2006] when the size of the dataset
allows it, and a sparse GP [Hensman et al., 2013]. As we restrict our comparison to BNNs, we do not consider the GP and
sparse GP as baselines but rather as gold-standards. All models have a Gaussian homoskedastic noise model with a learned
scale parameter. All the BNNs are fit using the Adam optimizer [Kingma and Ba, 2017] using a mini-batch size of 2000
samples. We also perform early stopping when the validation loss stops decreasing.

Model selection Hyper-parameter optimization is conducted using the Bayesian optimization tool provided by Wandb
[Biewald, 2020]. BNN parameters are selected to maximize the average validation expected log-likelihood across the 5
cross-validation folds. We optimize over prior parameters (kernel and prior scale), learning-rate and activation function.
We select priors for GFSVI, FVI, sparse GP and GP among the RBF, Matérn-1/2, Matérn-3/2, Matérn-5/2, Linear and
Rational Quadratic covariance functions. The GP prior parameters used with GFSVI and FVI are selected by maximizing
the log-marginal likelihood from batches as proposed by Chen et al. [2022] and done in Sun et al. [2019]. Hyper-parameters
for GPs and sparse GPs (kernel parameters and learning-rate) are selected to maximize the mean log-marginal likelihood of
the validation data across the 5 cross-validation folds.

C.4 CLASSIFICATION EXPERIMENTS WITH IMAGE DATA

Datasets and pre-processing We further evaluate the predictive performance of our model on classification tasks with the
MNIST [LeCun et al., 2010] and Fashion MNIST [Xiao et al., 2017] image data sets. We fit the models on a random subset
of 90% of the provided training split, consider the remaining 10% as validation data and evaluate on the provided test split.
We repeat this procedure 5 times with different random seeds and report the mean and standard-deviation of the average
expected log-likelihood, accuracy and expected calibration error (ECE) of the mean of the predictive distribution on the test
set. The expected log-likelihood is estimated by Monte Carlo integration with 100 posterior samples when it is not available
in closed form (MFVI, TFSVI and FVI). We estimate the mean of the predictive distribution to compute the accuracy and
the ECE with 100 posterior samples. We preprocess the dataset by standardizing the images.



Baseline specification We compare our GFSVI method to the same baselines as for the regression experiments (see C.3).
All the BNN baselines have the same architecture and fully-factorized Gaussian approximate posterior. More specifically, we
consider a CNN with three convolutional layers (with output channels 16, 32 and 64) before two fully connected layers (with
output size 128 and 10). The convolutional layers use 3× 3 shaped kernels. Each pair of convolutional layers is interleaved
with a max-pooling layer. We consider three different measurement point distributions ρ to estimate the (regularized)
KL divergence in GFSVI, FVI and TFSVI: RANDOM, RANDOM PIXEL and KMNIST. The RANDOM measurement point
distribution is sampled from by drawing 50% of the samples from the training data batch and 50% of the samples from
a uniform distribution over [pmin, pmax]

H×W×C , where H , W and C are respectively the height, width and number of
channels of the images, and pmin = vmin−0.5×∆ and pmax = vmax+0.5×∆ where ∆ = vmax−vmin is the difference
between the minimal (vmin) and maximal (vmax) pixel values of the data set. The RANDOM PIXEL measurement point
distribution is taken from Rudner et al. [2022b] and is sampled from by randomly choosing each pixel value among the
ones available from the training data batch at the same position in the 28× 28 pixel grid. Finally, the KMNIST measurement
point distribution is also taken from Rudner et al. [2022b] and is drawn from by randomly sampling data points from the
Kuzushiji-MNIST (KMNIST) dataset [Clanuwat et al., 2018]. The KMNIST dataset is a collection of 70’000 gray-scale
images of size 28× 28 which we preprocess by standardizing the images. We sample 25 measurement points when using
RANDOM, 25 measurement points when using RANDOM PIXEL and 20 when using KMNIST. All the BNNs are trained
using the Adam optimizer [Kingma and Ba, 2017] using a mini-batch size of 100. We also perform early stopping when the
validation loss stops decreasing.

Model selection Hyper-parameter optimization is conducted just like for the regression tasks (see C.3). The Gaussian
process prior parameters used with GFSVI and FVI are selected by maximizing the log-marginal likelihood from batches
[Chen et al., 2022] using the method to transform classifications labels into regression targets from Milios et al. [2018]. We
optimize the same hyper-parameters as for the regression experiments with the exception of the additional αε parameter
introduced by Milios et al. [2018] for the function-space VI methods with GP priors (FVI and GFSVI).

C.5 OOD DETECTION

Tabular data with a Gaussian likelihood Following the setup from Malinin et al. [2021] we take epistemic uncertainty
to be the variance of the mean prediction with respect to samples from the posterior. We consider the test data to be
in-distribution (ID) data and a subset of the song dataset [Bertin-Mahieux et al., 2011] of equal length and with an equal
number of features as out-of-distribution (OOD) data. We use the same preprocessing as for regression as well as the same
baselines with the same hyper-parameters (see Appendix C.3). We first fit a model, then evaluate the extend by which the
epistemic uncertainty under the model is predictive of the ID and OOD data using a single threshold obtained by a depth-1
decision tree fit to minimize the classification loss. We report the mean and standard error of the accuracy of the threshold to
classify OOD from ID data based on epistemic uncertainty across the 5 folds of cross-validation. We also provide results
obtained using a GP and sparse GP as gold standard.

Image data with a Categorical likelihood Following the setup by Osawa et al. [2019], we take the epistemic uncertainty
to be the entropy of the mean of the predictive distribution with respect to samples from the posterior. We evaluate models
trained on MNIST using MNIST’s test split as ID data and a subset of the training set of Fashion MNIST as OOD data.
Likewise, we evaluate models trained on Fashion MNIST using Fashion MNIST’s test split as ID data and a subset of the
training set of MNIST as OOD data. We use the same preprocessing as for classification, as well as the same baselines
with the same hyper-parameters (see Appendix C.4). We first fit a model, then evaluate the extend by which the epistemic
uncertainty under the model is predictive of the ID and OOD data using a single threshold obtained by a depth-1 decision
tree fit to minimize the classification loss. We estimate mean of the predictive distribution by Monte-Carlo integration using
100 posterior samples. We report the mean and standard error of the accuracy of the threshold to classify OOD from ID data
based on epistemic uncertainty for the 5 models trained on different random seeds (see Appendix C.4).

C.6 VARIATIONAL MEASURE EVALUATION

We evaluate our inference method by comparing the samples drawn from the exact posterior over functions with the
approximate posterior obtained with our method (GFSVI). We follow the setup by Wilson et al. [2022] and we compute the
average Wasserstein-2 metric between 1000 samples drawn from a GP posterior with a RBF kernel evaluated at the test
points, and samples from the approximate posterior of GFSVI, sparse GP and FVI evaluated at the same points and with the
same prior. We consider the Boston, Concrete, Energy, Wine and Yacht datasets for which the exact GP posterior can be
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Figure 4: Our method (GFSVI) effectively regularizes functions generated by the Bayesian neural network (BNN) both in
settings where the generative process is very noisy (σn = 1) or not (σn = 0.1).

computed and use the same preprocessing as for regression (see Appendix C.3). We report the mean and standard error of
the average Wasserstein-2 metric across the 5 folds of cross-validation. The Wasserstein-2 metric is computed using the
Python Optimal Transport library [Flamary et al., 2021].

Baseline specification FVI and GFSVI have the same two hidden layer neural network architecture with 100 neurons
each and hyperbolic tangent activation. These models are fit with the same learning rate and set of 500 measurement points
jointly sampled from a uniform distribution over the feature-space and mini-batch of training samples. We use γ = 10−15

for the regularized KL divergence. We further consider a sparse GP with 100 inducing points.

C.7 SOFTWARE

We use the JAX [Bradbury et al., 2018] and DM-Haiku [Hennigan et al., 2020] Python libraries to implement our Bayesian
neural networks. MFVI, linearized Laplace and TFSVI were implemented based on the information in the papers, and code
for FVI was adapted to the JAX library from the implementation provided by the authors. We further use the GPJAX Python
library for experiments involving Gaussian processes [Pinder and Dodd, 2022].

C.8 HARDWARE

All models were fit using a single NVIDIA RTX 2080Ti GPU with 11GB of memory.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we present additional figures for our qualitative uncertainty evaluation as well as further experimental
results on regression, out-of-distribution detection and robustness under input distribution shift tasks. We also provide
plots illustrating the eigenvalue decay of different kernels, and figures showing the influence of γ in the regularized KL
divergence.

D.1 QUALITATIVE UNCERTAINTY EVALUATION

Regression We further find that our method (GFSVI) provides strong regularization when the data generative process is
noisy (see Figure 4) and is more robust than FVI to situations where ones computational budget constrains the number of
measurement points M to be small (Figure 8). In contrast to FVI, GFSVI accurately approximates the exact GP posterior
under rough (Matérn-1/2) GP priors effectively incorporating prior knowledge defined by the GP prior to the inference
process (see Figure 2). Likewise, GFSVI adapts to the variability of the functions specified by the kernel (see Figure 6).
We also find that GFSVI requires a larger number of measurement points to capture the behavior of a rougher prior (see
Figure 7).

Classification We find that GFSVI better captures the beliefs induced by the smooth RBF and rough Matérn-1/2 Gaussian
process priors compared to FVI (see Figures 9 and 10). Moreover, GFVSI both accurately fits the training data and shows
greater uncertainty outside of its support relative to BNNs baselines with weight-space and function-space priors. Unlike for
the toy data regression experiments where the GP posterior was the ground truth, the Laplace (approximate) GP posterior in
Figures 9 and 10 only represents a possible approximation to the now in-tractable posterior (due to the softmax inverse link
function). Thus the GP should not be considered as the ground truth nor as the optimal approximation in the classification
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Figure 5: Our method (GFSVI) with an RBF Gaussian process (GP) prior accurately approximates the exact GP posterior
unlike the function-space prior baseline (FVI). Weight-space prior baselines do not provide a straight-forward mechanism
to incorporate prior assumptions regarding the functions generated by BNNs and underestimate the epistemic uncertainty
(MFVI, Laplace). The lower row is identical to the one in Figure 2 in the main text and is reproduced here to make
comparison easier.

-2 -1 0 1 2

-2
0
2

λ=0.15

-2 -1 0 1 2

λ=0.35

-2 -1 0 1 2

λ=0.5

Figure 6: Our method (GFSVI) allows to incorporate prior beliefs in terms of function variability using the characteristic
length-scale parameter of the Gaussian process (GP) prior. GFSVI was fit using a GP prior with RBF covariance function.
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Figure 7: Our method (GFSVI) captures the smooth behavior of a Gaussian process (GP) prior with RBF covariance function
even if the number of measurement points is small (M=10). However, in that setting GFSVI fails to reproduce the rough
effect of a GP prior with a Matérn-1/2 covariance function, and requires a larger amount of measurement points to do so
(M=100).

-2 -1 0 1 2
-2

0

2
Exact posterior (GP)

-2 -1 0 1 2

GFSVI (ours) - M=10

-2 -1 0 1 2

FVI - M=10

-2 -1 0 1 2

GFSVI (ours) - M=100

-2 -1 0 1 2

FVI - M=100

Figure 8: Our method (GFSVI) already provides a reasonable approximation to the exact posterior with small numbers of
measurement points (M=10) while function-space baseline FVI requires many more (M=100).

setting, but is nevertheless useful to give a idea of the level of uncertainty a BNN with a GP prior should provide outside of
the support of the data.

Inductive biases Figure 11 compares GFSVI to the exact posterior across two different priors and three model architectures
(details in C.1). We find that the BNN’s ability to incorporate the beliefs introduced by the GP prior depends on its size and
activation function. When using piece-wise linear activations (ReLU), small models are prone to underfitting for smooth
priors (RBF), and to collapsing uncertainty for rough priors (Matérn-1/2). By contrast, when using smooth activations
(Tanh), smaller models suffice, and they are compatible with most standard GP priors (the results shown in Figure 11 extend
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Figure 9: Our method (GFSVI) with a RBF Gaussian process (GP) prior accurately captures the smooth decision boundary
induced by the prior and shows high uncertainty outside of the data support. Weight-space baselines do not provide a
straight-forward mechanism to incorporate prior assumptions regarding the functions generated by BNNs and underestimate
the epistemic uncertainty (TFSVI, Laplace) or underfit the data (MFVI).
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Figure 10: Our method (GFSVI) with a Matérn-1/2 Gaussian process (GP) prior accurately captures the rough decision
boundary unlike the function-space baseline (FVI). Weight-space baselines do not provide a straight-forward mechanism
to incorporate prior assumptions regarding the functions generated by BNNs and underestimate the epistemic uncertainty
(TFSVI, Laplace) or underfit the data (MFVI).

to RBF, Matérn family, and Rational Quadratic in our experiments). We also analyzed how the number M of measurement
points affects performance. Figures 7 and 17 show that capturing the properties of rough GP priors and estimating Dγ

KL with
these priors requires larger M .

D.2 REGRESSION ON TABULAR DATA

We present additional regression results reporting the mean square error (MSE) of evaluated methods across the considered
baselines, see Table 6. We find that GFSVI also performs competitively in terms of MSE compared to baselines and obtains
the best mean rank, matching best the performing methods on nearly all datasets. In particular, we find that using GP
priors in the linearized BNN setup with GFSVI yields improvements over the weight-space priors used in TFSVI and that
GFSVI performs slightly better than FVI. Function-space VI methods (TFSVI, GFSVI, FVI) significantly improves over
weight-space VI mostly performing similarly to the linearized Laplace approximation. Further improvement over baselines
are obtained when considering GP priors with GFSVI and FVI. Finally, GFSVI compares favorably to the GP and sparse GP.
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Figure 11: Our method requires that the Bayesian neural network (BNN) and Gaussian process (GP) prior share similar
inductive biases to provide an accurate approximation to the exact posterior.

Table 6: Test mean square error (MSE) of evaluated methods on regression datasets. We find that GFSVI (ours) also performs
competitively in terms of MSE compared to baselines and obtains the best mean rank, matching best the performing methods
on nearly all datasets.

DATASET FUNCTION-SPACE PRIORS WEIGHT-SPACE PRIORS GAUSSIAN PROCESSES (GOLD STANDARDS)

GFSVI (OURS) FVI TFSVI MFVI VIP LAPLACE GWI SPARSE GP GP

BOSTON 0.123 ± 0.021 0.136 ± 0.022 0.995 ± 0.092 0.532 ± 0.072 0.201 ± 0.056 0.203 ± 0.047 0.273 ± 0.069 0.122 ± 0.014 0.115 ± 0.020
CONCRETE 0.114 ± 0.008 0.116 ± 0.004 0.389 ± 0.015 0.698 ± 0.046 0.109 ± 0.008 0.116 ± 0.007 0.145 ± 0.017 0.399 ± 0.020 0.116 ± 0.007
ENERGY 0.003 ± 0.000 0.003 ± 0.000 0.003 ± 0.000 0.152 ± 0.024 0.043 ± 0.036 0.002 ± 0.000 0.003 ± 0.001 0.087 ± 0.005 0.087 ± 0.004
KIN8NM 0.071 ± 0.001 0.075 ± 0.003 0.073 ± 0.001 0.290 ± 0.111 0.068 ± 0.002 0.083 ± 0.001 0.071 ± 0.001 0.088 ± 0.002 (infeasible)
NAVAL 0.000 ± 0.000 0.001 ± 0.001 0.000 ± 0.000 0.007 ± 0.003 0.002 ± 0.000 0.000 ± 0.000 0.197 ± 0.174 0.000 ± 0.000 (infeasible)
POWER 0.052 ± 0.001 0.054 ± 0.002 0.054 ± 0.001 0.058 ± 0.002 0.054 ± 0.002 0.054 ± 0.002 0.052 ± 0.001 0.071 ± 0.001 (infeasible)
PROTEIN 0.459 ± 0.005 0.466 ± 0.004 0.429 ± 0.004 0.537 ± 0.008 0.421 ± 0.005 0.446 ± 0.006 0.425 ± 0.003 0.408 ± 0.002 (infeasible)
WINE 0.652 ± 0.022 0.663 ± 0.009 1.297 ± 0.093 0.655 ± 0.023 0.627 ± 0.013 0.637 ± 0.031 0.682 ± 0.048 0.607 ± 0.033 0.585 ± 0.032
YACHT 0.003 ± 0.001 0.004 ± 0.001 0.221 ± 0.037 0.682 ± 0.140 0.004 ± 0.001 0.002 ± 0.001 0.008 ± 0.003 0.399 ± 0.064 0.355 ± 0.030
WAVE 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.001 0.000 ± 0.000 (infeasible)
DENMARK 0.155 ± 0.004 0.287 ± 0.003 0.163 ± 0.004 0.225 ± 0.003 0.189 ± 0.008 0.194 ± 0.003 0.197 ± 0.004 0.260 ± 0.001 (infeasible)

MEAN RANK 1.364 2.000 2.182 3.182 1.636 1.727 - - -

D.3 VARIATIONAL MEASURE EVALUATION

Table 7 evaluates our inference method by comparing samples drawn from the exact posterior (where computationally
feasible) with the approximate posterior obtained with our method (GFSVI). We follow the setup by Wilson et al. [2022] and
we compute the average per-sample Wasserstein-2 metric samples drawn from a GP posterior with RBF kernel evaluated at
the test points, and samples from the approximate posterior of GFSVI, sparse GP and FVI evaluated at the same points and
with the same prior. More details are provided in Appendix C.6. We find that GFSVI approximates the exact posterior more
accurately that FVI, obtaining a higher mean rank, but worse than the gold standard sparse GP, which demonstrates to be
most accurate.

Table 7: Average point-wise Wasserstein-2 distance (lower is better) between exact and approximate posterior of reported
methods. GFSVI (ours) provides a more accurate approximation than FVI.

DATASET BOSTON CONCRETE ENERGY WINE YACHT MEAN RANK

GFSVI (OURS) 0.0259 ± 0.0040 0.0499 ± 0.0029 0.0035 ± 0.0004 0.0571 ± 0.0097 0.0036 ± 0.0006 1.0
FVI 0.0469 ± 0.0044 0.0652 ± 0.0037 0.0037 ± 0.0004 0.1224 ± 0.0167 0.0052 ± 0.0013 1.6

GP SPARSE 0.0074 ± 0.0022 0.0125 ± 0.0016 0.0042 ± 0.0003 0.0170 ± 0.0035 0.0035 ± 0.0008 -

D.4 OUT-OF-DISTRIBUTION DETECTION WITH IMAGE DATA

We here show an additional plot from our out-of-distribution detection experiment with image data (details in C.5). Figure 12
shows the (normalized) histograms of the entropy of the mean prediction produced by each model on the in-distribution
(blue) and out-of-distribution (red) data sets considered in our OOD detection experiment. Methods which estimate the
(regularized) KL-divergence in function-space (GFSVI, FVI and TFSVI) use the KMNIST measurement distribution. We
find that the entropy produced by GFSVI on in-distribution data highly peaks around 0 while the entropy produced from



out-of-distribution data strongly concentrates around its maximum ln(10). GFSVI best partitions ID and OOD data based
on predictive entropy improving over the function-space prior (FVI) and weight-space prior (TFSVI, MFVI, Laplace) BNN
baselines (see Table 2).
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Figure 12: Histograms of the entropy of the mean predictive distribution produced by evaluated methods in the out-of-
distribution detection with image data experiment. GFSVI (ours) best partitions in-distribution and out-of-distribution data
based on the entropy of its mean predictive distribution.

D.5 INFLUENCE OF MEASUREMENT POINT DISTRIBUTION FOR IMAGE DATA

We present additional results evaluating the influence of the measurement point distribution ρ on the the performance
of function-space inference methods when using high-dimensional image data. The measurement point distribution are
described in Appendix C.4. Just like in Rudner et al. [2022b], we find that the choice of measurement point distribution
may highly influence the OOD detection accuracy. While the expected log-likelihood, accuracy and expected calibration
error (ECE) of a model generally remains comparable across measurement point distributions, the OOD accuracy of GFSVI
is greatly improved by using samples from KMNIST to evaluate the (regularized) KL divergence. The measurement point
distribution determines where the BNN is regularized and thus should be carefully selected especially for high dimensional
data.

Table 8: Influence of the measurement point distribution ρ on expected log-likelihood (log-like.), accuracy (acc.), expected
calibration error (ECE) and out-of-distribution detection accuracy (OOD acc.). ρ determines where the BNN will be
regularized and strongly influences the out-of-distribution performance of the BNN.

D
A

TA METRIC GFSVI FVI TFSVI

RANDOM RANDOM PIXEL KMNIST RANDOM RANDOM PIXEL KMNIST RANDOM RANDOM PIXEL KMNIST

M
N

IS
T LOG-LIKE. (↑) -0.033 ± 0.000 -0.034 ± 0.000 -0.041 ± 0.000 -0.145 ± 0.005 -0.038 ± 0.000 -0.238 ± 0.006 -0.047 ± 0.003 -0.032 ± 0.001 -0.041 ± 0.001

ACC. (↑) 0.992 ± 0.000 0.989 ± 0.000 0.991 ± 0.000 0.976 ± 0.001 0.988 ± 0.000 0.943 ± 0.001 0.989 ± 0.000 0.989 ± 0.000 0.989 ± 0.000
ECE (↓) 0.002 ± 0.000 0.004 ± 0.000 0.006 ± 0.000 0.064 ± 0.001 0.003 ± 0.000 0.073 ± 0.003 0.007 ± 0.000 0.003 ± 0.000 0.006 ± 0.000
OOD ACC. (↑) 0.921 ± 0.008 0.868 ± 0.010 0.980 ± 0.004 0.894 ± 0.010 0.863 ± 0.003 0.891 ± 0.006 0.887 ± 0.011 0.861 ± 0.008 0.893 ± 0.005

F
M

N
IS

T LOG-LIKE. (↑) -0.260 ± 0.003 -0.258 ± 0.002 -0.294 ± 0.006 -0.300 ± 0.002 -0.293 ± 0.003 -0.311 ± 0.005 -0.261 ± 0.001 -0.258 ± 0.001 -0.261 ± 0.002
ACC. (↑) 0.910 ± 0.001 0.908 ± 0.001 0.909 ± 0.001 0.910 ± 0.002 0.900 ± 0.001 0.906 ± 0.002 0.909 ± 0.001 0.908 ± 0.001 0.907 ± 0.001
ECE (↓) 0.020 ± 0.003 0.022 ± 0.001 0.042 ± 0.002 0.027 ± 0.005 0.018 ± 0.002 0.024 ± 0.002 0.022 ± 0.002 0.018 ± 0.001 0.021 ± 0.002
OOD ACC. (↑) 0.853 ± 0.005 0.867 ± 0.005 0.997 ± 0.001 0.925 ± 0.005 0.842 ± 0.006 0.975 ± 0.002 0.802 ± 0.006 0.800 ± 0.007 0.779 ± 0.010

D.6 INPUT DISTRIBUTION SHIFT WITH ROTATED IMAGE DATA

We here provide an experiment evaluating our method’s (GFSVI) robustness in detecting input distribution shift. We expect
the predictive uncertainty of a well-calibrated Bayesian model to be low for in-distribution data and to gradually increase as
the input distribution shifts further away from the training data distribution. To test this property, we follow the setup by
Sensoy et al. [2018], Rudner et al. [2022b] and assume like the related work that increasing the rotation angle of images
gradually increases the level of input "distribution shift". We report the mean and standard-deviation of the average mean
predictive entropy of models fit on MNIST [LeCun et al., 2010] and Fashion MNIST [Xiao et al., 2017] for increasingly
large angles of rotation of their respective test data partition. We find that GFSVI is confident (low predictive entropy) for
images with small rotation angles, and that its predictive entropy increases with the angle. GFSVI therefore exhibits the



expected behavior of a well-calibrated Bayesian model. We note that FVI, Laplace and MFVI tend to be under-confident
(high predictive entropy) for small rotation angles, which might be a symptom of underfitting further supported by the
results in Table 2. Also, with the exception of TFSVI, the predictive entropy of baselines across different rotation angles is
generally higher than the one produced by GFSVI.
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Figure 13: Average predictive entropy of models trained on MNIST and Fashion MNIST and evaluated for different rotation
angles of their respective test data partitions. We see that our method (GFSVI) exhibits the behavior of a well-calibrated
Bayesian model.

D.7 EXAMPLE OF MODEL MISSPECIFICATION WITH Wild et al. [2022b]
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Figure 14: Example of model misspecification when using a periodic GP prior with baseline GWI [Wild et al., 2022b]
that does not occur with our method (GFSVI). In GWI, only the posterior covariance is periodic, while the neural network
parameterizing the posterior mean results in a function that does not capture the beliefs carried by the (periodic) prior. In
contrast, our method accurately captures the GP prior’s beliefs and yields a (locally) periodic function.

Figure 14 shows an example of model misspecification when using a periodic GP prior with the baseline GWI [Wild et al.,
2022b]. As can be seen in the left panel of the figure, this problem does not occur with our method (GFSVI). While the
posterior covariance in GWI reflects the periodicity of the prior, the neural network parametrizing the posterior mean does
not result in a periodic function, i.e., the mean does not capture the beliefs specified by the periodic GP prior. In contrast,
our method accurately captures the GP prior’s beliefs and yields a (locally) periodic function.

D.8 CONVERGENCE SPEED ON UCI DATA

Table 9: Training time of our method GFSVI and
baselines MFVI [Blundell et al., 2015] and TFSVI
[Rudner et al., 2022b] on the boston UCI dataset.

GFSVI (OURS) TFSVI MFVI

TIME (S) 44.15 ± 1.56 36.36 ± 0.90 38.38 ± 10.80

Table 9 shows the training time of our method and baselines MFVI
[Blundell et al., 2015] and TFSVI [Rudner et al., 2022b] on the
boston dataset using M = 100 context points averaged over 5 cross-
validation splits, as well as Figure 15 showing the convergence of the
validation expected log-likelihood on the boston dataset. Our method
converges in more steps than the TFSVI. GFSVI typically takes more
time/steps to train that TFSVI as it additionally needs to adapt its
features to the beliefs specified by the Gaussian process prior.
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Figure 15: Validation expected log-likelihood of our method (GFSVI) and baselines TFSVI and MFVI. GFSVI (ours)
converges on the boston dataset in slightly more steps than TFSVI but in fewer than MFVI.
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Figure 16: Validation expected log-likelihood of our method (GFSVI) and baselines TFSVI and MFVI on MNIST. GFSVI
(ours) converges in slightly more steps than TFSVI but in fewer than MFVI.

D.9 ADDITIONAL PLOTS FOR KERNEL EIGENVALUE
DECAY

Figure 17 shows a plot demonstrating the decay rate of the eigenvalues of RBF and Matérn-1/2 kernels evaluated at points
sampled uniformly over X . The rate of decay of covariance operator’s eigenvalues gives important information about the
smoothness of stationary kernels [Williams and Rasmussen, 2006] and that increased smoothness of the kernel leads to
faster decay of eigenvalues Santin and Schaback [2016]. For instance, RBF covariance operator eigenvalues decay at near
exponential rate independent of the underlying measure [Belkin, 2018] and Matérn kernels eigenvalues decay polynomialy
[Chen et al., 2022]. We find that the kernel evaluated at points sampled from a uniform distribution over X share this same
behavior (see Figure 17).
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Figure 17: Mean eigenvalues of the Gram matrix obtained for different kernels and for varying length-scales over 10 draws
from a uniform distribution on [−2, 2]D. The mean eigenvalues are arranged in increasing order. The eigenvalues of the
Gram matrix associated with the smooth RBF kernel decays much faster than those of the Matérn-1/2. Furthermore, the
eigenvalues decay at a slower rate in high dimensions (D=100).



D.10 ADDITIONAL PLOTS FOR CHOOSING γ IN Dγ
KL

The γ parameter controls the magnitude of the regularized KL divergence (see Figure 20) and adjusts the relative weight of
the regularized KL divergence and expected log-likelihood term in the training objective (see Figure 18). Furthermore, γ
also acts as "jitter" preventing numerical errors. We recommend choosing γ large enough to avoid numerical errors while
remaining small enough to provide strong regularization.
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Figure 18: The γ parameter of the regularized KL divergence controls the magnitude of the regularizer in the objective and
should be small enough to provide strong regularization.
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Figure 19: The BNN’s covariance adaptation to the
prior’s covariance rank depends on its activation func-
tion. BNNs fit with a RBF prior (full) show lower rank
than with a Matérn-1/2 (dotted).
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Figure 20: γ explicitly controls the magnitude of the regularized
KL-divergence Dγ

KL. Rougher priors (Matérn-1/2) require more
measurement points to accurately estimate Dγ

KL than smooth pri-
ors (RBF).
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