arXiv:2202.08804v1 [physics.chem-ph] 17 Feb 2022

HYBRIDIZING PHYSICAL AND DATA-DRIVEN PREDICTION
METHODS FOR PHYSICOCHEMICAL PROPERTIES

PUBLISHED IN CHEMICAL COMMUNICATIONS 56 12407, 2020.

Fabian Jirasek* Robert Bamler Stephan Mandt
Department of Computer Science Department of Computer Science Department of Computer Science
University of California University of California University of California
Irvine, CA 92697, USA Irvine, CA 92697, USA Irvine, CA 92697, USA

February 18, 2022

ABSTRACT

We present a generic way to hybridize physical and data-driven methods for predicting physicochem-
ical properties. The approach ‘distills’ the physical method’s predictions into a prior model and
combines it with sparse experimental data using Bayesian inference. We apply the new approach
to predict activity coefficients at infinite dilution and obtain significant improvements compared to
the data-driven and physical baselines and established ensemble methods from the machine learning
literature.

Prediction methods for physicochemical properties are indispensable for process design and optimization in chemical
engineering since experimental studies are expensive and tedious. The most widely used approaches are group-
contribution methods (GCMs) that model the properties of pure components or mixtures based on the structural groups
that build up the components.'™ GCMs can also be used for predicting properties of mixtures of which the composition
is unknown.>"Z The most successful GCMs for mixtures are the different versions of UNIFAC®? that model the excess
Gibbs energy based on binary group-interaction parameters. The group-contribution concept greatly reduces the number
of model parameters and the amount of data needed for fitting GCMs. However, the practical applicability of UNIFAC
is still restricted, mainly due to necessary group-interaction parameters that have not been fitted yet.

Another successful approach is the quantum chemistry-based COSMO-RS"!, which describes the properties of mixtures
referring to the polarization charge densities of the constituent components, and which depends only on a small number
of adjustable parameters.'” However, expensive COSMO calculations are required for each component.

In previous work!?, we have introduced a novel, purely data-driven approach to predict physicochemical properties
of mixtures. Specifically, we considered activity coefficients at infinite dilution ~; in binary mixtures at a constant
temperature, but this approach generalizes to other properties. The data for ;> can be represented as a matrix whose
rows and columns correspond to solutes 7 and solvents j, respectively. For 777 at 298.15 + 1 K, which we studied
in our previous work, the matrix containing the available experimental data from one of the largest databases for
physicochemical properties, the Dortmund Data Bank'4, is very sparse, cf. Figurein the Supporting Information.
The data set covers 240 solutes and 250 solvents, but only 4,094 entries are observed. The prediction of the unobserved
entries, i.e., the prediction of 7 for not yet studied mixtures, can be framed as a matrix completion problem 1318,

The basis of our previously introduced approach' is a probabilistic matrix completion method (MCM). We modeled
In~77 (the logarithm of 7% is used for scaling purposes) as a stochastic function of initially unknown features of the
solutes ¢ and solvents j, specifically as the dot product of two vectors:

hl’yf; = U; - Vj + € (1)

where u; and v; are learned feature vectors for solute 7 and solvent j, respectively, and the random variable ¢;; captures
both measurement noise and inaccuracies of the model. The feature vectors of all considered solutes and solvents
can be aggregated to two feature matrices U and V/, respectively. Rather than selecting features based on physical
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Figure 1: Scheme of the whisky method. We first fit an MCM to UNIFAC predictions for In~;7 (distillation, purple).
We then use the fitted parameters from the distillation step to construct informative priors for the component feature
matrices U and V' and fit the model to experimental data on In ;" using these priors (maturation, green). In A UNIFAC

and In v**P denote the available data sets from UNIFACZ and experiments''#, respectively.

considerations, the data-driven approach infers useful features from available experimental data on In ;> alone, using

the laws of probability theory and (approximate) Bayesian inference.”") The inferred features can then be used to
predict In »; for mixtures for which no experimental data are available, cf. Eq. .

While the purely data-driven approach'® already outperforms the state-of-the-art physical method for predicting activity
coefficients modified UNIFAC (Dortmund)Y? (to which we simply refer as UNIFAC in the following) in terms of
average predictive performance, it leaves substantial room for improvement as it ignores available physical knowledge
about the mixtures. In thermodynamics, such knowledge is often abundant, e.g., in pure component properties or
physical laws and models. In this paper, we therefore propose a hybrid physics-based/data-driven prediction method
that combines the best of both worlds. We show that the framework of probabilistic models and Bayesian inference
provides a principled way to incorporate scientific domain knowledge into machine learning (ML) models by specifying
a so-called prior probability distribution over model parameters. Specifically, we propose to use model distillation*
to extract physical domain knowledge from UNIFAC in a format that can be used to construct an informative prior
distribution for the MCM.

In the following, we describe the details of our proposed hybrid approach. Once again, we consider predicting In 7% in
binary mixtures at 298.15 + 1 K as a prime example and evaluate the predictive performance on the same data set as
in our previous work'?. As physical base method, we use the current publicly available version of UNIFAC1Y20, A
data-driven base method, we adopt the Bayesian MCM from our previous work!®. We compare the performance of our
hybrid method to the performances of the constituent base methods as well as two established ML ensemble methods.

Figure[I] summarizes our proposed hybrid method, which we call whisky. Just like the manufacturing of whisky, our
whisky method involves a distillation step, in which we distill knowledge from an existing model into a prior distribution
using an approach known as model distillation in the ML literature*', and a maturation step, in which we allow the
prior to mature by combining it with experimental data. Both steps are based on a probabilistic MCM similar to our
previous work' to fit model parameters (i.e., feature matrices U and V) to a data set of In ;s - The difference between
the distillation and maturation step is that they operate on different data sets. The distillation step fits an MCM to all
predictions for In~7° at 298.15 K that can be obtained with UNIFAC, denoted as Iny N'"AC_ Thus, the distillation
step extracts the physical knowledge encoded in UNIFAC, which is implicitly exposed via its predictions for In 77,
into parameters of an MCM. By contrast, the maturation step builds upon the results of the distillation step and refines
the parameters by fitting an MCM to the available experimental data, denoted as In y**P.

The two different data sets In yUNFAC and In y*P are illustrated in the two blue/red matrices in Figure[1} Here, rows

and columns correspond to solutes and solvents, respectively, and blue or red entries indicate binary mixtures for which
data points are available or absent, respectively. As can be seen, UNIFAC predictions are available for a lot more
mixtures than experimental observations (In y“N'FAC has more blue entries than Iny**?, cf. Fig[S.1]and|[S.3]in the
Supporting Information), meaning that the distillation step trains on a larger data set. While the experimental data set is
more sparse, it is considered more reliable than the UNIFAC predictions.

The main novelty of our proposed whisky method lies in the way how it combines physical knowledge with experimental
data. We realize the interface between distillation and maturation (purple and green parts of Figure|l)) by specifying an
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informative prior distribution over model parameters. To understand the role of the prior, it is instructive to recall the
principles of Bayesian inference on which our MCM builds. Bayesian inference describes the relationship between
three probability distributions, called prior, likelihood, and posterior. The prior is a probability distribution over model
parameters that encodes a-priori knowledge, i.e., information on the model parameters before the model is fitted to the
training data. In a purely data-driven approach, no a-priori information is used, and the prior is typically a very broad
(i.e., noninformative) probability distribution. The likelihood encodes how model parameters manifest themselves
in physically observable quantities, i.e., the data to which the model is trained. Together, prior and likelihood define
a probabilistic model over observable quantities, such as In > here. Bayesian inference takes such a probabilistic
model and compares its predictions to actual observed data. The task of Bayesian inference is to find the so-called
posterior probability distribution over model parameters that are consistent with the observed quantities and the a-priori
knowledge.

This framework of probabilistic modeling and Bayesian inference provides a principled way of hybridizing different
methods using probability distributions as interfaces. Our approach, illustrated in Figure[I] follows the principle that
‘one man’s ceiling is another man’s floor’. In analogy to this proverb, the posterior of the distillation step, which encodes
knowledge after seeing the UNIFAC predictions, can be turned into a prior of the maturation step, which encodes
knowledge before seeing the experimental data. Specifically, we construct a physically informed prior for the maturation
step by taking the posterior means pyy and py from the distillation step, and we form Gaussian prior distributions with
a rather small standard deviation of o = 0.5 around these means. Thus, this choice of prior encodes physical knowledge
from the UNIFAC model. At the same time, the nonzero prior standard deviation allows the maturation step to overrule
prior knowledge if the experimental data provide enough evidence to justify this.

For some of the considered mixture components (eight solutes and 41 solvents), UNIFAC is not applicable. Since the
distillation step does not provide any information about these components, we use a broader (i.e., less informative)
Gaussian prior here in the maturation step, with a standard deviation of ¢ = 3 centered around zero. For the task of
(approximate) Bayesian inference, we use the Stan framework?? and resort to variational inference''®!”. More details
on the proposed whisky method are given in the Supporting Information.

In Figurea), we compare the overall performance of the whisky method for predicting In 7> with the performances of

the base methods UNIFAC?? and MCM"? (without the informative prior), and with two alternative hybrid approaches,
bootstrap aggregation (aka bagging)?® and boosting?*. We compare mean absolute deviation (MAD) and mean square
error (MSE).

Bagging is realized here by averaging the predictions from UNIFAC and the data-driven MCM for each data point;
boosting is implemented by training an MCM to the matrix of the residuals of UNIFAC. Bagging and boosting are
described in detail in the Supporting Information. To simulate predictive performances, the predictions with MCM,
whisky, and boosting (and the MCM contribution of bagging) are obtained by using leave-one-out cross-validation??,
i.e., by training the models to all experimental data points except for one, which is then used as a test data point and
predicted. The training set of UNIFAC is not disclosed; hence, no statements on whether the UNIFAC results are
obtained by regression or prediction can be made here.

Figure [2] a) demonstrates that the proposed whisky method outperforms all other methods in both MAD and MSE.
The poor scores of UNIFAC, bagging, and boosting can mainly be attributed to only a handful of data points that are
extremely poorly predicted by UNIFAC as shown in Figure[S.8]in the Supporting Information. However, even if we, as
an example, ignore the worst eight outliers of UNIFAC (marked in Figure S.8) for the evaluation, the proposed whisky
method still performs significantly better than all baselines, cf. Figure 2]b).

If the worst eight UNIFAC outliers are ignored (Figure [2]b), the results show that the hybrid baselines — bagging and
boosting — also improve the predictions of the base methods UNIFAC and MCM: bagging and boosting have smaller
MAD and MSE values than the base methods. Bagging is widely used if the available base methods for a specific
problem tend to overfit, i.e., if they fit the training data but do not generalize well to unobserved data.?> By contrast,
boosting is commonly applied in ML to tackle the opposite problem of underfitting, which arises if the base methods
are not expressible enough for a specific problem.“* The observation that our proposed whisky method performs better
than both bagging and boosting indicates that the base methods UNIFAC and data-driven MCM tend to overfit to parts
of the data set. At the same time, they also seem to underfit on other combinations, so that neither bagging nor boosting
is universally applicable. This may in part be explained by the fact that the experimental data set is very imbalanced:
while we have data for at least 86 different binary mixtures for each of the 5% most common solutes, we only have six
or fewer data points for each of the 50% most uncommon solutes (see also Figure [S.T]in the Supporting Information).
The proposed whisky approach seems more robust to such an imbalanced data set than the other hybrid approaches.

In Figure [3] we compare the predictions of the whisky method with those of the data-driven MCM and UNIFAC in a
parity plot. Points on the diagonal line correspond to perfect predictions. The whisky method reliably reduces outliers
of both base methods. By contrast, both bagging and boosting, shown in Figure[S.7jn the Supporting Information, only
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Figure 2: Mean square error (MSE) and mean absolute deviation (MAD) for the prediction of In 7 using the individual
base methods UNIFAC and data-driven MCM, the proposed hybrid whisky method, and the hybrid baselines bagging
and boosting. Lower is better for both metrics. Error bars show the standard errors of the means. a) Considering all
applicable data points. b) Ignoring the worst eight outliers of UNIFAC.

partially compensate for outliers of the data-driven MCM but severely suffer from outliers of UNIFAC. The whisky
method also yields the highest coefficient of determination R? (with R2 = 1 being optimal) of all compared methods,
irrespective of whether the worst eight UNIFAC outliers (OL) are considered or not (see table insets).

Another major advantage of the proposed whisky method is its broader applicability compared to the other hybrid
approaches. For a fair comparison, Figures [2] and [3] consider only data points that can be predicted with UNIFAC,
which is also a prerequisite for applying bagging and boosting. By contrast, the whisky method (and the data-driven
MCM) can be used to predict In~;* for any binary mixture of the considered solutes and solvents. In Figure in the
Supporting Information, we compare the performance of the whisky method with the data-driven MCM for predicting
all available experimental data points. Again, we observe a significant improvement with the proposed whisky method.

In conclusion, we introduce a novel approach to hybridize physical and data-driven prediction methods for
physicochemical properties. In this paper, we focused on predicting activity coefficients at infinite dilution, but
the approach can directly be transferred to other properties. The proposed method is termed whisky, reflecting its
similarities with the manufacturing of whisky as it combines model distillation with maturation. As a Bayesian
approach, it incorporates physical knowledge in the form of a prior belief, and allows to combine it with empirical
data evidence in a theoretically well-motivated and convenient way. The proposed method outperforms all considered
baselines in predicting activity coefficients at infinite dilution in binary mixtures: the physical gold standard UNIFAC
Dortmund'%2Y, the purely data-driven MCM from our previous work'?, and two established machine learning ensemble
methods, bagging and boosting. We further show that the whisky method is more robust to outliers in the base
methods and has a broader applicability than the hybrid baselines. We demonstrate that probabilistic machine learning
is perfectly suited for incorporating physical knowledge (that is often abundant in thermodynamics) in powerful
data-driven models. We emphasize the generic nature of the proposed whisky approach that opens perspectives to
a new generation of hybrid prediction methods for physicochemical properties beyond purely data-driven or purely
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Figure 3: Parity plot of the predictions (pred) for In > with the proposed whisky method over the corresponding

experimental values (exp) and comparison to UNIFAC and data-driven MCM. Coefficients of determination R? (higher
is better, 1 implies perfect correlation) are given, both including and excluding the worst eight UNIFAC outliers (OL).

physical approaches. The transfer to further mixture properties and other physical and data-driven base methods is
straightforward. We expect additional improvements if explicit physical information is incorporated and exciting
insights by elucidating relations between the learned component features and physical component descriptors.
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Supporting Information

Data

This work is based on the same data set as our previous work':; the following overview is therefore rather brief.

Data on activity coefficients at infinite dilution in binary mixtures -, at 298.15 & 1 K were adopted from the Dortmund

Data Bank (DDB) 20194, Only molecular components (and one ionic liquid that slipped through our filter) of which
the molecular formula is known were considered. Furthermore, metals and data points that are indicated to be of
poor quality in the DDB were rejected. If multiple data on +;} for a specific binary mixture ¢ — j in the considered
temperature range were available, the arithmetic mean of the available data was used. Furthermore, only components for
which at least data in two different binary mixtures are available in the DDB were considered, which is a prerequisite
for the application of leave-one-out cross-validation that was applied to evaluate predictive performances of the studied
methods. The resulting data set comprises 240 solutes ¢ and 250 solvents j. Experimental data on +;3 in the considered
temperature range are available for 4,094 of the 60,000 possible binary mixtures. Some components appear as both
solute and solvent in the data set. The entries of ;7 where ¢ and j denote the same substance, i.e., for pure components,
were set to unity to satisfy thermodynamic consistency. These data points were only included in the training data but
not considered in the evaluation of the predictive performance. For information on the considered solutes and solvents,
we refer to the Supporting Information of our previous work.3

For the comparison of the predictive performances of the different studied methods, the data set was further narrowed
down since the physical base method, modified UNIFAC (Dortmund)*%2Y, referred to as UNIFAC in the following,
can (with its present publicly accessible parameterization“?) only be applied to predict Vs, for 80% of the relevant
mixtures. Figure[S.T|shows the matrix representing all possible binary mixtures of the considered solutes and solvents.
The color of each entry indicates availability of experimental data in the DDB'# and applicability of UNIFAC to predict
the respective data points (see figure caption).
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Figure S.1: Matrix representation of the available experimental data for ;7 at 298.15+1 K in the DDB 201914,

Whitespace: no experimental data available. Black squares: experimental data available, UNIFAC'Y'2) can be applied.
Red squares: experimental data available, UNIFAC cannot be applied.
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Model Details

Bayesian Matrix Completion

As in our previous work'?, we used a Bayesian approach to matrix completion to predict In 3 (the logarithm of the
activity coefficient is used for scaling purposes throughout this work). This approach consists of three steps. In the first
step, a generative probabilistic model for the variable of interest, i.e., In77, as a function of initially unknown (latent)
features of the solutes ¢ and solvents j is specified. In 7> is thereby modeled as the dot product of the feature vector u;
of the solute ¢ and the feature vector v; of the solvent j:

ln’}/%o =U; V5 + €4 S.1)

where the random variable ¢;; captures both measurement noise and inaccuracies of the model. Both u; and v; are
vectors of length K containing features of solute ¢ and solvent j, respectively. The hyperparameter K is the number of
considered features per component and also called latent dimension, and was set to & = 4 as in our previous work 3
for all approaches discussed here.

In the second step, the latent features are inferred by training the generative model to the available data for In 77, which

requires inverting the generative model. We use Gaussian meanfield variational inference!®2% for this purpose, which
was demonstrated to be robust and efficient in our previous work'™Y. Since our generative model is probabilistic, the
inferred latent features are random variables and a probability distribution, called posterior, for each latent feature is
obtained. In the third step, we use the means pi,,; and p,,; of the inferred approximate posterior distributions over u;
and v;, respectively, to obtain predictions from the dot product:

In (79 )P =, - o, (S.2)

We note that the feature vectors v and v represent a characterization of each solute and solvent, respectively, that is
exclusively inferred from the available data for Inv°° in binary mixtures of these components. Hence, no explicit
physical knowledge on the pure solutes or solvents, e.g., molecular or pure component descriptors like molar mass,
dipole moment, or structural formula, was used to find suitable feature vectors. However, since the data for In y*°
implicitly comprise physical information on the respective components (which is extracted during training the model
and aggregated in the feature vectors), relationships between the learned features and physical descriptors of the
components can be expected. Preliminary studies have shown that there are no direct correlations between features and
physical descriptors. However, to unveil these (complex) relationships will be an exciting task for future work, possibly
generating previously unknown physical insights.

All predictions were obtained by leave-one-out cross-validation, i.e., by training the model to all available data except
for the one data point that is to be predicted, and repeating this procedure for each available data point. This procedure
ensures that the model cannot cheat by training to the test data. In all cases, we used the Stan framework?Z, which
allows the specification of user-defined generative models and automates the task of Bayesian inference. The following
sections provide implementation details for each of the compared methods. For more information on the theoretical
background of Bayesian matrix completion, the reader is referred to our previous work'> and the literature'”.

Data-driven Matrix Completion Method (MCM)

Figure shows the Stan code of the probabilistic generative model of the data-driven MCM from our previous work -,
which is considered as a data-driven base method here.

For all component features u; and v;, the same Gaussian prior distribution with mean jo = 0 and standard deviation
oo = 0.8 was used. Furthermore, a Cauchy likelihood with scale parameter A = 0.15 was used for all data points.
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1 data {

2 int<lower=0> I;

3 int<lower=0> J;

4 int<lower=0> K;

5 real ln_gamma_exp[I, J];

6 real<lower=0> sigma_0;

7 real<lower=0> lambda;

8 }

9

10 parameters {

11 vector[K] u[I];

12 vector[K] v[J];

13}

14

15 model {

16

17 for (1 in 1:I) {

18 u[i] ~ normal(®, sigma_0);
19 }

20 for (j in 1:3) {

21 v[j] - normal(@, sigma_0);
22 }

23

24

25

26 for (1 in 1:I) {

27 for (j in 1:3) {

28

29 if (ln_gamma_exp[i, Jj] '= -99) {
30 ln_gamma_exp[i, j] ~ cauchy(u[i]' * v[j], lambda);
31 }

32 }

33 }

34 }

Figure S.2: Stan code of the probabilistic generative model of the data-driven MCM. Line 29 ensures that the model is
only trained on available experimental data, since missing entries of the matrix were set to -99.
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Whisky Method

The whisky method is proposed in this work as a novel generic approach for hybridizing physical and data-driven
prediction methods, and it is applied to predict In ;" here. FigureElin the manuscript illustrates the idea of the proposed
hybrid approach.

The method consists of two steps: in the first step (distillation step, purple part of Figure[I]in the manuscript), UNIFAC
is employed to predict In 7> at 298.15 K in all possible combinations of the considered 240 solutes ¢ and 250 solvents

4. With the current publicly accessible parameterization of UNIFAC2Y, approx. 66% of all relevant binary mixtures can
be modeled. Hence, a rather dense matrix with approx. 66% observed entries, i.e., UNIFAC predictions for In 7%0, is
obtained, cf. Figure[S.3]

50

100

Solute i

150 4

Solvent |

Figure S.3: Matrix representation of all possible binary mixtures of the considered solutes ¢ and solvents j. Blue:
UNIFAC can be applied to predict +;7. Red: UNIFAC cannot be applied to predict ;3.

At first, this rather dense matrix is used for training a Bayesian MCM in the distillation step. In this step, the parameters
(component features) and hyperparameters of the model are trained simultaneously. Therefore, a (strongly uninformative)
Gaussian hyperprior with mean yi,,p, = 0 and standard deviation oy,, = 100 was used for all hyperparameters: the mean
po and standard deviation o of the Gaussian prior and the scale parameter A of the Cauchy likelihood. Figure[S.4]
shows the Stan code of the generative model of the distillation step of the whisky method.

The posterior of the distillation step constitutes probability distributions for all component features, thus containing
information from the UNIFAC predictions for In~;®. However, meaningful features were only obtained for the
components that can, in principle, be modeled with UNIFAC, i.e., for which UNIFAC predictions were available during
the distillation step. These posterior distributions were used to generate informative priors for the subsequent maturation
step of the whisky method, the actual training of the approach to the available experimental data (green part of Figure/[T]
in the manuscript). In detail, the mean of each posterior distribution of the distillation step was adopted and used in
combination with a standard deviation of oy = 0.5 in a Gaussian prior in the maturation step. For those components
that cannot be modeled with UNIFAC, i.e., for which no UNIFAC predictions were available during the distillation
step, a Gaussian prior with mean po = 0 and standard deviation oy = 3 was used in the maturation step. Hence, we
used a rather small prior standard deviation, i.e., a rather strong or informative prior, for those components for which
we could extract and hand over information from the distillation to the maturation step. In contrast, we used a rather
large prior standard deviation, i.e., a rather weak or uninformative prior, for those components for which no a-priori
information could be generated with UNIFAC. The actual numbers for o for the informative and uninformative priors
in the maturation step are to a certain degree arbitrary but its ratio matches the ratio of the mean and maximum posterior
standard deviation of the distillation step. Furthermore, the proposed whisky method is quite robust with respect to o
in the maturation step. Figure[S.3|shows the Stan code of the maturation step, the actual training step, of the whisky
method.
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1 data {

2 int<lower=0> I;

3 int<lower=0> J;

4 int<lower=0> K;

5 real ln_gamma_UNIFAC[I, J],

6 real<lower=0> sigma_hp;

7}

8

9 parameters {

10 vector[K] u[I];

11 vector[K] v[J];

12 real mu_0;

13 real<lower=0> sigma_0;

14 real<lower=0> lambda;

15 }

16

17 model {

18

19 mu_0 ~ normal(©, sigma_hp);

20 sigma_0@ ~ normal(©, sigma_hp);
21 lambda ~ normal(©, sigma_hp);
22

23

24 for (1 in 1:I) {

25 u[i] ~ normal(mu_0O, sigma_0);
26 }

27 for (j in 1:3) {

28 v[j] ~ normal(mu_O, sigma_0);
29 }

30

31

32

33 for (i in 1:I) {

34 for (j in 1:3) {

35

36 if (ln_gamma_UNIFAC[i, j] !'= -99) {
37 1n_gamma_UNIFAC[i, j] ~ cauchy(u[i]"' * v[]j], lambda);
38 }

39 }

40 }

41}

Figure S.4: Stan code of the probabilistic generative model of the distillation step of the proposed whisky method. Line
36 ensures that the model in only trained on available UNIFAC predictions, since missing entries of the matrix were set
to -99.
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1 data {

2 int<lower=0> I;

3 int<lower=0> J;

4 int<lower=0> K;

5 real ln_gamma_exp[I, J];

6 vector[K] mu_u[I];

7 vector [K] mu_v[J];

8 vector[K] sigma_u[I];

9 vector[K] sigma_v[J];

10 real<lower=0> lambda;

1}

12

13 parameters {

14 vector[K] u[I];

15 vector[K] v[J];

16}

17

18 model {

19

20 for (i in 1:I) {

21 u[i] ~ normal(mu_u[i], sigma_u[i]);
22 }

23 for (j in 1:3) {

24 v[j] ~ normal(mu_v([j], sigma_v[j]);
25 }

26

27

28

29 for (1 in 1:I) {

30 for (j in 1:3) {

31

32 if (ln_gamma_UNIFAC[i, j] !'= -99) {
33 1n_gamma_UNIFAC[i, j] ~ cauchy(u[i]' * v[]j], lambda);
34 }

35 }

36 }

37}

Figure S.5: Stan code of the probabilistic generative model of the maturation step of the proposed whisky method. Line
32 ensures that the model is only trained on available experimental data, since missing entries of the matrix were set to
-99.
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The proposed whisky method can be applied to predict In ;¥ for any mixture of the considered solutes and solvents.

Hence, predictions for the complete data set on In 2 from our previous work™ that contains 4,094 experimental data
points and covers 240 solutes ¢ and 250 solvents j can be obtained with the whisky approach. In the manuscript, we
only show results for the data points that can also be predicted with UNIFAC for the reason of comparability. However,
the performance of the whisky method to predict all available 4,094 data points is demonstrated below and compared to
the data-driven base method MCM'.

Bagging

For obtaining predictions with the bootstrap aggregation (bagging) approach, the arithmetic mean of the predictions of
the two base methods UNIFAC!%20 and data-driven MCM'¥ was calculated for each available data point:
oo\ Baggin, 1 e’} 0o -data
In(v;; )Paseing — B} (ln(%‘j YUNIFAC In(v3; )MOM-dat ) (S8.3)

For the UNIFAC predictions, an inhouse MATLAB implementation with the latest publicly accessible parameterization"
was used. The MCM predictions were adopted from our previous work'-,

With the data-driven MCM, predictions for all 4,094 available experimental data points are obtained; with UNIFAC,
predictions for only about 80% of the these can be obtained. Hence, the applicability of the bagging approach is directly
limited by the applicability of UNIFAC. The relevant data set covers 231 solutes and 205 solvents.

Boosting

Additionally, another established machine learning ensemble method, namely boosting, is adopted here as hybrid
baseline. The basis for the boosting method is the matrix containing UNIFAC predictions for In v for the mixtures for
which also experimental data on In 7 are available. As described above, UNIFAC yields only predictions for about
80% of the experimental data, which can also be arranged in a partially observed matrix, whose rows and columns
correspond to the solutes ¢ and solvents j, respectively. Since the results of the boosting method were also evaluated
using leave-one-out cross-validation, at least two observed entries, i.e., entries for which experimental data and UNIFAC
prediction are available, per row and column were required. The data set therefore slightly reduced further, covering
224 solutes and 205 solvents. For all applicable mixtures, the residuals r;; of UNIFAC, i.e., the differences between the
experimental data points and the UNIFAC predictions, were calculated:

i = hl(,yz%p)exp . ln(,Y%Q)UNIFAC (S4)

These UNIFAC residuals were arranged in a partially observed matrix to which the concept of Bayesian matrix
completion was applied in the second step. Hence, previously unknown features of the solutes and solvents that describe
the deviation of the UNIFAC predictions from the experimental data were learned from the training data. For all
parameters a Gaussian prior with mean pp = 0 and standard deviation oy = 1 was used here. Furthermore, a Cauchy
likelihood with scale parameter A = 0.15 was used. Figure[S.6|shows the Stan code for the boosting method.

Following the concept of leave-one-out cross-validation, the solute and solvent features were trained to all r;; except
for one, which was then considered as test data point and predicted. Each data point served once as test data point. The
prediction of the logarithmic activity coefficient ln(v%@)BOOS““g was calculated in a straightforward manner:

In(y;7)Boostm8 = In(yp0 ) YNFAC 4 -, (S.5)

where ln(*yf;’)UNIFAC is the UNIFAC prediction for the activity coefficient, and p,,, and p,,; are the posterior means of

the corresponding solute and solvent feature vectors, respectively, obtained from the MCM of the residuals 7;;.
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1 data {

2 int<lower=0> I;

3 int<lower=0> J;

4 int<lower=0> K;

5 real ln_gamma_exp[I, J];

6 real ln_gamma_UNIFAC[I, J];

7 real<lower=0> sigma_0;

8 real<lower=0> lambda;

° }

10

11 parameters {

12 vector[K] u[I];

13 vector[K] v[J];

14 }

15

16 model {

17

18 for (i in 1:I) {

19 u[i] ~ normal(0®, sigma_0);
20 }

21 for (Jj in 1:3) {

22 v[j] ~ normal(©, sigma_0);
23 }

24

25

26

27 for (1 in 1:I) {

28 for (j in 1:3) {

29

30 if (ln_gamma_exp[i, j] '= -99 && 1ln_gamma_UNIFAC[i, j] '= -99) {
31 ln_gamma_exp[i, j] ~ cauchy(u[i]' * v[j] + ln_gamma_UNIFAC[i, j], lambda);
32 }

33 }

34 }

35 }

Figure S.6: Stan code of the probabilistic generative model of the boosting method. Line 30 ensures that the model is
only trained on available data, since missing entries of the matrix were set to -99.
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Additional Results

Results of Bagging and Boosting

In Figure [S.7] the predictions with the hybrid baselines bagging and boosting are represented in parity plots and
compared to the predictions of the base methods UNIFAC and data-driven MCM. Both hybrid approaches only partially
compensate for outliers of the data-driven MCM but severely suffer from outliers of UNIFAC. The worst outliers of
UNIFAC, bagging, and boosting lie outside the depicted ranges, cf. Figure[S.8] Slight improvements with bagging and
boosting compared to the data-driven MCM can only be achieved, if the worst UNIFAC outliers are ignored, cf. the
coefficients of determination R? in Figure and Figure [2|in the manuscript.

The slight improvements that are possible with the bagging approach compared to MCM if (and only if) the worst
UNIFAC outliers are ignored can mainly be attributed to error cancellations by averaging the predictions of the two
base methods (UNIFAC and MCM). For approx. 67% of the applicable data points, better predictions are obtained
with bagging than with UNIFAC, whereas for approx. 52% of the data points, the predictions with bagging are better
than those of the data-driven MCM. Hence, the bagging approach improves the predictions of both base methods for
more data points than impairs the predictions. This can be explained by the observation that for almost 19% of the data
points, an improved prediction accuracy compared to both UNIFAC and MCM is observed. Hence, for these 19%, the
bagging approach benefits from the effect of error cancellation, as the respective data points are overestimated by MCM
and underestimated by UNIFAC, or vice versa. Incidentally, it is in the nature of the bagging approach that it cannot
impair the predictions of UNIFAC and MCM for a specific data point at the same time.

However, in all cases, i.e., with or without ignoring the worst UNIFAC outliers, the performances of bagging and
boosting are significantly worse than the performance of the proposed whisky method, cf. Figure 2] and 3] in the
manuscript.
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Figure S.7: Parity plots of the predictions (pred) for In~* with the bagging (a) and boosting (b) approaches over
the corresponding experimental values (exp) and comparison to UNIFAC and data-driven MCM. Coefficients of
determination R? (higher is better, 1 implies perfect correlation) are given, both including and excluding the worst eight
UNIFAC outliers (OL).
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UNIFAC Outliers

In Figure @ predictions for all applicable In~;* including the worst eight UNIFAC outliers (OL) with all studied
methods are shown in a parity plot representation. For these UNIFAC outliers, marked by red boxes in Figure[S.8] the
hybrid methods bagging and boosting, shown in panels b) and c), respectively, give poor predictions, while the whisky
method, shown in panel a), as well as the purely data-driven MCM are demonstrated to be much more robust and do not
exhibit such outliers.
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Figure S.8: Parity plots of the predictions (pred) for In~;> with the hybrid approaches over the corresponding
experimental values (exp) and comparison to UNIFAC and MCM. a) whisky (proposed), b) bagging, c) boosting. The
worst eight UNIFAC outliers (OL) are marked by red boxes. Coefficients of determination R? (higher is better, 1
implies perfect correlation) are given, both including and excluding OL.

The performance of UNIFAC strongly depends on the quality of the fitted binary group-interaction parameters. The
worst eight outliers of UNIFAC are associated to binary mixtures of a cyclic alkane, cyclic alkene, or furane as solute
and a heterocyclic compound in which the ring structure is formed by carbon and nitrogen as solvent. According to the
group-division scheme of UNIFAC!%2Y, a]] aforementioned solutes contain at least one ‘CY-CH2’ main group (UNIFAC
main group no. 42), all aforementioned solvents contain at least one ‘PYRIDINE’ main group (UNIFAC main group no.
18). We therefore attribute the poor predictions of UNIFAC for these outliers mainly to the UNIFAC group-interaction
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parameters between the ‘CY-CH2’ and the ‘PYRIDINE’ group, which have presumably been overfitted to parts of the
data that were used for training UNIFAC (and that are not necessarily part of the data set considered here). We assume
that this is not an isolated case but likely to occur for other group-interaction parameters for UNIFAC as well, depending
on the data sets that are studied. As the data-driven MCM is an orthogonal approach to UNIFAC, it is conclusive that
it does not suffer from the same difficulties. Furthermore, the prior distributions in the probabilistic approach of the
data-driven MCM serve as regularization terms and can therefore be expected to prevent overfitting of the MCM to
single data points or parts of the data set.

The proposed hybrid whisky approach, like the data-driven MCM, does not exhibit such outliers, although it, in contrast
to the data-driven MCM, considers information from UNIFAC. In whisky, information from UNIFAC is taken into
account in the prior distributions used in the maturation step, cf. Figure[I]in the manuscript. The nonzero variance of the
Gaussian priors that we have used here allows the whisky method to ‘correct” poor UNIFAC predictions by combining
them with experimental data evidence in the maturation step. This procedure seems to work extremely efficiently.
Ultimately, we emphasize again that even with omitting these systematic outliers of UNIFAC in the evaluation, the
proposed whisky method significantly outperforms the individual and hybrid baselines studied here.

MCM and Whisky Predictions for All Available Data

As described above, the whisky method yields predictions for all available experimental In «;* for the considered solutes
7 and solvents 7, while the bagging and boosting methods are limited by the applicability of UNIFAC. In Figure the
performance of the whisky approach to predict In~;7 for all 4,094 available data points is demonstrated and compared
to the performance of the data-driven MCM. Significant improvements with respect to mean square error (MSE), mean
absolute deviation (MAD), and coefficient of determination (?) are obtained with the whisky method.
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Figure S.9: Comparison of the data-driven MCM and the proposed whisky method considering all 4,094 available
experimental data points for In ;7. a) Mean square error (MSE) and mean absolute deviation (MAD) of the predictions;
lower is better for both metrics, error bars represent the standard errors of the means. b) Parity plot of the predictions
(pred) over corresponding experimental values (exp) and coefficients of determination R? (higher is better, 1 implies
perfect correlation).

Influence of Latent Dimension

Figure[S.10]shows MSE and MAD scores that are obtained with the whisky method considering all available experimen-
tal data points for different latent dimensions K, specifically for varying numbers of learned solute and solvent features
ranging from two to six. For K = 4, which was used to obtain all other results throughout this work (cf. Section
‘Model Details’ in the ESI), and K = 5, very similar scores are obtained. Also the scores for K = 6 are similar, which
indicates that the whisky method is rather robust to small enlargements of . However, the slightly worse MSE score
for K = 6 indicates commencing overfitting at larger numbers for K. Hence, at very large numbers of K, the method
is likely to overfit to the training data dropping predictive performance (on unseen test data) due to too high flexibility.
On the other hand, also lowering the number of K can result in significant deterioration of the scores. For K = 3, only
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slightly worse scores, for K = 2, substantially worse scores are observed. This indicates that for very small numbers of
K, the approach is insufficiently flexible for describing the data well. Hence, only two features per solute and solvent
are not adequate for characterizing the components well, which results in poor scores due to underfitting.

14

- o- MSE
1.2 %,\ ~-0-- MAD
\

MSE / MAD
o o =
o o] o

o
D
1
o
/
/
/
FOT
!
!

o
N
1

0.0

2 3 4 5 6
Latent dimension K

Figure S.10: Influence of the latent dimension K on mean square error (MSE) and mean absolute deviation (MAD) of
the predictions with the proposed whisky method for all 4,094 available experimental data points for In~77; lower is
better for both metrics, error bars represent the standard errors of the means.

The optimal number of K strongly depends on the data that are considered and can, if necessary, be determined by
cross-validation. In this work, we have simply adopted K = 4 from our previous work in which we introduced the
data-driven MCM and which is also a good choice for the whisky method as demonstrated in Figure [S.T0] We consider
the observed robustness towards small variations of K (K = 3 to i = 6 here) as a major strength of the whisky method,
as it shows excellent predictive performance on In°° data without requiring extensive hyperparameter optimization.

We note that for applying the whisky method to other physicochemical properties than activity coefficients, significantly
different numbers for the latent dimension K might be required. IL.e., the number of features that are required for
adequately characterizing components with regard to a specific property is likely to depend on the considered property.
The whisky method is not restricted to specific numbers of K; in principle any number can be chosen, which can be
determined by cross-validation to prevent both under- and overfitting as described above. Larger numbers of K might
hamper the computation time required to train the method, which is, however, for K = 4 and the data set considered
here, in the range of seconds or minutes (using a custom laptop).
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