
Post-Training Neural Network Compression
With Variational Bayesian Quantization

Zipei Tan
Massachusetts Institute of Technology

Cambridge, MA 02139
zipeitan@mit.edu

Robert Bamler
University of Tuebingen

Tuebingen, Baden-Wuerttemberg, Germany
robert.bamler@uni-tuebingen.de

Abstract

Neural network compression can open up new deployment schemes for deep
learning models by making it feasible to ship deep neural networks with millions
of parameters directly within a mobile or web app rather than running them on a
remote data center, thus reducing server costs, network usage, latency, and privacy
concerns. In this paper, we propose and empirically evaluate a simple and generic
compression method for trained neural networks that builds on variational inference
and on the Variational Bayesian Quantization algorithm [Yang et al., 2020]. We find
that the proposed method achieves significantly lower bit rates than existing post-
training compression methods at comparable model performance. The proposed
method demonstrates a new use case of Bayesian neural networks (BNNs), and we
analyze how compression performance depends on the temperature of a BNN.

1 Introduction

Many popular software products make use of deep neural networks for some of their functionality.
Today, such deep-learning based functionality is often deployed as a service that runs in central data
centers to which each end-user’s device makes a remote procedure call over the internet each time
the application needs to evaluate some model on some new data point. Such hybrid client/server
deployments are popular as they allow operators to collect additional training data and because deep
learning models are often too big to be realistically pushed to the client side.

However, deploying a deep neural network on the client side rather than on a server can also have
significant advantages. First, executing expensive neural network operations directly on the end-user’s
device (e.g., smartphone or personal computer) reduces server costs. Second, eliminating the need for
an internet round trip for every single model evaluation reduces latency and power consumption, and
allows users to use an application regardless of internet connectivity. Finally, running deep learning
models locally on the end-user’s device eases privacy concerns, which can open up new opportunities
for deep-learning applications in highly regulated areas such as healthcare or education.

In this work, we consider one major obstacle that arises when deploying deep neural networks to
end-user devices: the file size of the trained network. Powerful deep neural networks have millions
of parameters (or ‘weights’) and are thus expensive to store in their raw form. Several methods
have been proposed to reduce network size (see Section 2 below). However, many of these methods
focus on reducing the cost of computations rather than storage (often by pruning, i.e., completely
discarding small weights), or they impose overly simplistic global constraints (e.g., layer-wise
numerical precisions), resulting in a sudden drop of model performance as the bit rate decreases.

We propose and evaluate a simple alternative lossy compression method for deep neural networks,
and we find that it retains significantly higher model performance at low bit rates (see main results
in Figure 1a in Section 4). The method uses Variational Bayesian Quantization (VBQ) [Yang et al.,

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

2020] to optimize a rate/distortion trade-off, taking into account not only the magnitude of network
weights but also the network’s sensitivity to distortions in each individual weight. VBQ was originally
proposed for compressing latent representations in graphical models [Yang et al., 2020]. In this work,
we extend VBQ to neural network compression by recasting the model as a Bayesian neural network
(BNN) [Wilson and Izmailov, 2020]. Surprisingly, we find that, for optimal compression performance,
one has to artificially inflate the posterior uncertainty estimates (“increase the temperature” of the
BNN). This observation exhibits a contrast to traditional applications of BNNs, where one often has
to decrease the temperature to obtain best performance [Wenzel et al., 2020].

Our proposed compression method can be applied to a wide variety of network architectures and
requires no modification of the network other than recasting it as a BNN, which can be done
in a generic way as described in Section 3 below. Only a single additional hyperparameter (the
temperature T) is introduced at training time; once the BNN is trained, model compression via VBQ
introduces one more hyperparameter that trades off between model performance and compression
strength, and that can be tuned easily as each run of VBQ takes only a few seconds.

2 Related Work

Related work falls into the categories of Bayesian Neural networks and network compression/pruning.

Bayesian Neural Networks. Our proposed method builds on Bayesian neural networks (BNNs)
trained with variational inference (VI) [Blei et al., 2017, Zhang et al., 2018], i.e., the Bayes by
Backprop algorithm [Blundell et al., 2015, Shridhar et al., 2019]. While most work on BNNs
discusses their generalization capability [Wilson and Izmailov, 2020], the present paper shows that
BNNs can be used for the different task of network compression. BNN training introduces a scalar
hyperparameter T called ‘temperature’. While empirical evidence [Wenzel et al., 2020] suggests that
uncompressed BNNs perform best for T < 1, we find that compression works best for T > 1.

Network Compression/Pruning. There are two approaches to neural network compression [Neill,
2020]: compression during training and post-training compression. Compression during training
through pruning can be done using variational dropout [Kingma et al., 2015, Molchanov et al., 2017].
Quantization is another compression method during training and it ranges from training binary [Gupta
et al., 2015] or ternary [Courbariaux et al., 2014] networks to more complicated models [Achterhold
et al., 2018, Van Baalen et al., 2020]. Post-training compression methods include piecewise linear
quantization [Fang et al., 2020], BitSplit [Wang et al., 2020], and a greedy path-following quantization
algorithm [Zhang et al., 2022]. These methods do not exploit posterior uncertainty estimates, and we
find in our experiments in Section 4 that they perform significantly worse than our proposed method.

3 Method

The lossy compression method for deep neural networks studied in this paper follows three steps:
(1) model training with Variational Inference (VI) [Blei et al., 2017, Zhang et al., 2018]; (2) quantiza-
tion with Variational Bayesian Quantization (VBQ) [Yang et al., 2020]; and (3) entropy coding.

Step 1: Model Training With VI. The VBQ algorithm used in step 2 below was originally proposed
for compressing latent variables in probabilistic generative models. In order to extend VBQ to neural
network compression, we first recast the network as a Bayesian neural network (BNN) [Blundell et al.,
2015, Shridhar et al., 2019], which we then train with VI using the so-called Gaussian mean-field
approximation [Blei et al., 2017]. This can be achieved with a simple generic transformation of the
neural network where one injects random Gaussian noise at each layer and then learns optimal noise
amplitudes (denoted σ below) together with the mean neural network weights (denoted µ below).

In detail, assuming a neural network with weights w ≡ (wα)α, training data points x ≡ (xi)
N
i=1, and

a loss function of the form L(w) =
∑N

i=1

(
ℓ(w, xi)+ψ(w)

)
where ψ is a regularizer, we reinterpret

ℓ(w, xi) as a negative log-likelihood and ψ(w) as a negative log-prior. VI with Gaussian mean-field

2

0.00 0.25 0.50 0.75 1.00 1.25 1.50
bit rate [bits per neural network weight]

10
20
30
40
50
60
70
80
90

cla
ss

ifi
ca

tio
n

ac
cu

ra
cy

 [%
]

VBQ (proposed; T=5)
VBQ limit (T=5)
BitSplit
BitSplit limit
PWLQ
PWLQ limit
QNN
QNN limit
(random guessing)

(see Figure 3)

(a) Performance of VBQ compared to baselines.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
bit rate [bits per neural network weight]

10
20
30
40
50
60
70
80
90

cla
ss

ifi
ca

tio
n

ac
cu

ra
cy

 [%
]

VBQ (T=0.1)
VBQ (T=0.3)
VBQ (T=0.5)
VBQ (T=1)
VBQ (T=2)
VBQ (T=5)
VBQ (T=10)
(random
guessing)

(see Fig. 2b)

(b) Performance of VBQ with various temperatures T .

Figure 1: Model performances at varying bit rates. VBQ (green) performs well even at low bit rates.

approximation then amounts to stochastic minimization of the following loss function over µ and σ,

LVI
T (µ,σ) =

N∑
i=1

Ew∼N (µ, diag(σ2))

[
ℓ(w, xi) + T

(
ψ(w)− 1

N

∑
α

log σα

)]
. (1)

Here, the temperature T > 0 is a hyperparameter (discussed in Sectino 4 below), µ and σ are each
of the same dimension as w, and the notation Ew∼N (µ, diag(σ2))[·] denotes that each weight wα is
drawn at random in each gradient step from a normal distribution with mean µα and variance σ2

α.

Step 2: Quantization With VBQ. Recasting the neural network as a BNN in step 1 above allows
us to quantize it using the VBQ algorithm [Yang et al., 2020], which has previously only been used
for compressing images and simple graphical models. Quantization approximates the continuous
neural network weights with points from some discrete grid. VBQ uses an adaptive grid spacing
that automatically adjusts to how sensitive the overall model performance is to each individual
weight. Such an adaptive grid can be particularly beneficial in deep neural networks that contain both
convolutional and fully connected layers, as each single weight in a convolutional layer affects many
output activations, thus likely warranting a finer quantization than a weight in a fully connected layer.

VBQ estimates the relative sensitivities to each weight without having to refer back to training data
by exploiting the posterior uncertainty estimates σ obtained from the minimization of Eq. 1. This
leads to a very fast quantization method that can be run at various bitrate-settings without having
to retrain the model. VBQ obtains a quantization ŵ∗

α = argminŵα
Lλ(ŵα) for each weight wα

by minimizing a rate/distortion trade-off Lλ(ŵα) = λR(ŵα) + D(ŵα), where the minimization
over ŵα runs over a (dense) discrete set of grid points, R(ŵα) estimates how much a candidate grid
point ŵα would contribute to the total bit rate in step 3 below (taking into account the required grid
spacing to represent ŵα); the distortion term D(ŵα) = (ŵα−µα)

2/(2σ2
α) approximates the negative

log-posterior distribution and encourages small quantization errors |ŵα − µα| for weights with low
posterior uncertainty σα; and the Lagrange parameter λ > 0 controls the trade-off between bit rate
and distortion. An efficient algorithm for minimizing Lλ(ŵα) was given in [Yang et al., 2020].

Step 3: Entropy Coding. The quantized weights can be encoded into a bit string using lossless
entropy coding [MacKay, 2003], e.g., range coding [Pasco, 1976, Rissanen and Langdon, 1979] or
asymmetric numeral systems [Duda et al., 2015, Bamler, 2022a]. Entropy coding requires a model
of the frequencies with which each grid point occurs. We use each layer’s empirical frequencies of
quantized weights here. A real deployment would have to store a table of these empirical frequencies
for each layer alongside the compressed weights, incurring an overhead that is negligible unless the
model has only a handful of weights in each layer. The theoretically optimal expected bit rate (i.e.,
length of the resulting bit string) per weight is the entropy (to base 2) of the empirical frequency
distribution [MacKay, 2003]. Open-source implementations of entropy coders [Ballé et al., 2022,
Bamler, 2022b] reach this theoretical limit up to a negligible overhead (< 0.1% [Bamler, 2022a]).

3

10−1 100 101

temperature T [log]

100

120

140

ar
ea

 u
nd

er
 th

e
cu

rv
e

(a) Areas under rate/distortion curves in Figure 1b
(integrated from 0 to 2.0 bits per network weight).

10−1 100 101

temperature T [log]

0.4

0.6

0.8

1.0

1.2

av
er

ag
e

|ŵ
* α

−
μ α

|/
σ α

(b) Average ratio of quantization error to weight uncer-
tainty σα in VBQ for highlighted models in Figure 1b.

Figure 2: Compression performance and deviations for VBQ with different temperatures

conv1 0,0,0 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1 2,0,0 2,0,1 2,1,0 2,1,1 3,0,0 3,0,1 3,1,0 3,1,1 fc
layer

0

2

4

6

bi
ts

 p
er

 n
et

wo
rk

 w
ei

gh
t

VBQ (proposed)
PWLQ
BitSplit
QNN

0

1

2

layer size [×10
6]

layer size (number of network
weights; scale on right y-axis)

Figure 3: Average number of bits per network weight (colored bars) for highlighted models in
Figure 1a. Gray hatched bars show layer sizes. Layers labeled according to [He et al., 2016]

4 Results

We empirically compare network compression methods and analyze VBQ at varying temperatures.

Experimental Setup. We analyze compression performances for a ResNet18 model taken from
PyTorch.torchvision trained on CIFAR-10. For this model, we compare the proposed method to
BitSplit [Wang et al., 2020], pointwise linear quantization (PWLQ) [Fang et al., 2020], and quantized
neural nets (QNN) [Zhang et al., 2022]. Here, BitSplit required modifications to the model following
the method’s proposal in [Wang et al., 2020]. See appendix for more details and code.

Results. Figure 1a shows classification accuracy as a function of bit rate. We observe that the
proposed method (green) retains a nontrivial classification accuracy up to low bit rates. By contrast,
the accuracy with PWLQ and QNN drops sharply at ∼0.5 bits per network weight, and BitSplit could
not reach lower bit rates at all within its supported settings. Figure 1b shows that VBQ compression
performance improves as temperature T increases, before it starts to decrease again. This trend is
shown more quantitatively in Figure 2a and might be explained by Figure 2b, which shows that
increasing T decreases the ratio of quantization error |ŵ∗

α − µα| to parameter uncertainty σα, i.e., the
training procedure explores a wider range of quantization candidates. Figure 3 shows that bit rate
savings in VBQ compared to baseline models with comparable accuracy occur mostly in the last
three convolutional layers, which contain significantly more network weights (see gray bars).

Conclusions and Outlook. We proposed and empirically evaluated a compression method for deep
neural networks. The method could make it feasible to deploy large machine learning models on the
client side. In future work, it would be interesting to evaluate how rate/distortion performance changes
if uncertainty estimates are obtained via Laplace approximation instead of variational inference.

References
Jan Achterhold, Jan Mathias Koehler, Anke Schmeink, and Tim Genewein. Variational network

quantization. In International Conference on Learning Representations, 2018.

4

Johannes Ballé, Sung Jin Hwang, and Eirikur Agustsson. TensorFlow Compression: Learned data
compression, 2022. URL http://github.com/tensorflow/compression.

Robert Bamler. Understanding entropy coding with asymmetric numeral systems (ANS): a statisti-
cian’s perspective. arXiv preprint arXiv:2201.01741, 2022a.

Robert Bamler. constriction library: entropy coders for research and production, 2022b. URL
https://bamler-lab.github.io/constriction/.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859–877, 2017.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pages 1613–1622. PMLR, 2015.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Training deep neural networks with
low precision multiplications. arXiv preprint arXiv:1412.7024, 2014.

Jarek Duda, Khalid Tahboub, Neeraj J Gadgil, and Edward J Delp. The use of asymmetric numeral
systems as an accurate replacement for huffman coding. In 2015 Picture Coding Symposium (PCS),
pages 65–69. IEEE, 2015.

Jun Fang, Ali Shafiee, Hamzah Abdel-Aziz, David Thorsley, Georgios Georgiadis, and Joseph H
Hassoun. Post-training piecewise linear quantization for deep neural networks. In European
Conference on Computer Vision, pages 69–86. Springer, 2020.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International conference on machine learning, pages 1737–1746.
PMLR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Durk P Kingma, Tim Salimans, and Max Welling. Variational dropout and the local reparameterization
trick. Advances in neural information processing systems, 28, 2015.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine Learning, pages 2498–2507. PMLR, 2017.

James O’ Neill. An overview of neural network compression. arXiv preprint arXiv:2006.03669,
2020.

Richard Clark Pasco. Source coding algorithms for fast data compression. PhD thesis, Stanford
University CA, 1976.

Jorma Rissanen and Glen G Langdon. Arithmetic coding. IBM Journal of research and development,
23(2):149–162, 1979.

Kumar Shridhar, Felix Laumann, and Marcus Liwicki. A comprehensive guide to bayesian convolu-
tional neural network with variational inference. arXiv preprint arXiv:1901.02731, 2019.

Mart Van Baalen, Christos Louizos, Markus Nagel, Rana Ali Amjad, Ying Wang, Tijmen Blankevoort,
and Max Welling. Bayesian bits: Unifying quantization and pruning. Advances in neural
information processing systems, 33:5741–5752, 2020.

Peisong Wang, Qiang Chen, Xiangyu He, and Jian Cheng. Towards accurate post-training network
quantization via bit-split and stitching. In International Conference on Machine Learning, pages
9847–9856. PMLR, 2020.

5

http://github.com/tensorflow/compression
https://bamler-lab.github.io/constriction/

Florian Wenzel, Kevin Roth, Bastiaan Veeling, Jakub Swiatkowski, Linh Tran, Stephan Mandt,
Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the bayes
posterior in deep neural networks really? In International Conference on Machine Learning, pages
10248–10259. PMLR, 2020.

Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
generalization. Advances in neural information processing systems, 33:4697–4708, 2020.

Yibo Yang, Robert Bamler, and Stephan Mandt. Variational bayesian quantization. In International
Conference on Machine Learning, pages 10670–10680. PMLR, 2020.

Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in variational
inference. IEEE transactions on pattern analysis and machine intelligence, 41(8):2008–2026,
2018.

Jinjie Zhang, Yixuan Zhou, and Rayan Saab. Post-training quantization for neural networks with
provable guarantees. arXiv preprint arXiv:2201.11113, 2022.

5 Appendix

5.1 Training Details

All experiments used the same dataset: PyTorch CIFAR10 dataset, 60000 32x32 colour images in 10
classes, with 6000 images per class; 50000 training images and 10000 test images. Training details
for deterministic model: L2 regularization through weight decay of 0.05; 200 epochs; learning rate
0.001; batch size 128; number of workers 8; accuracy on CIFAR10 87.75% Training details for
Bayesian model (for our proposed compression method): L2 regularization through weight decay
of 1 × 10−4; 200 epochs; learning rate 0.001; batch size 128; number of workers 8; accuracy on
CIFAR10 85.41 when temperature is 1 (scaling factor of the KL divergence term) For the baseline
methods, we tuned the regularization weight for each model, resulting in L2 = 0.01 for bit-split,
L2 = 0.05 for piecewise linear, L2 = 0.05 for Quantize Neural Nets; the batch size was 128 for all
of these.

5.2 Code

Our code is available at: https://anonymous.4open.science/r/bnn_vbq_submission-3F7B

6

https://anonymous.4open.science/r/bnn_vbq_submission-3F7B

	Introduction
	Related Work
	Method
	Results
	Appendix
	Training Details
	Code

