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Abstract

The ever-growing size of neural networks poses serious challenges on resource-
constrained devices, such as embedded sensors. Compression algorithms that
reduce their size can mitigate these problems, provided that model performance
stays close to the original. We propose a novel post-training compression frame-
work that combines rate-aware quantization with entropy coding by (1) extending
the well-known layer-wise loss by a quadratic rate estimation, and (2) providing
locally exact solutions to this modified objective following the Optimal Brain Sur-
geon (OBS) method. Our method allows for very fast decoding and is compatible
with arbitrary quantization grids. We verify our results empirically by testing on
various computer-vision networks, achieving a 20-40% decrease in bit rate at the
same performance as the popular compression algorithm NNCodec.
Our code is available at https://github.com/Conzel/cerwu.

1 Introduction

While neural networks have achieved impressive results on various tasks, their large computational
demands require many neural network applications to rely on server-side deployment. This increases
latency and can cause concerns for end users regarding privacy and regulatory constraints [49, 27].
Thus, there has been an increased effort to move machine learning pipelines back onto user devices,
which usually involves techniques that reduce their resource demands [27]. The works on neural
network compression can be roughly divided into two groups: (1) works that aim to reduce the
server-side costs of training [37, 24], fine-tuning [12, 47] or inference [36, 28, 44]. These methods
often save computational costs or reduce GPU memory requirements. And (2) works that focus on
embedded and edge devices, aiming to produce extremely small models still suitable for inference
[29, 22], to reduce energy demands [35, 5] or to decrease the storage requirements [9, 6]. While both
groups use similar techniques, such as pruning, quantization and entropy coding, the methods might
not be used interchangeably, as they target different architectures and scenarios.

Our work explicitly focuses on the storage requirements of neural networks, which we argue is
important for more widespread adoption of neural networks on edge devices. These devices often
have limited storage capacity or network bandwidth for software updates, causing model-size issues
with even the simplest of neural networks (even ResNets [26] have an uncompressed storage size of
hundreds of megabytes). The importance of storage size has been reinforced with the introduction of
the ISO/IEC 15938-17 standard, a technical standard for the compression of neural networks.

So far, few other works explicitly target the storage size of neural networks. When focusing just on
inference speed, quantization (i.e., saving each parameter with a lower precision) is often enough, as
current GPU kernels only experience a speed-up for 4-bit or 8-bit quantization (see [43]). However,
to reduce storage size even further, a more powerful technique is to use entropy coding, which builds
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a probabilistic model of the data and then encodes the data points into bit strings whose length is
proportional to their information content (negative log-probability), allowing us to encode parameters
with “fractional bits”, in some cases even achieving rates below 1 bit per weight.

In this work, we combine quantization with entropy coding, and propose a novel approach that
produces highly compressible quantized layer representations by adding a quadratic rate-estimation
to the layer-wise loss [42], searching for rate-distortion optimal quantization choices, and then pro-
viding entropy-regularized optimal weight updates following the Optimal Brain Surgeon (OBS) [25]
framework. In summary, our proposed network compression scheme

• achieves extremely low storage cost for the compressed networks;
• allows for extremely fast decoding of compressed networks;
• produces quantized representations suitable for fast inference using integer arithmetic; and
• is flexible in regards to the choice of quantization grid and entropy model used, allowing

users to, e.g., trade off decompression or inference speed against model performance.
We name our method CERWU (Compression with Entropy-Regularized Weight Updates). In the
rest of this paper, we discuss related work (section 2) and the information-theoretical background
(section 3), derive the proposed entropy-regularized weight updates (section 4), and verify the
effectiveness of our method empirically (section 5) on various networks from the computer vision
community. We conclude with a discussion of limitations of our method (section 6).

2 Related Work

Various target scenarios exist in network compression. Our method is a post-training compression
method that reduces the storage size of a network. Other compression schemes focus instead on
decreasing the memory footprint on GPUs [51, 36], reducing energy costs [33, 8, 35], increasing
inference speed [38, 11] or they require re-training for each tested compression setting [5, 7].

Most related work focuses on network quantization rather than compression (often aiming to improve
inference speed). We discuss the difference between the two in section 3.1 and existing quantization
methods in section 3.3. There are fewer existing works with our focus on storage size. Han et al. [23]
combine pruning, quantization, weight-sharing and entropy coding to achieve very high compression
factors. Universal Neural Network Compression [9] uses universal quantization [58] together with
vector quantization. Wiedemann et al. [56] propose to use an entropy-constraint together with a
sparsification process, resulting in parameter representations that allow for high compression ratios.

The Neural Network Compression and Representation Standard (ISO/IEC 15938-17) [32], with its
reference implementation NNCodec [6], defines a compression pipeline encompassing parameter
reduction (pruning, sparsification, parameter sharing, et cetera), quantization, and entropy coding, as
well as interoperability with well-known neural network exchange formats such as ONNX [3].

3 Background

3.1 Compression vs. Quantization

Neural network compression is often conflated with quantization, but the two are fundamentally
different. In its most basic form, quantization reduces the precision of each network weight to a
fixed (integer) bit-width (e.g., 4 or 8 bits per weight). By contrast, compression is a more global
operation that aims to find the most compact binary representation of a network by packing the
most relevant information contained in all weights into a bit string of shortest possible length (called
bit rate). Compression thus effectively maps weights to varying bit-widths, and modern compression
methods [48, 45, 41, 16, 4] are not even constrained to bit boundaries, i.e., they can effectively assign
fractional bit-widths to weights, including widths below 1 bit per weight, see section 3.2 below.

The simplest way to combine quantization and compression is to first quantize the weights to a
fixed bit-width and then apply lossless compression. However, this is empirically far from optimal
(see ablation “CERWU-λ=0” and baseline “RTN+EC” in section 5) because quantizing without
consideration of the compression mechanism produces poorly compressible quantized weights.

Recent literature includes more advanced network quantization schemes that go beyond a fixed bit-
width per weight, either by combining quantization with pruning [21], or by reserving extra bits for a
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small percentage of highly salient or outlier weights [11, 13]. However, both the tuning of these extra
steps and the binary representation of the required metadata (i.e., how the matrix indices of the pruned
or salient weights can be compactly stored in a file) are usually ad-hoc and suboptimal as explicit
minimization of the resulting bit rate is infeasible. By contrast, an information-theoretically grounded
approach, as proposed in this paper, subsumes both pruning and saliency-dependent quantization
as limiting cases, and allows us to interpolate between them by explicitly minimizing a trade-off
between the introduced error and the resulting overall bit rate after compression. The next subsection
introduces the relevant concepts from information theory and compression that we use in our work.

3.2 Lossy Compression and Information Theory

We consider, for simplicity, the problem of compressing the weight matrix W ∈ W of a single
layer of a neural network, where W = Rn×m for some input and output dimensions m and n,
respectively. The goal of lossy compression is to find an encoder e that maps W to a short bit
string e(W ) ∈ {0, 1}∗ :=

⋃∞
ℓ=0 {0, 1}

ℓ, and a corresponding decoder d that maps this bit string to
a reconstruction Ŵ := d(e(W )) ∈ Ŵ , such that Ŵ resembles W with only a small error.1 Here,
Ŵ ⊂ W is a typically discrete reconstruction space (discussed in section 3.3 below). To make
this problem well-defined, one has to specify a distortion metric D:W × Ŵ → R≥0 that quantifies
the reconstruction error, and a probabilistic model PW of the data source, which models prior
assumptions that the decoder is allowed to make about the weights before looking at the compressed
bit string (for example, the prior assumption that W is approximately sparse could be expressed
by a PW that models the weights as i.i.d. with a sharp peak around zero). Introducing a Lagrange
parameter λ ≥ 0 that trades off between bit rate and distortion, the optimal encoder/decoder pair
(e∗, d∗) minimizes the following rate-distortion objective (where | · | is the length of the bit string):

RD(λ) := min
e,d

EW∼PW

[
D
(
W , d(e(W ))

)
+ λ

∣∣e(W )
∣∣]. (1)

Here, the objective takes an expectation over PW even though we are ultimately only interested in
compressing a specific weight matrix W . This ensures that the resulting decoder d∗ that minimizes
Equation 1 only uses the prior assumptions expressed by PW , preventing it from simply storing W .

Information content and entropy coding. The minimization problem in Equation 1 is intractable
in practice, but we can simplify it by splitting it into a quantization step and an entropy coding step,
where the latter can be solved efficiently [40]. Observe that an optimal decoder d∗: {0, 1}∗ → Ŵ
that solves the minimization problem in Equation 1 is invertible since an encoder/decoder pair that
reserves two different bit strings for the same reconstruction Ŵ could reduce its expected bit rate
by reassigning one of the two bit strings to some Ŵ ′ ̸= Ŵ that is currently assigned to a longer bit
string. Thus, with the substitution q(W ) := d(e(W )), Equation 1 simplifies to

RD(λ) = min
q,d

EW∼PW

[
D
(
W , q(W )

)
+ λ

∣∣d−1(q(W ))
∣∣] (2)

where d−1(q(W )) = e(W ) splits the encoder into a quantizer q:W → Ŵ and an entropy coder
d−1: Ŵ → {0, 1}∗, which now no longer appers in the distortion term. Here, the literature on lossless
compression provides two important insights. First, the source coding theorem [50, 40] states that
the bit rates of an optimal entropy coder d−1

∗ that minimizes EPW
[|d−1(q(W ))|] in Equation 2 for a

given quantizer q are given (up to at most 1 bit) by the information content of the quantized weights,

|d−1
∗ (Ŵ )| = − log2 PŴ (Ŵ ) + ϵ ∀ Ŵ ∈ Ŵ (3)

where ϵ < 1 is negligible for any realistically large total bit rate, and the entropy model PŴ is the
push-forward of PW along q (in practice, our proposed method directly models PŴ instead of PW ).

The second important insight from the lossless compression literature is that the theoretically optimal
bit rate in Equation 3 can very nearly be achieved in practice by computationally efficient entropy
coding algorithms such as arithmetic coding [48, 45], range coding [41], or ANS [16, 4]. Thus, the
minimization over d in Equation 2 is solved, and the remaining task is to find a quantizer q that

1More general formulations admit for stochastic en-/decoders. But without an additional constraint such as
realism, there always exists a pair of deterministic en-/decoders among the minimizers of Equation 1.
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minimizes EPW

[
D(W , q(W ))− λ log2 PŴ (q(W ))

]
. Different to Equations 1 and 2, this problem

factorizes over W ∈ W , and so we only need to consider it for the specific weight matrix W that we
actually want to compress. Substituting Ŵ = q(W ), we arrive at the rate/distortion objective

Ŵ∗ = argmin
Ŵ

[
D(W , Ŵ ) + λR(Ŵ )

]
with the rate R(Ŵ ) = − log2 PŴ (Ŵ ). (4)

Fractional and sub-1-bit (amortized) bit rates. Equation 3 provides an analytic expression
for the bit rate of an optimal entropy coder. It is hard to overstate the importance of this result
as it allows us to attribute how much each matrix element Ŵij contributes to the total bit rate,
even though an optimal entropy coder typically “packs” multiple matrix elements together. For
an autoregressive entropy model PŴ (Ŵ ) =

∏
i,j PŴ (Ŵij | Ŵ<(ij)) (where the notation “<(ij)”

assumes that some ordering is defined), the total bit rate for encoding the matrix Ŵ splits into a
sum, |d−1

∗ (Ŵ )| = −
∑

i,j log2 PŴ (Ŵij | Ŵ<(ij)) + ϵ, where ϵ < 1 appears only once outside the
sum and can thus be neglected. We can therefore interpret each term in this sum as the (amortized)
contribution of an individual matrix element to the total bit rate, and minimizing these individual
contributions minimizes the total bit rate |d−1

∗ (Ŵ )|. Importantly, these individual amortized bit rates
are meaningful even though they are generally non-integer values and are often even below 1 bit in our
experiments. Even though such fractional bit rates could not be measured individually by explicitly
constructing an optimal entropy coder and encoding a single quantized matrix element, minimizing
them is still meaningful in the sense that, e.g., reducing 100 amortized bit rates by 0.3 bit each would
reduce the total bit rate by 30 bit. Being able to quantify bit rates with fractional resolution via
Equation 3 is crucial for obtaining good compression performance in the low-bit-rate regime.

3.3 Quantization

While constructing a near-optimal entropy coder d−1 in Equation 2 for a given entropy model is a
solved problem, efficiently finding an optimal quantizer q is still unsolved. Quantization maps the
uncompressed weight matrix W ∈ Rn×m to Ŵ = q(W ) in a discrete reconstruction space Ŵ .

Quantization grid. Restricting Ŵ to a discrete (i.e., finite or countably infinite) set is unavoidable
in (deterministic) compression because the decoder d maps to Ŵ from the space of bit strings {0, 1}∗,
which is countable. To make our compression method compatible with inference acceleration methods
that use integer arithmetic [43], our experiments use Ŵ = Gn×m, with a symmetric, uniform grid

G =
{
i · ∥W ∥∞/((k − 1)/2)

}(k−1)/2

i=−(k−1)/2
for some odd grid size k (so that 0 ∈ G). (5)

Here, the grid size k = |G| controls how faithful quantization can be in the best case. In the literature
[20, 14, 54], |G| = 2r is instead often restricted to be a power of two, in which case r would be the
number of bits that each quantized matrix element would occupy if its index into G was stored in
uncompressed form. This restriction to powers of two is not necessary in our compression method as
we use entropy coding to reduce the storage cost of each weight to its actual information content.

More sophisticated designs [12, 57] place more grid points in high density regions of the data
distribution, but this usually requires one to explicitly dequantize all quantized matrices before
performing operations on them, preventing the use of accelerated inference operations.

Quantization methods. The quantization problem in Equation 4 is a high-dimensional discrete
optimization problem, which is infeasible to solve exactly except for very simple distortion metrics D
and entropy models PŴ . Various existing methods can be understood as approximations to this
problem. The crudest approximation is round to nearest (RTN), i.e., independently setting Ŵij =
argming∈G(Wij − g)2 for each i, j. Thus, RTN solves Equation 4 for λ = 0 and a distortion
metric that factorizes over all elements of Ŵ . NNCodec [6] extends the approach to λ > 0 with the
autoregressive entropy model DeepCABAC [55], constructing a greedy approximation to the optimal
quantizer q, i.e., when quantizing each matrix element Wij , NNCodec neglects the effect that the
choice of Ŵij has on the bit rates of subsequent matrix elements by changing the internal state of
the autoregressive entropy model. Finally, OPTQ [20] implicitly considers λ = 0 again, but uses
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as distortion function the non-factorized layerwise loss from [42], D(W , Ŵ ) := ∥WX − ŴX∥22,
which considers the euclidean distance of layer outputs rather than of the weights themselves. Here,
X is the layer input when evaluating the model on a so-called calibration set. OPTQ approximates the
minimum of D(W , Ŵ ) over Ŵ by iterating over the matrix elements in a fixed order and greedily
rounding each element Wij to the nearest neighbor in G, but it then takes some aspects of the global
structure of D into account by updating the remaining (so far unquantized) matrix elements of W to
compensate, as well as possible, for the error introduced by quantizing Wij .

Our proposed method CERWU (Compression with Entropy-Regularized Weight Updates), presented
in the next section, considers the full rate/distortion objective in Equation 4 with λ > 0 and a
non-factorized distortion metric D, and it takes the rate term into account both when quantizing each
individual weight Wij , as well as (in an approximate way) during weight updates.

4 Method

Our proposed CERWU method starts from the rate/distortion-constrained quantization problem in
Equation 4, where we use as the distortion D the layer-wise loss popularized by [42],

Ŵ∗ = argmin
Ŵ

Lλ(Ŵ ) with Lλ(Ŵ ) = ∥WX − ŴX∥22 + λR(Ŵ ), (6)

where X ∈ Rm×p is the layer input when evaluating the model on a calibration set of size p, and
the rate R(Ŵ ) = − log2 PŴ (Ŵ ) assumes some entropy model PŴ . The rate term makes Lλ(Ŵ )

non-quadratic, which complicates its minimization. We therefore split Lλ(Ŵ ) = L′
λ(Ŵ ) +L′′

λ(Ŵ )

into a quadratic part L′
λ(Ŵ ) that approximates PŴ (Ŵ ) with (a discretization of) a Gaussian fit∏

ij N
(
0,Var({Wij}ij)

)
to the unquantized weights {Wij}ij , and a remainder L′′

λ(Ŵ ),

L′
λ(Ŵ ) = ∥WX − ŴX∥22 +

λγ

2
∥Ŵ ∥22 and L′′

λ(Ŵ ) = λR(Ŵ )− λγ

2
∥Ŵ ∥22, (7)

with γ = 1
/(

ln(2)Var({Wij}ij)
)
. We can now simplify L′

λ(Ŵ ) by completing the square,

L′
λ(Ŵ ) =

1

2
Tr
[
(W ′ − Ŵ )H ′(W ′ − Ŵ )T

]
+ const., (8)

where the constant is independent of Ŵ . Equation 8 can be verified by multiplying out its r.h.s. (see
Appendix C.1) and comparing the result to L′(Ŵ ) in Equation 7, using the entropy-regularized layer-
wise Hessian H ′, the unregularized layer-wise Hessian H , and the regularized weight matrix W ′,

H ′ = H + λγI, H = 2XXT , and W ′ = WH(H ′)−1. (9)

To obtain a quantized matrix Ŵ ∈ Gn×m (the uniform grid G is defined in Equation 5) that
approximately minimizes Lλ(Ŵ ) = L′

λ(Ŵ ) + L′′
λ(Ŵ ), we now iteratively apply the optimal brain

surgeon (OBS) algorithm [25] to the quadratic part L′
λ(Ŵ ), interleaving it with a rate-constrained

quantization step that takes the non-quadratic part L′′
λ(Ŵ ) into account as well.

Entropy-regularized weight updates. Algorithm 1 summarizes our proposed CERWU algorithm.
Following [20], we iterate over the rows i and columns j of the weight matrix without optimizing
over the iteration order. For each (i, j), we first obtain Ŵij ∈ G by quantizing W ′

ij as described
below, and we then update so-far unquantized matrix elements of W ′ to optimally compensate for
the error introduced by quantizing W ′

ij . Since a closed-form solution for this update is only available
for a quadratic loss function, we consider only the quadratic approximation L′

λ(Ŵ ) in Equation 8
for the weight update, assuming that the non-quadratic remainder L′′

λ(Ŵ ) is small by construction.
Adapting the results in [25] (see also derivation in Appendix C) to our quadratic loss L′

λ(Ŵ ), only
weights W ′

i,>j in the same row i need to be updated, and the optimal update ∆W ′
i,>j

and the incurred
increase ∆L′ of the quadratic part of the loss due to quantizing W ′

ij and updating W ′
i,>j are

∆W ′
i,>j

= −
W ′

ij − Ŵij

[(H ′
≥j,≥j)

−1]
jj

[(H ′
≥j,≥j)

−1]
j,>j

and ∆L′ =
1

2

(W ′
ij − Ŵij)

2

[(H ′
≥j,≥j)

−1]
jj

. (10)
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Note that the weight update ∆W ′
i,>j

(as well as the initialization of W ′ in Equation 9) depends on
the entropy-regularized Hessian H ′, which contains the term λγI ∝ λ/Var({Wij}ij) that becomes
large for a strong rate constraint λ and for small unquantized weights. This regularization prevents
the weights from accumulating large values over the course of repeated weight updates, which can
hurt compressibility (see ablation “CERWU-γ=0” in section 5).

Following [20] (see also derivation in section C.5), we pre-compute all required inverse Hessian
entries in Equation 10 using the Cholesky decomposition C ′ :=Cholesky((H ′)

−1
)T to improve

runtime and numerical stability, resulting in the equivalent equations

∆W ′
i,>j

= −
W ′

ij − Ŵij

C ′
jj

C ′
j,>j and ∆L′ =

1

2

(W ′
ij − Ŵij)

2

C ′2
jj

. (11)

Quantization. For each (i, j), before updating future weights W ′
i,>j , we quantize the current

weight W ′
ij to Ŵij ∈ G. Since the grid size |G| is fixed, we can afford to explicitly search over all

g ∈ G and thus consider, in addition to ∆L′ from Equation 11, also changes to the non-quadratic part
L′′(Ŵ ) of the layer-wise loss (Equation 7). However, only the contribution of the current matrix
entry Ŵij to L′′(Ŵ ) can be taken into account efficiently, and we have to neglect second-order
effects to L′′(Ŵ ) due to resulting updates for W ′

i,>j . Assuming an autoregressive entropy model
PŴ (Ŵ ) =

∏
i,j PŴ (Ŵij | Ŵ<(ij)), the contribution of Ŵij to the rate R(Ŵ ) = − log2 PŴ (Ŵ )

is− log2 PŴ (Ŵij | Ŵ<(ij)), and thus our quantization q sets Ŵij ← q
(
W ′

ij , λ, γ, PŴ ( · | Ŵ<(ij))
)

with

q(W ′
ij , λ, γ, P ) := argmin

g∈G

[
1

2

(W ′
ij − g)2

C ′2
jj

− λ log2 P (g)− λγ

2
g2
]

(12)

Algorithm 1 Compression with Entropy-Regularized
Weight Updates (CERWU) (row-major variant).

Input: uncompressed weight matrix W ∈ Rn×m;
grid size k (see Equation 5);
Hessian H = 2XXT ∈ Rm×m (see Equation 9);
rate/distortion trade-off parameter λ > 0;
autoreg. entropy model P (e.g., DeepCABAC [55]).

Output: quantized weights Ŵ ∈ Gn×m (see Equation 5)
that can be well compressed with the entropy model P .

1: Set γ ← 1/(ln(2)Var({Wij}ij)) ▷ See Equation 7.
2: Set H ′ ←H + λγI

3: Initialize W ′ ←WH (H ′)
−1

▷ See Equation 9.
4: Set C ′ ← Cholesky((H ′)

−1
)T ▷ (upper triangular)

5: Initialize P ← initEntropyModel()
6: for row i = 1 to n do
7: for column j = 1 to m do
8: Set Ŵij ← q(W ′

ij , λ, γ, P ) ▷ See Equation 12.

9: Update W ′
i,>j ←W ′

i,>j −
W ′

ij−Ŵij

C′
jj

C ′
j,>j

▷ See Equation 11.
10: P.autoregressiveUpdate(Ŵij)
11: end for
12: end for

Scan order. When using an autore-
gressive entropy model, the order in
which the weights are fed to the model
starts to matter. There exist two dif-
ferent possibilities, row-major (travers-
ing along rows first) and column-major
(columns first). Although we did not
observe a large performance difference
between these two, we include both in
our experiments and select the best ver-
sion for each method.

Complexity analysis. Running the al-
gorithm for a full network first requires
a single forward pass over a moder-
ately sized calibration set (e.g., we
used 40’000 data points for ImageNet,
around 3% of the full training data set).
The calculated activations can be cached
for each layer, and future runs to quan-
tize the network with different compres-
sion strengths λ do not need to repeat
this forward pass.

As for the quantization algorithm itself,
assume a grid of size k. Each layer of
size n×m requires O(m3) operations to calculate the Cholesky decomposition of the m×m sized
inverse regularized Hessian (H ′)−1. The quantization procedure requires O(nm) quantization steps,
each of which require an O(k) grid search followed by an O(m) row update. Therefore, the full
complexity is O(m3 + nm2 + nmk). Usually, it holds that k ≪ m for most layers, however, the
grid search requires O(k) calls to the entropy model. The cost for a single evaluation of the entropy
model usually does not depend on m,n, k, but can still be expensive, depending on the chosen model.
We show empirical runtimes in section 5.2.
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5 Experiments

Experiment setup. We test our proposed quantization method on multiple networks from the com-
puter vision community. We include ResNet-{18, 52, 101, 152} [26], VGG16 [52] and MobileNetv3-
{small, large} [29] trained on ImageNet [10], as well as ResNet-{18, 34, 52} trained on CIFAR10 [34].
For our entropy model, we use DeepCABAC [55] due to its high speed and its focus on modeling
typical neural network weight statistics. For all methods, we perform a sweep over the scan-order, var-
ious compression strength parameters and grid sizes to ensure a good coverage of the rate-distortion
curve. Shown bit rates are the measured bit rates after actual entropy coding plus a small overhead
for storing the grid spacings for each layer. Refer to Appendix A for more detailed information.

Pareto front. To visualize the results from our search space, we calculate a Pareto front in the
rate-distortion space in the following manner: for a given network and compression method, we
iterate over all data points (rate, accuracy) obtained from our sweep. For each data point x, if there
exists a point y that has both a lower rate as well as higher or equal accuracy, we discard x.

Ablations and baselines. Aside from our main proposed compression algorithm detailed in Algo-
rithm 1, we also explore two variations: a version with unregularized weight updates, which amounts
to artificially setting γ = 0, and a version that does not account for the rate during quantization, which
amounts to setting λ = 0 (this also renders the method independent of γ). The case of λ = 0 can also
be interpreted as performing OPTQ [20] followed by entropy coding with the chosen entropy model.
These two methods are labeled as CERWU-γ=0 and CERWU-λ=0 respectively. We also com-
pare our method against the state-of-the-art compression scheme NNCodec [6], an implementation
of the Neural Network Compression Standard ISO/IEC 15938-17 also based on the DeepCABAC
entropy model. As a further baseline, we include a simple quantization scheme of nearest-neighbour
quantization followed with entropy coding via DeepCABAC, which we label as RTN+EC.

5.1 Compression Performance

Figure 1 presents a comparison of the three variants of our proposed compression method and the
baselines on our analyzed networks for ImageNet. Figure 2 shows the same for networks trained on
CIFAR10. Additionally, Figure 3 shows bar plots of the bit rate achieved by each method for the
strongest compression setting that still retains 99% and 95%, respectively, of the original performance.

We observe that CERWU and CERWU-γ = 0 consistently outperform all other tested methods,
achieving a more favorable rate-distortion performance over most of the rate-distortion curve. While
in the line plots it can be hard to distinguish between CERWU and CERWU-γ=0, the bar plots can
help distinguish between them. There, we see that CERWU maintains a slight but significant edge
(1-5% stronger compression performance) for most networks for both evaluated fixed performance
levels over CERWU-γ=0. This demonstrates that taking estimations of future rates into account
when performing the weight updates helps to create more strongly compressible representations.

Compared to the baselines, CERWU and CERWU-γ=0 often achieve much stronger compression
rates when compressing the network to almost-original performance (which we expect to be the
regime of interest for most practical applications), producing a compressed representation that is
20-40% more strongly compressed than the current compression standard NNCodec, see Figure 3.

5.2 Run times

Encoding times. We timed our proposed compression method CERWU on our hardware (described
in Appendix A) for ImageNet-trained ResNets of varios sizes (the size of the training set does not
influence encoding times). Initial runs (Figure 4 left) include the time for the forward passes to
calculate the Hessian. Subsequent runs (Figure 4 right) are considerably faster as they can reuse the
Hessian H for different values of λ or k. Especially in the regime of small grid sizes k (≤ 31, which
are usually sufficient to produce high-accuracy compressed representations), the run time is heavily
dominated by the calculation of the Hessian, and runs after the first one become quite cheap. The
baselines NNCodec and RTN+EC only require between 1-10 seconds to quantize each network. This
is much faster than our method for large grids or for the first run. While our achieved encoding times
are still in the manageable realm, further work to speed up the grid search might be helpful (such as
introducing early stopping), as well as a thorough optimization of our implementation.
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Figure 1: Performance of our compression methods on various networks trained and evaluated
on ImageNet. For better visibility, a Pareto front over the parameters was calculated for each
curve. The inset at the bottom right of each plot shows a zoomed-in version of the area marked
in the red bounding box. The inset ranges over (0.95 · accorig., 1.0125 · accorig.) on the y-axis and
encompasses a 1.5-bits-per-weight range in the x-axis. Our proposed methods and ablations are
marked with solid lines, baselines are marked in dashed lines, and the original performance of the
(uncompressed) network is marked with a horizontal, gray dashed line. The plot titles include the
number of quantizable parameters each network has (multiply by 32 bit to get the uncompressed
storage size on disk).
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Figure 2: Performance of compression methods for CIFAR10-trained networks, analogous to Figure 1.

Decoding times. The decoding time is the more important metric, as often compression is performed
once on a device with larger computational resources, while decompression is performed many times
on weaker devices. Here, by construction of our method, we achieve the same decompression speed
as NNCodec or RTN+EC, since we can decompress our network using the same decoder in form of
the DeepCABAC entropy model (the decompression algorithm is oblivious to the distortion function
and quantization scheme used during compression). The decompression speed is between 0.2 and
1.2 seconds for all networks and all tested methods on our hardware (see Appendix A) despite using
a single-threaded decoder implementation.
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6 Conclusion

We showcased a post-training compression method that achieves state-of-the-art storage sizes for
computer vision architectures suitable for resource constrained devices. We showed how adding
a quadratic rate estimation to the layerwise loss provides locally exact solutions to the resulting
rate/distortion constrained weight update problem, extending the OBS framework on which many con-
temporary compression works build [18, 20, 19]. Our experiments demonstrate a 20-40% reduction
in file size at no additional accuracy drop compared to the state-of-the-art method NNCodec.

Moreover, the flexibility of our method opens up interesting avenues for future research directions and
applications. For example, our method can be used with different entropy models and quantization
grids, and the resulting compression performance can be evaluated. Additionally, given a suitable
entropy model, our method can also produce compressible representations that could be decoded
on-the-fly on a GPU. This might serve to reduce the required communication bandwidth between
RAM and GPU during inference, resulting in possible energy savings and improved latency.

Limitations. While our work shows strong compression performance on (convolutional) computer
vision architectures, we do not include an analysis for transformer-based models. We argue that
resource-constrained devices often resort to simpler architectures such as those that we surveyed
due to their weaker computational power. In particular, we do not discuss (large) language models,
where some quick experiments (see Appendix B) indicate worse performance of both our method and
NNCodec, but where we argue that there already exists a large body of work that specifically targets
these models [2, 17, 53, 15, 1], often taking specific architecture-dependent behavior into account
(e.g., outliers in the channel activations [39, 31]).
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A Experimental Details

Evaluation details. For the tested networks, we report the accuracy, which is the top-1 accuracy
and the average number of bits required to encode one weight. The bits per weight are obtained
by dividing the total compressed size by the number of compressed parameters, while the total
compressed size consists of the size of the entropy coded weights plus the overhead of one 16-bit
scale parameter per tensor. For ResNets, we don’t quantize the last layer, as well as the BatchNorm
layers, as they can often be fused together with preceding layers. To ensure a fair comparison, these
layers are not quantized for all analyzed methods. To calculate the layer-wise loss for convolutional
layers, we unfold convolutional layers (see f.e. [42, 30, 18]) For the MobileNet networks to be
compressed with our method, we pre-process the grouped convolutions to be represented as ngroupsize
single-filter convolutions, whose results are then concatenated (this does not change the network
output). We then compress each convolution separately, taking care to count one scale parameter per
filter to the total compression overhead.

Parameter choices. To calculate the hessians, we use calibration samples from the training set
containing 40’000 images for ImageNet and 64’000 images for CIFAR10. For ImageNet, we use
16’000 samples from the validation set to calculate the top-1 accuracy, and for CIFAR10, we use
10’000 samples from the test set. For the grid, we use a symmetric uniform grid and sweep between a
subset of grid sizes {4,6,8,12,16,32,48,64,128,256,512,1024}, depending on the method and network.
For the methods that include a λ parameter, we perform a sweep between values of 10−8 and 10−1 at
steps of 0.5 in log-space, with increased granularity of 0.1 in regions of high variability. Additionally,
for every method, we once iterate over the weights in row-major and once in column-major order.
For NNCodec, we swept over the qp parameter in a (−38,−4) interval.

Soft- and hardware. Our algorithm is implemented mainly in C++, while the code associated with
model loading and evaluation was implemented using the PyTorch library [46], whose pre-trained
models for ImageNet were used for our evaluations. The pre-trained ResNet models for CIFAR10
were obtained from a public repository of user edaltocg on HuggingFace. The quantization part of
the algorithm was executed on a 2.6 GHz Intel Xeon Gold 6240, while the evaluation and calculation
of the Hessian were done on a single NVIDIA 2080ti graphics card.

B Pythia Evaluations.
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Figure 5: Rate-distortion performance of our methods on the small language model Pythia-70M. We
swept over grid sizes of {4, 16, 128, 256, 352, 512, 768, 1024, 2048}.

C Derivation of the Entropy-Regularized Weight Update

This section provides a derivation of Equations 10 and 11 in compact form. We stress that the
derivation is not new, but rather combines arguments by Hassibi et al. in [25] and by Frantar et
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al. in [20], applying them to the quadratic part L′
λ(Ŵ ) of our entropy-regularized layerwise loss

function in Equation 7. We provide the derivation here for completeness, to clarify what it means
precisely when we say that the weight updates “optimally compensate” for introduced rounding
errors, to show how analogous arguments as in [25, 20] apply to our modified loss function, and to
motivate why the weight updates in our proposed CERWU method take the rate term into account
only within a quadratic approximation (as opposed to the quantization in Equation 12, which also
takes the non-quadratic part L′′

λ(Ŵ ) into account).

C.1 Verification of Equation 8

Before we formalize what we mean with “optimal weight updates”, we first verify that Equation 8
is indeed equivalent to the definition of L′

λ(Ŵ ) in Equation 7. Using the squared Frobenius norm
∥A∥22 :=

∑
i,j A

2
ij = Tr[AAT ] for any matrix A, and H := 2XXT , we multiply out the right-hand

side of Equation 7 and find,

r.h.s. of Equation 7 = ∥(W − Ŵ )X∥22 +
λγ

2
∥Ŵ ∥22

=
1

2
Tr
[(
W − Ŵ

)
H
(
W − Ŵ

)T
+ λγŴŴ T

]
=

1

2
Tr
[
WHW T︸ ︷︷ ︸

const.

− 2WHŴ T + ŴHŴ T + λγŴŴ T
]

(13)

where the “const.” term is independent of Ŵ . By comparison, inserting H ′ = H + λγI and
W ′ = WH(H ′)−1 from Equation 9 into Equation 8, we find (using that H and H ′ are symmetric):

r.h.s. of Equation 8 =
1

2
Tr
[
(W ′ − Ŵ )H ′(W ′ − Ŵ )T

]
+ const.

=
1

2
Tr
[(

WH(H ′)−1 − Ŵ
)
H ′
(
(H ′)−1HW T − Ŵ T

)]
+ const.

=
1

2
Tr
[
WH(H ′)−1HW T︸ ︷︷ ︸

const. (independent of Ŵ )

− 2WHŴ T + ŴH ′Ŵ T
]
+ const.

=
1

2
Tr
[
−2WHŴ T + Ŵ (H + λγI)Ŵ T

]
+ const. (14)

Thus, Equations 7 and 8 are indeed equivalent. The advantage of Equation 8 is that its simpler form
allows us to immediately see that the Hessian of L′(Ŵ ) is H ′, and that L′(Ŵ ) would be minimized
if we could set Ŵ to the entropy regularized weight matrix W ′ = WH(H ′)−1 (which, however, is
not possible because W ′ /∈ Gn×m in general).

C.2 Formalization of the Propositions

For W ′ ∈ Rn×m and Ŵ ∈ Gn×m, the quadratic loss L′
λ(Ŵ ) in Equation 8 separates over the rows,

L′
λ(Ŵ ) =

n∑
i=1

L′
i,λ(Ŵi,:) + const., L′

i,λ(Ŵi,:) =
1

2
(W ′

i,: − Ŵi,:)H
′(W ′

i,: − Ŵi,:)
T (15)

where the notation Ai,: denotes a row vector comprised of the i-th row of a matrix A, and
H ′ ∈ Rm×m (see Equation 9) is symmetric and positive definite. Due to the separation over
rows, minimizing L′

λ(Ŵ ) over Ŵ is equivalent to independently minimizing L′
i,λ(Ŵi,:) for each

row i ∈ {1, . . . , n}, and we therefore focus the remaining discussion on a given row i. Our goal is to
show that the weight updates in Equation 10 and Equation 11 are equivalent, and that they optimally
compensate subsequent weights in the same row i for the error introduced by quantizing W ′

ij to Ŵij .

More formally, consider starting with the unquantized row W
′(0)
i,: :=W ′

i,: ∈ R1×m, and iterating over
its entries j ∈ {1, . . . ,m} in ascending order. At each iteration j, we construct an updated row vector
W

′(j)
i,: ∈ R1×m by leaving the first j − 1 entries unchanged (i.e., W ′(j)

i,<k :=W
′(j−1)
i,<k = Ŵi,<k),
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quantizing the j-th entry W
′(j)
ij := Ŵij to some (for the sake of the proof below) arbitrary value Ŵij ,

and setting the remaining m− j entries to

W
′(j)
i,>j := argmin

W̃i,>j∈R1×(m−j)

L′
i,λ(W̃i,:) with the constraint W̃i,≤j = Ŵi,≤j , (16)

where we formally extend the domain of L′
i,λ from G1×m to R1×m according to Equation 15.

Propositions. For j ∈ {1, . . . ,m} and W
′(j)
i,>j given in Equation 16, we claim that

(i) W
′(j)
i,>j = W

′(j−1)
i,>j +∆W ′

i,>j
where ∆W ′

i,>j
is given in Equation 10;

(ii) the quantization and subsequent weight update increase the quadratic loss by

L′
i,λ

(
W

′(j)
i,:

)
− L′

i,λ

(
W

′(j−1)
i,:

)
= ∆L′ (17)

where ∆L′ is also given in Equation 10; and
(iii) Equations 10 and 11 are equivalent expressions for ∆W ′

i,>j
and ∆L′ .

C.3 Proof of Proposition (i)

We prove proposition (i) by induction over j ∈ {0, . . . ,m}. For j = 0, we already defined
W

′(0)
i,: :=W ′

i,:, which is trivially equivalent to Equation 16 because L′
i,λ is positive definite with

its minimum at L′
i,λ(W

′
i,:) = 0. Consider now some j ∈ {1, . . . ,m} and assume that W ′(j−1)

i,<k =

Ŵi,<k, and that Equation 16 holds for j − 1, i.e.,

W
′(j−1)
i,≥j = argmin

W̃i,≥j∈R1×(m−j+1)

L′
i,λ(W̃i,:) with the constraint W̃i,<j = Ŵi,<j (18)

(note the “≥” instead of “>”, and “<” instead of “≤” when comparing Equation 18 to Equation 16).
We simplify Equation 18 by splitting L′

i,λ(W̃i,:) from Equation 15 into four parts:

L′
i,λ(W̃i,:) =

1

2

(
W

′(0)
i,<j − W̃i,<j , W

′(0)
i,≥j − W̃i,≥j

)(H ′
<j,<j H ′

<j,≥j

H ′
≥j,<j H ′

≥j,≥j

)((
W

′(0)
i,<j − W̃i,<j

)T(
W

′(0)
i,≥j − W̃i,≥j

)T
)

(19)

where we wrote W ′ explicitly as W ′(0) to stress that L′
i,λ always compares to the original unquan-

tized row, not to any updated version. By Equation 18, we know that W ′(j−1)
i,: is a stationary point of

L′
i,λ(W̃i,:) with respect to W̃i,≥j under the constraint W̃i,<j = Ŵi,<j (= W

′(j−1)
i,<j ), i.e.,

01×m−j+1 = ∇W̃i,≥j
L′
i,λ(W̃i,:)

∣∣
W̃i,:=W

′(j−1)
i,:

= −
(
W

′(0)
i,<j −W

′(j−1)
i,<j︸ ︷︷ ︸

=Ŵi,<j

)
H ′

<j,≥j −
(
W

′(0)
i,≥j −W

′(j−1)
i,≥j

)
H ′

≥j,≥j

= Ŵi,<jH
′
<j,≥j +W

′(j−1)
i,≥j H ′

≥j,≥j −W
′(0)
i,: H ′

:,≥j . (20)

Similarly, by definition in Equation 16, W ′(j)
i,: is also a stationary point of L′

i,λ(W̃i,:), however, this

time only with respect to W̃i,>j rather than W̃i,≥j , i.e., the derivative with respect to W̃ij at W ′(j)
i,:

may take some (in general) non-zero value γij . It turns out that the following calculations are easier
if we nevertheless include the derivative with respect to W̃ij , and explicitly keep track of the fact that
it is not necessarily zero. Thus,

(γij , 01×m−j) = ∇W̃i,≥j
L′
i,λ(W̃i,:)

∣∣
W̃i,:=W

′(j)
i,:

= Ŵi,<jH
′
<j,≥j +W

′(j)
i,≥jH

′
≥j,≥j −W

′(0)
i,: H ′

:,≥j . (21)
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Subtracting Equation 20 from Equation 21 leads to a cancellation of the terms with Ŵi,<j and W
′(0)
i,: ,

and we find

W
′(j)
i,≥jH

′
≥j,≥j = W

′(j−1)
i,≥j H ′

≥j,≥j + (γij , 01×m−j). (22)

We solve for W ′(j)
i,≥j by multiplying from the right with (H ′

≥j,≥j)
−1, and find

W
′(j)
i,≥j = W

′(j−1)
i,≥j + (γij , 01×m−j)(H

′
≥j,≥j)

−1 = W
′(j−1)
i,≥j + γij

[
(H ′

≥j,≥j)
−1
]
j,≥j

. (23)

Finally, we solve for γij by evaluating Equation 23 at indices (i, j), recalling that W ′(j)
ij = Ŵij by

definition. Thus,

Ŵij = W
′(j−1)
ij + γij

[
(H ′

≥j,≥j)
−1
]
jj

=⇒ γij =
Ŵij −W

′(j−1)
ij[

(H ′
≥j,≥j)

−1
]
jj

. (24)

Inserting this result for γij into Equation 23 leads to W
′(j)
i,>j = W

′(j−1)
i,>j +∆W ′

i,>j
with ∆W ′

i,>j
as

given in Equation 10 of the main text (recall that, in Equation 10, W ′
ij refers to an unquantized weight

that has already been updated in the previous iterations, see Algorithm 1; this is W ′(j−1)
ij in the more

explicit notation used in this appendix).

C.4 Proof of Proposition (ii)

For fixed Ŵi,<j , we consider the function W̃i,≥j 7→ L′
i,λ

(
(Ŵi,<j , W̃i,≥j)

)
. Since this is a

quadratic function with Hessian H ′
≥j,≥j and a stationary point at W ′(j−1)

i,≥j by Equation 18, we have

L′
i,λ

(
(Ŵi,<j , W̃i,≥j)

)
=L′

i,λ

(
(Ŵi,<j , W

′(j−1)
i,≥j )

)
+

1

2

(
W̃i,≥j −W

′(j−1)
i,≥j

)
H ′

≥j,≥j

(
W̃i,≥j −W

′(j−1)
i,≥j

)T
.

(25)

Evaluating Equation 25 at W̃i,≥j = W
′(j)
i,≥j and subtracting the first term on the right-hand side of

Equation 25, we thus find

∆L′ = L′
i,λ

(
W

′(j)
i,:

)
− L′

i,λ

(
W

′(j−1)
i,:

)
= L′

i,λ

(
(Ŵi,<j , W

′(j)
i,≥j)

)
− L′

i,λ

(
(Ŵi,<j , W

′(j−1)
i,≥j )

)
=

1

2

(
W

′(j)
i,≥j −W

′(j−1)
i,≥j

)
H ′

≥j,≥j

(
W

′(j)
i,≥j −W

′(j−1)
i,≥j

)T
=

1

2
∆W ′

i,>j
H ′

≥j,≥j(∆W ′
i,>j

)T

(26)

where we used that W ′(j)
i,>j −W

′(j−1)
i,>j = ∆W ′

i,>j
. Inserting ∆W ′

i,>j
from Equation 10, we find

∆L′ =
1

2

(
W ′

ij − Ŵi,j

[(H ′
≥j,≥j)

−1]
jj

)2

[(H ′
≥j,≥j)

−1]
j,>j

H ′
≥j,≥j [(H

′
≥j,≥j)

−1]
>j,j︸ ︷︷ ︸

=[(H′
≥j,≥j

)−1]
jj

=
1

2

(W ′
ij − Ŵi,j)

2

[(H ′
≥j,≥j)

−1]
jj

(27)

as claimed in the second part of Equation 10.

C.5 Proof of Proposition (iii)

To proof equivalence of Equation 10 and Equation 11, we have to show that, for all k ≥ j,

[(H ′
≥j,≥j)

−1]
jk

[(H ′
≥j,≥j)

−1]
jj

=
C ′

jk

C ′
jj

and [(H ′
≥j,≥j)

−1]
jj

= (C ′
jj)

2 (28)
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where C ′ is an upper triangular matrix that satisfies C ′TC ′ = (H ′)−1. Using block-matrix notation,

C ′ =

(
C ′

<j,<j C ′
<j,≥j

0 C ′
≥j,≥j

)
, (29)

it is easy to verify (by multiplying out (C ′)−1C ′ and verifying that the result is the identity) that

(C ′)−1 =

(
(C ′

<j,<j)
−1 −(C ′

<j,<j)
−1 C ′

<j,≥j (C
′
≥j,≥j)

−1

0 (C ′
≥j,≥j)

−1

)
. (30)

Thus, the block form of the relation H ′ = (C ′TC ′)−1 = (C ′)−1(C ′T )−1 ≡ (C ′)−1(C ′)−T is(
H ′

<j,<j H ′
<j,≥j

H ′
≥j,<j H ′

≥j,≥j

)
=

(
⋆ ⋆

0 (C ′
≥j,≥j)

−1

)(
⋆ 0
⋆ (C ′

≥j,≥j)
−T

)
(31)

where “⋆” denotes terms that are irrelevant for our proof. We can read off H ′
≥j,≥j from Equation 31,

H ′
≥j,≥j = (C ′

≥j,≥j)
−1 (C ′

≥j,≥j)
−T =⇒ (H ′

≥j,≥j)
−1 = (C ′

≥j,≥j)
T C ′

≥j,≥j . (32)

Thus, by explicitly evaluating the (j, k)-th entry of (H ′
≥j,≥j)

−1, we find for all k ≥ j,

[(H ′
≥j,≥j)

−1]
jk

=

m∑
l=j

C ′
ljC

′
lk = C ′

jjC
′
jk (33)

where only the term with l = j contributes to the sum because C ′
lj = 0 for l > j since C ′ is upper

triangular. Both parts of Equation 28 follow immediately from Equation 33.
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