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Abstract
We propose a novel algorithm for quantizing con-
tinuous latent representations in trained models.
Our approach applies to deep probabilistic mod-
els, such as variational autoencoders (VAEs), and
enables both data and model compression. Un-
like current end-to-end neural compression meth-
ods that cater the model to a fixed quantization
scheme, our algorithm separates model design
and training from quantization. Consequently,
our algorithm enables “plug-and-play” compres-
sion with variable rate-distortion trade-off, using
a single trained model. Our algorithm can be
seen as a novel extension of arithmetic coding to
the continuous domain, and uses adaptive quan-
tization accuracy based on estimates of posterior
uncertainty. Our experimental results demonstrate
the importance of taking into account posterior
uncertainties, and show that image compression
with the proposed algorithm outperforms JPEG
over a wide range of bit rates using only a single
standard VAE. Further experiments on Bayesian
neural word embeddings demonstrate the versatil-
ity of the proposed method.

1. Introduction
Latent-variable models have become a mainstay of modern
machine learning. Scalable approximate Bayesian infer-
ence methods, in particular Black Box Variational Inference
(Ranganath et al., 2014; Rezende et al., 2014), have spurred
the development of increasingly large and expressive proba-
bilistic models, including deep generative probabilistic mod-
els such as variational autoencoders (Kingma & Welling,
2014b) and Bayesian neural networks (MacKay, 1992; Blun-
dell et al., 2015). One natural application of deep latent
variable modeling is data compression, and recent work has
focused on end-to-end procedures that optimize a model
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for a particular compression objective. Here, we study a
related but different problem: given a trained model, what
is the best way to encode the information contained in its
continuous latent variables?

As we show, our proposed solution provides a new “plug-
and-play” approach to lossy compression of both data in-
stances (represented by local latent variables, e.g., in a VAE)
as well as model parameters (represented by global latent
variables that serve as parameters of a Bayesian statisti-
cal model). Our approach separates the compression task
from model design and training, thus implementing variable-
bitrate compression as an independent post-processing step
in a wide class of existing latent variable models.

At the heart of our proposed method lies a novel quanti-
zation scheme that optimizes a rate-distortion trade-off by
exploiting posterior uncertainty estimates. Quantization is
central to lossy compression, as continuous-valued data like
natural images, videos, and distributed representations ul-
timately need to be discretized to a finite number of bits
for digital storage or transmission. Lossy compression al-
gorithms therefore typically find a discrete approximation
of some semantic representation of the data, which is then
encoded with a lossless compression method.

In classical lossy compression methods such as JPEG or
MP3, the semantic representation is carefully designed to
support compression at variable bitrates. By contrast, state-
of-the-art deep learning based approaches to lossy data com-
pression (Ballé et al., 2017; 2018; Rippel & Bourdev, 2017;
Mentzer et al., 2018; Lombardo et al., 2019) are trained to
minimize a distortion metric at a fixed bitrate. To support
variable-bitrate compression in this approach, one has to
train several models for different bitrates. While training
several models may be viable in many cases, a bigger issue
is the increase in decoder size as the decoder has to store
the parameters of not one but several deep neural networks
for each bitrate setting. In applications like video streaming
under fluctuating connectivity, the decoder further has to
load a new deep learning model into memory every time a
change in bandwidth requires adjusting the bitrate.

By contrast, we propose a a quantization method for latent
variable models that decouples training from compression,
and that enables variable-bitrate compression with a single
model. We generalize a classical entropy coding algorithm,
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Arithmetic Coding (Witten et al., 1987; MacKay, 2003),
from the discrete to continuous domain. Our proposed algo-
rithm, Variational Bayesian Quantization, exploits posterior
uncertainty estimates to automatically reduce the quanti-
zation accuracy of latent variables for which the model is
uncertain anyway. This strategy is analogous to the way hu-
mans communicate quantitative information. For example,
Wikipedia lists the population of Rome in 2017 with the
specific number 2,879,728. By contrast, its population in
the year 500 AD is estimated by the round number 100,000
because the high uncertainty would make a more precise
number meaningless. Our ablation studies show that this
posterior-informed quantization scheme is crucial to obtain-
ing competitive performance.

In detail, our contributions are as follows:

• A new discretization scheme. We present a novel ap-
proach to discretizing latent variables in a variational
inference framework. Our approach generalizes arith-
metic coding from discrete to continuous distributions
and takes posterior uncertainty into account.

• Single-model compression at variable bitrates. The
decoupling of modeling and compression allows us
to adjust the trade-off between bitrate and distortion
in post-processing. This is in contrast to existing ap-
proaches to both data and model compression, which
often require specially trained models for each bitrate.

• Automatic self-pruning. Deep latent variable models
often exhibit posterior collapse, i.e., the variational
posterior collapses to the model prior. In our approach,
latent dimensions with collapsed posteriors require
close to zero bits, thus don’t require manual pruning.

• Competitive experimental performance. We show that
our method outperforms JPEG over a wide range of
bitrates using only a single model. We also show that
we can successfully compress word embeddings with
minimal loss, as evaluated on semantic reasoning task.

The paper is structured as follows: Section 2 reviews related
work in neural compression; Section 3 proposes our Varia-
tional Bayesian Quantization algorithm. We give empirical
results in Section 4, and conclude in Section 5. Section 6
provides additional theoretical insight about our method.

2. Related Work
Compressing continuous-valued data is a classical problem
in the signal processing community. Typically, a distortion
measure (often the squared error) and a source distribution
are assumed, and the goal is to design a quantizer that opti-
mizes the rate-distortion (R-D) performance (Lloyd, 1982;

Berger, 1972; Chou et al., 1989). Optimal vector quan-
tization, although theoretically well-motivated (Gallager,
1968), is not tractable in high-dimensional spaces (Gersho
& Gray, 2012) and not scalable in practice. Therefore most
classical lossy compression algorithms map data to a suit-
ably designed semantic representation, in such a way that
coordinate-wise scalar quantization can be fruitfully applied.

Recent machine-learning-based data compression methods
learn such hand-designed representation from data, but sim-
ilar to classical methods, most such ML methods directly
take quantization into account in the generative model de-
sign or training. Various approaches have been proposed
to approximate the non-differentiable quantization opera-
tion during training, such as stochastic binarization (Toderici
et al., 2016; 2017), additive uniform noise (Ballé et al., 2017;
2018; Habibian et al., 2019), or other differentiable approxi-
mation (Agustsson et al., 2017; Theis et al., 2017; Mentzer
et al., 2018; Rippel & Bourdev, 2017); many such schemes
result in quantization with a uniformly-spaced grid, with the
exception of (Agustsson et al., 2017), which optimizes for
quantization grid points. Yang et al. (2020) considers opti-
mal quantization at compression time, but assumes a fixed
quantization scheme of (Ballé et al., 2017) during training.

We depart from such approaches by treating quantization
as a post-processing step decoupled from model design and
training. Crucial to our approach is a new quantization
scheme that automatically adapts to different length scales
in the representation space based on posterior uncertainty
estimates. To our best knowledge, the only prior work that
uses posterior uncertainty for compression is in the context
of bits-back coding (Honkela & Valpola, 2004; Townsend
et al., 2019), but these works focus on lossless compression,
with the recent exception of (Yang et al., 2020).

Most existing neural image compression methods require
training a separate machine learning model for each desired
bitrate setting (Ballé et al., 2017; 2018; Mentzer et al., 2018;
Theis et al., 2017; Lombardo et al., 2019). In fact, Alemi
et al. (2018) showed that any particular fitted VAE model
only targets one specific point on the rate-distortion curve.
Our approach has the same benefit of variable-bitrate single-
model compression as methods based on recurrent VAEs
(Gregor et al., 2016; Toderici et al., 2016; 2017; Johnston
et al., 2018); but unlike these methods, which use dedicated
model architecture for progressive image reconstruction, we
instead focus more broadly on quantizing latent representa-
tions in a given generative model, designed and trained for
specific application purposes (possibly other than compres-
sion, e.g., modeling complex scientific observations).
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3. Posterior-Informed Variable-Bitrate
Compression

We now propose an algorithm for quantizing latent vari-
ables in trained models. After describing the problem setup
and assumptions (Subsection 3.1), we briefly review Arith-
metic Coding (Subection 3.2). Subsection 3.3 describes our
proposed lossy compression algorithm, which generalizes
Arithmetic Coding to the continuous domain.

3.1. Problem Setup

Generative Model and Variational Inference. We con-
sider a wide class of generative probabilistic models with
data x and unknown (or “latent”) variables z ∈ RK from
some continuous latent space with dimension K. The gen-
erative model is defined by a joint probability distribution,

p(x, z) = p(z) p(x|z) (1)

with a prior p(z) and a likelihood p(x|z). Although our pre-
sentation focuses on unsupervised representation learning,
our framework also captures the supervised setup.1

Our proposed compression method uses z as a proxy to de-
scribe the data x. This requires “solving” Eq. 1 for z given x,
i.e., inferring the posterior p(z|x) = p(x, z)/

∫
p(x, z) dz.

Since exact Bayesian inference is often intractable, we resort
to Variational Inference (VI) (Jordan et al., 1999; Blei et al.,
2017; Zhang et al., 2019), which approximates the posterior
by a so-called variational distribution qφ(z|x) by minimiz-
ing the Kullback-Leibler divergenceDKL(qφ(z|x) || p(z|x))
over a set of variational parameters φ.

Factorization Assumptions. We assume that both the
prior p(z) and the variational distribution qφ(z|x) are fully
factorized (mean-field assumption). For concreteness, our
examples use a Gaussian variational distribution. Thus,

p(z) =
∏K
i=1p(zi); and (2)

qφ(z|x) =
∏K
i=1N (zi;µi(x), σ

2
i (x)), (3)

where p(zi) is a prior for the ith component of z, and the
means µi and standard deviations σi together comprise the
variational parameters φ over which VI optimizes.2

Prominently, the model class defined by Eqs. 1-3 in-
cludes variational autoencoders (VAEs) (Kingma & Welling,
2014a) for data compression, but we stress that the class is

1For supervised learning with labels y, we would consider
a conditional generative model p(y, z|x) = p(y|z,x) p(z) with
conditional likelihood p(y|z,x), where z are the model parameters,
treated as a Bayesian latent variable with associated prior p(z).

2These parameters are often amortized by a neural network (in
which case µi and σi depend on x), but don’t have to (in which
case µi and σi do not depend on x and are directly optimized).

much wider, capturing also Bayesian neural nets (MacKay,
2003), probabilistic word embeddings (Barkan, 2017; Bam-
ler & Mandt, 2017), matrix factorization (Mnih & Salakhut-
dinov, 2008), and topic models (Blei et al., 2003).

Protocol Overview. We consider two parties in commu-
nication, a sender and a receiver. In the case of data com-
pression, both parties have access to the model, but only
the sender has access to the data point x, which it uses
to fit a variational distribution qφ(z|x). It then uses the
algorithm proposed below to select a latent variable vec-
tor ẑ that has high probability under qφ, and that can be
encoded into a compressed bitstring, which gets transmitted
to the receiver. The receiver losslessly decodes the com-
pressed bitstring back into ẑ and uses the likelihood p(x|ẑ)
to generate a reconstructed data point x̂, typically setting
x̂ = argmaxx p(x|ẑ). In the case of model compression,
the sender infers a distribution qφ(z|x) over model parame-
ters z given training data x, and uses our algorithm to select
a suitable vector ẑ of quantized model parameters. The
receiver receives ẑ and uses it to reconstruct the model.

The rest of this section describes how the proposed algo-
rithm selects ẑ and encodes it into a compressed bitstring.

3.2. Background: Arithmetic Coding

Our quantization algorithm, introduced in Section 3.3 below,
is inspired by a lossless compression algorithm, arithmetic
coding (AC) (Witten et al., 1987; MacKay, 2003), which
we generalize from discrete data to the continuous space of
latent variables z ∈ RK . To get there, we first review the
main idea of AC that our proposed algorithm borrows.

AC is an instance of so-called entropy coding. It uniquely
maps messages m ∈ M from a discrete setM to a com-
pressed bitstring of some lengthRm (the “bitrate”). Entropy
coding exploits prior knowledge of the distribution p(m) of
messages to map probable messages to short bitstrings while
spending more bits on improbable messages. This way, en-
tropy coding algorithms aim to minimize the expected rate
Ep(m)[Rm]. For lossless compression, the expected rate has
a fundamental lower bound, the entroy H = Ep(m)[h(m)],
where h(m) = − log2 p(m) is the Shannon information
content of m. AC provides near optimal lossless compres-
sion as it maps each messagem ∈M to a bitstring of length
Rm = dh(m)e, where d·e denotes the ceiling function.

AC is usually discussed in the context of streaming com-
pression where m is a sequence of symbols from a finite
alphabet, as AC improves on this task over the more widely
known Huffman coding (Huffman, 1952). In our work, we
focus on a different aspect of AC: its use of a cumulative
probability distribution function to map a nonuniformly dis-
tributed random variable m ∼ p(m) to a number ξ that is
nearly uniformly distributed over the interval [0, 1).
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discrete message m

0

(0.001)2 =1/8

(0.01)2 =1/4

(0.011)2 =3/8

(0.1)2 =1/2

(0.101)2 =5/8

(0.11)2 =3/4

(0.111)2 =7/8

1

F<(m)
F≤(m)

p(m)

−2 0 2

latent variable zi ∈ R

±σi±σi±σi±σi±σi±σi±σi±σi±σi±σi±σi±σi±σi±σi±σi±σi±σi±σi
µi

p(zi)
F (zi)
q(zi|x)
g(ξi)

Figure 1. Comparison of Arithmetic Coding (AC, left) and VBQ
(right, proposed). Both methods use a prior CDF (orange) to map
nonuniformly distributed data to a number ξ ∼ U(0, 1), and both
require an uncertainty region for truncation.

Figure 1 (left) illustrates AC for a binomial-distributed mes-
sage m ∈ {0, . . . , 10} (the number of ‘heads’ in a sequence
of ten coin flips). The solid and dashed orange lines show
the left and right sided cumulative distribution function,3

F<(m) :=
∑
m′<m p(m

′) and F≤(m) :=
∑
m′≤m p(m

′),
respectively. They define a partitioning of the interval [0, 1)
(vertical axis in Figure 1 (left)) into pairwise disjoint subin-
tervals Im :=

[
F<(m), F≤(m)

)
(orange squares). Since

the intervals Im are disjoint for all m ∈ M, any number
ξ ∈ Im uniquely identifies a given message m. AC picks
such a number ξ̂ ∈ Im and encodes it into a string of bits bκ,
κ ∈ {0, . . . ,Rm} by writing it in binary representation,

ξ̂ = (0.b1b2 . . . bRm
)2 with bits bκ ∈ {0, 1} ∀κ. (4)

Since any ξ ∈ Im may be used to identify the message m,
we can interpret the interval Im as an uncertainty region
in ξ-space. AC picks the number ξ̂ ∈ Im with the shortest
binary representation. This requires at most dh(m)e bits
because the numbers ξ that can be represented by Eq. 4
with Rm = dh(m)e form a uniform grid with spacing
2−Rm = 2−dh(m)e, which is at most as wide as the size of
the interval, |Im| = p(m) = 2−h(m). The red arrows in
Figure 1 (left) illustrate how AC would encode the message
m = 7 in the toy example into the bitstring “111”. Decoding
works in the opposite direction and maps ξ̂ back to m.

In the next section, we generalize AC to the continuous
domain. As we will show, the concept of an “uncertainty
region” in ξ-space becomes again crucial.

3.3. Variational Bayesian Quantization

We now present our proposed algorithm, Variational
Bayesian Quantization (VBQ), a novel quantization method
for lossy compression that is inspired by AC but that op-
erates on continuous latent variables z ∈ RK . Similar to

3If m is a sequence of symbols, F< and F≤ are defined by lex-
icographical order and can be constructed in a streaming manner.

AC, VBQ exploits knowledge of a prior probability distribu-
tion p(z) in combination with a (soft) uncertainty region to
encode probable values of z into short bitstrings.

From Intervals to Distributions. The main ideas that
VBQ borrows from AC are as follows: (1) the use of a
cumulative distribution function to map a non-uniformly
distributed random variable to a uniformly distributed ran-
dom variable ξ over the interval (0, 1), and (2) the use of an
“uncertainty region” to select a number from this interval to
encode the message with as few bits as possible. While AC
uses an interval Im with hard boundaries, VBQ softens this
uncertainty region by considering posterior uncertainty.

We consider a single continuous latent variable zi ∈ R with
arbitrary prior p(zi). The cumulative (CDF) of the prior,

F (zi) :=

∫ zi

−∞
p(z′i) dz

′
i , (5)

is shown in orange in Figure 1 (right). It maps zi ∼ p(zi)
to ξi ∼ U(0, 1). In contrast to the discrete case discussed
in Section 3.2, where the prior CDF maps each message m
to an entire interval Im, note that the CDF of a continuous
random variable maps real numbers to real numbers.

Since ξi ∼ U(0, 1) is almost surely an irrational number, its
binary representation is infinitely long, and thus has to be
truncated. We find an optimal truncation by generalizing the
idea of the uncertainty region Im to the continuous space:
we consider the posterior uncertainty in zi-space and map
it to ξi-space. Approximating the posterior p(zi|x) by the
variational distribution q(zi|x) := N (zi;µi(x), σ

2
i (x)), see

Eq. 3, we thus consider the function

g(ξi) := q(F−1(ξi) |x). (6)

Here, F−1 is the inverse CDF (the quantile function), which
maps ξi back to zi. Note that g is not a normalized proba-
bility distribution, as Eq. 6 deliberately does not include the
Jacobian∇ξiF−1(ξi) because the final objective will be to
maximize qφ(z|x) at a single point (see Eq. 7 below).

Intuition. The solid and dashed purple curves in figure
Figure 1 (right) plot q(zi|x) and g(ξi) on the horizontal and
vertical axis, respectively. The red arrows illustrate how a
finite uncertainty region µi(x)±σi(x) in zi-space is mapped
to a finite width of g in ξi-space. VBQ finds a quantile ξ̂i
that has high value under g while at the same time having
a short binary representation. The two purple arrowheads
on the vertical axis point to two viable candidates, ξ̂i = 7

8

and ξ̂i = 3
4 , that both lie within the uncertainty region.

The choice between these two points poses a rate-distortion
trade-off: while 7

8 ≡ (0.111)2 has higher value under g (i.e.,
it identifies a point ẑi = F−1( 78 ) with higher approximate
posterior probability q(ẑi|x)), the alternative ξ̂i = 3

4 ≡
(0.11)2 can be encoded in fewer bits.
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Algorithm 1 Rate-Distortion Optimization for Dimension i

Input: Prior CDF F (zi), rate penalty λ > 0,
variational mode µi(x) and variance σ2

i (x).
Output: Optimal code point ξ̂∗i ≡ (0.b1b2 . . . bR(ξ̂∗i )

)2.

Evaluate ξ†i ← F (µi(x)).
Initialize r ← 0, ξ̂∗i ← null, `∗ ←∞.
repeat

Update r ← r + 1
Set ξ̂r,left

i ← 2−rb2rξ†i c, ξ̂r,right
i ← 2−rd2rξ†i e.

if ξ̂r,left
i 6= 0 and `λ(ξ̂r,left

i |x) < `∗ then
Update ξ̂∗i ← ξ̂r,left

i , `∗ ← `λ(ξ̂
r,left
i |x).

end if
if ξ̂r,right

i 6= 1 and `λ(ξ̂r,right
i |x) < `∗ then

Update ξ̂∗i ← ξ̂r,right
i , `∗ ← `λ(ξ̂

r,right
i |x).

end if
until log g(ξ†i )− log g(ξ̂∗i ) < λ(r + 1−R(ξ̂∗i )).

Optimizing the Rate-Distortion Trade-Off. Rather than
considering a hard uncertainty region, VBQ simply tries
to find a point ξ ≡ (ξi)

K
i=1 that identifies latent variables

z ≡ (zi)
K
i=1 with high probability under the variational

distribution qφ(z|x) while being expressible in few bits.
We thus express log qφ(z|x) in terms of the coordinates
ξi = F (zi) using Eq. 3,

log qφ(z|x) = −
K∑

i=1

(
F−1(ξi)− µi(x)

)2

2σ2
i (x)

+ cnst. (7)

For each dimension i, we restrict the quantile ξi ∈ (0, 1) to
the set of code points ξ̂i that can be represented in binary
via Eq. 4 with a finite but arbitrary bitlength R(ξ̂i). We
define the total bitlength R(ξ̂) :=

∑K
i=1R(ξ̂i), i.e., the

length of the concatenation of all codes ξ̂i, i ∈ {1, . . . ,K}
neglecting, for now, an overhead for delimiters (see below).
Using a rate penalty parameter λ > 0 that is shared across
all dimensions i, we minimize the rate-distortion objective

Lλ(ξ̂|x) = − log qφ(ẑ|x) + λR(ξ̂) (8)

=
K∑

i=1

[(
F−1(ξ̂i)− µi(x)

)2

2σ2
i (x)

+ λR(ξ̂i)
]
+ cnst.

The optimization thus decouples across all latent dimen-
sions i, and can be solved efficiently and in parallel by
minimizing the K independent objective functions

`λ(ξ̂i|x) =
(
F−1(ξ̂i)− µi(x)

)2
+ 2λσ2

i (x)R(ξ̂i). (9)

Although the bitlength R(ξ̂i) is discontinuous (it counts
the number of binary digits, see Eq. 4), `λ(ξ̂i|x) can be
efficiently minimized over ξ̂i using Algorithm 1. The al-
gorithm iterates over all rates r ∈ {1, 2, . . .} and searches

Figure 2. Effect of an anisotropic posterior distribution on quanti-
zation. Left: linear regression model with optimal fit (green) and
fits of models with quantized parameters (orange, purple). Right:
posterior distribution and quantized model parameters following
two different quantization schemes. Although both quantized mod-
els are equally far away from the optimal solution (green dot),
VBQ (orange) fits the data better because it takes the anisotropy of
the posterior into account.

for the code point ξ̂∗i that minimizes `(ξ̂i|x). For each r,
the algorithm only needs to consider the two code points
ξ̂r,left
i ≤ ξ†i and ξ̂r,right

i ≥ ξ†i with rate at most r that enclose
the optimum ξ†i := F (µi(x)) and are closest to it; these two
code points can be easily computed in constant time. The
iteration terminates as soon as the maximally possible re-
maining increase in log q(zi|x) = log g(ξi) is smaller than
the minimum penalty for an increasing bitlength (in practice,
the iteration rarely exceeds r ≈ 8).

Encoding. After finding the optimal code points (ξ̂∗i )
K
i=1,

they have to be encoded into a single bitstring. Simply
concatenating the binary representations (Eq. 4) of all ξ̂∗i
would be ambiguous due to their variable lengths R(ξ̂∗i )
(see detailed discussion in the Supplementary Material). In-
stead, we treat the code points as symbols from a discrete
vocabulary and encode them via lossless entropy coding,
e.g., Arithmetic Coding. The entropy coder requires a prob-
abilistic model over all code points; here we simply use
their empirical distribution. When using our method for
model compression, this empirical distribution has to be
transmitted to the receiver as additional header information
that counts towards the total bitrate. For data compression,
by contrast, we obtain the empirical distribution of code
points on training data and include it in the decoder.

Discussion. The proposed algorithm adjusts the accuracy
for each latent variable zi based on two factors: (i) a global
rate setting λ that is shared across all dimensions i; and
(ii) a per-dimension posterior uncertainty estimate σi(x).
Point (i) allows tuning the rate-distortion trade-off whereas
(ii) takes the anisotropy of the latent space into account.

Figure 2 illustrates the effect of anisotropy in latent space.
The right panel plots the posterior of a toy Bayesian linear
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Figure 3. Performance of compressed word embeddings on a stan-
dard semantic and syntactic reasoning task (Mikolov et al., 2013a).
VBQ (orange, proposed) leads to much smaller file sizes at equal
model performance over a wide range of performances.

regression model y = ax+ b (see left panel) with only two
latent variables z ≡ (a, b). Due to the elongated shape of
the posterior, VBQ uses a higher accuracy for a than for b.
As a result, the algorithm finds a quantization ẑ (orange dot
in right panel) that is closer to the optimal (MAP) solution
(green dot) along the a-axis than along the b-axis.

The purple dot in Figure 2 (right) compares to a more com-
mon quantization method, which simply rounds the MAP
solution to the nearest point (which is then entropy coded)
from a fixed grid with spacing δ > 0. We tuned δ so that the
resulting quantized model parameters (purple dot) have the
same distance to the optimum as our proposed solution (or-
ange dot). Despite the equal distance to the optimum, VBQ
finds model parameters with higher posterior probability.
The resulting model fits the data better (left panel).

This concludes the description of the proposed Variational
Bayesian Quantization algorithm. In the next section, we an-
alyze the algorithm’s behaviour experimentally and demon-
strate its performance for variable-bitrate compression on
both word embeddings and images.

4. Experiments
We tested our approach on two very different domains: word
embeddings and images. For word embeddings, we mea-
sured the performance drop on a semantic reasoning task
due to lossy compression. Our proposed VBQ method sig-
nificantly improves model performance over uniform dis-
cretization and compression with either Arithmetic Coding
(AC), gzip, bzip2, or lzma at equal bitrate. For image com-
pression, we show that a single standard VAE, compressed
with VBQ, outperforms JPEG and other baselines at a wide
range of bitrates, both quantitatively and visually.

4.1. Compressing Word Embeddings

We consider the Bayesian Skip-gram model for neural word
embeddings (Barkan, 2017), a probabilistic generative for-
mulation of word2vec (Mikolov et al., 2013b) which inter-

prets word and context embedding vectors as latent variables
and associates them with Gaussian approximate posterior
distributions. Point estimating the latent variables would
result in classical word2vec. Even though the model was
not specifically designed or trained with model compres-
sion taken into consideration, the proposed algorithm can
successfully compress it in post-processing.

Experiment Setup. We implemented the Black Box VI
version of the Bayesian Skip-gram model proposed in (Bam-
ler & Mandt, 2017),4 and trained the model on books pub-
lished between 1980 and 2008 from the Google Books cor-
pus (Michel et al., 2011), following the preprocessing de-
scribed in (Bamler & Mandt, 2017) with a vocabulary of
V = 100,000 words and embedding dimension d = 100.

In the trained model, we observed that the distribution of
posterior modes µw,j across all words w and all dimen-
sions j of the embedding space was quite different from the
prior. To improve the bitrate of our method, we used an “em-
pirical prior” for encoding that is shared across all w and j;
we chose a Gaussian N (0, σ2

0) where σ2
0 is the empirical

variance of all variational means (µw,j)w=1,...,V ; j=1,...,d.

We compare our method’s performance to a baseline that
quantizes to a uniform grid and then uses the empirical
distribution of quantized coordinates for lossless entropy
coding. We also compare to uniform quantization baselines
that replace the entropy coding step with the standard com-
pression libraries gzip, bzip2, and lzma. These methods
are not restricted by a factorized distribution of code points
and could therefore detect and exploit correlations between
quantized code points across words or dimensions.

We evaluate performance on the semantic and syntactic rea-
soning task proposed in (Mikolov et al., 2013a), a popular
dataset of semantic relations like “Japan : yen = Russia : ru-
ble” and syntactic relations like “amazing : amazingly =
lucky : luckily”, where the goal is to predict the last word
given the first three words. We report Hits@10, i.e., the frac-
tion of challenges for which the compressed model ranks
the correct prediction among the top ten.

Results. Figure 3 shows the model performance on the
semantic and syntactic reasoning tasks as a function of com-
pression rate. Our proposed VBQ significantly outperforms
all baselines and reaches the same Hits@10 at less than half
the bitrate over a wide range.5

4See Supplementary Material for hyperparameters. Our code
is available at https://github.com/mandt-lab/vbq.

5 The uncompressed model performance (dotted gray line in
Figure 3) is not state of the art. This is not a shortcoming of
the compression method but merely of the model, and can be
attributed to the smaller vocabulary and training set used compared
to (Mikolov et al., 2013b) due to hardware constraints.



Variational Bayesian Quantization

decreasing bitrate, increasing distortion

M
N

IS
T

Fr
ey

 F
ac

es

Figure 4. Qualitative behavior of our proposed VBQ algorithm on
two data sets of small-scale images (MNIST and Frey Faces). With
decreasing bitrate, the method starts to confuse the encoded object
with a generic one (encoded by the median of the prior p(z)).

4.2. Image Compression

While Section 4.1 demonstrated the proposed VBQ method
for model compression, we now apply the same method to
data compression using a variational autoencoder (VAE).
We first provide qualitative insight on small-scale images,
and then quantitative results on full resolution color images.

Model. For simplicity, we consider regular VAEs with a
standard normal prior and Gaussian variational posterior.
The generative network parameterizes a factorized categor-
ical or Gaussian likelihood model in experiments in Sec.
4.2.1 or 4.2.2, respectively. Network architectures are de-
scribed below and in more detail in Supplementary Material.

Baselines. We consider the following baselines:

• Uniform quantization: for a given image x, we quan-
tize each dimension of the posterior mean vector µ(x)
to a uniform grid. We report the bitrate for encoding
the resulting quantized latent representation via stan-
dard entropy coding (e.g., arithmetic coding). Entropy
coding requires prior knowledge of the probabilities of
each grid point. Here, we use the empirical frequencies
of grid points over a subset of the training set;

• k-means quantization: similar to “uniform quantiza-
tion”, but with the placement of grid points optimized
via k-means clustering on a subset of the training data;

• Quantization with generalized Lloyd algorithm: similar
to above, but the grid points are optimized using gener-
alized Lloyd algorithm (Chou et al., 1989), a widely-
used state-of-the-art classical quantization method;

• JPEG: we used the libjpeg implementation packaged
with the Python Pillow library, using default config-
urations (e.g., 4:2:0 subsampling), and we adjust the
quality parameter to vary the rate-distortion trade-off;

• Deep learning baseline: we compare to Ballé et al.
(2017), who directly optimized for the rate and distor-
tion, training a separate model for each point on the R-
D curve. In our large-scale experiment, we adopte their
model architecture, so their performance essentially
represents the end-to-end optimized performance up-
per bound for our method (which uses a single model).

4.2.1. QUALITATIVE ANALYSIS ON TOY DATASETS

We trained a VAE on the MNIST dataset and the Frey Faces
dataset, using 5 and 4-dimensional latent spaces, respec-
tively. See Supplemental Material for experimental details.

Figure 4 shows example image reconstructions from our
VBQ algorithm with increasing λ, and thus decreasing bi-
trate. The right-most column is the extreme case λ → ∞,
resulting in the shortest possible bistring encoding ξ̂i =
(0.1)2 = 1

2 (i.e., ẑi being the median of the prior p(zi)) for
every dimension i. As the bitrate decreases (asR(ξ̂)→ 0),
our method gradually “confuses” the original image with
a generic image (roughly in the center of the embedding
space), while preserving approximately the same level of
sharpness. This is in contrast to JPEG which typically intro-
duces blocky and/or pixel-level artifacts at lower bitrates.

4.2.2. FULL-RESOLUTION COLOR IMAGES

We apply our VBQ method to a VAE trained on color im-
ages, and obtain practical image compression performance
rivaling JPEG, while outperforming baselines that ignore
posterior uncertainty and directly quantize latent variables.

Model and Dataset. The inference and generative net-
works of our VAE are identical to the analysis and syn-
thesis networks of Ballé et al. (2017), using 3 layers of
256 filters each in a convolutional architecture. We used a
diagonal Gaussian likelihood model, whose mean is com-
puted by the generative net and the variance σ2 is fixed
as a hyper-parameter, similar to a β-VAE (Higgins et al.,
2017) approach (σ2 was tuned to 0.001 to ensure the VAE
achieved overall good R-D trade-off; see (Alemi et al.,
2018)). We trained the model on the same subset of the
ImageNet dataset as used in (Ballé et al., 2017). We evalu-
ated performance on the standard Kodak (Kodak) dataset,
a separate set of 24 uncompressed color images. As in the
word embedding experiment, we also observed that using an
empirical prior for our method improved the bitrate; for this,
we used the flexible density model of Ballé et al. (2018),
fitting a different distribution per latent channel, on samples
of posterior means µ (treating spatial dimensions as i.i.d.).
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(a) Original (b) JPEG
MS-SSIM=0.813

(c) VBQ
MS-SSIM=0.933

(d) Uniform grid
MS-SSIM=0.723

(e) Ballé et al.
MS-SSIM=0.958

Figure 5. Image reconstructions at matching bitrate (0.24 bits per pixel). VBQ (c; proposed) outperforms AC with uniform quantization (d)
and JPEG (b) and is comparable to the approach by (Ballé et al., 2017) (e) despite using a model that is not optimized for this specific
bitrate. Uniform quantization here used a modified version of the VAE in Figure 6, using an additional conv layer with smaller dimensions
to reduce the bitrate down to 0.24 (this was not possible in the original model even with the largest possible grid spacing).
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Figure 6. Aggregate rate-distortion performance on the Kodak
dataset (higher is better). VBQ (blue, proposed) outperforms JPEG
for all tested bitrates with a single model. By contrast, (Ballé et al.,
2017) (black squares) relies on individually optimized models for
each bitrate that all have to be included in the decoder.

Results. As common in image compression work, we
measure distortion between original and compressed im-
ages under two quality metrics (the higher the better):
Peak Signal-to-Noise ratio (PSNR) and MS-SSIM (Wang
et al., 2003), over all RGB channels. Figure 6 shows rate-
distortion performance. We averaged both the bits per pixel
(BPP) and quality measure over all images in the Kodak
dataset for each λ (we got similar results by averaging only
over the quality metrics for fixed bitrates via interpolation).

We found that our method generally produced images with
higher quality, both in terms of PSNR and perceptual quality,
compared to JPEG and uniform quantization. Similar to
(Ballé et al., 2017), our method avoids unpleasant artifacts,
and introduces blurriness at low bitrate. See Figure 5 for
example image reconstructions. For more examples and R-
D curves on individual images, see Supplementary Material.

Although our results fall short of the end-to-end optimized
rate-distortion performance of Ballé et al. (2017), it is worth
emphasizing that our method operates anywhere on the R-D
curve with a single trained VAE model, unlike Ballé et al.
(2017) , which requires costly optimization and storage of
individual models for each point on the R-D curve. On
the other hand, as with any quantization method, the re-
construction quality of VBQ is upper-bounded by that of
the full-precision latents; e.g., evaluating on uncompressed
latents gives a PSNR upper-bound of about 38.9 in Figure 6.
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Ex[num. bits] (proposed): 1.07
Ex[num. bits] (baseline): 0.54

Channel 2:
Ex[DKL(q(zi|x) || p(zi))]: 0.09
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density of µi

Figure 7. Variational posteriors and the encoding cost for the first 6
latent channels of an image-compression VAE trained with high β
setting. “Baseline” refers to uniform quantization. The proposed
VBQ method wastes fewer bits on channels that exhibit posterior
collapse (channels 2, 3, and 5) than the baseline method. It instead
spends more bits on channels without posterior collapse.

Indifference to Posterior Collapse. A known issue in
deep generative models such as VAEs is posterior collapse,
where the model ignores some subset of latent variables,
whose variational posterior distributions collapse to closely
match the prior. Such collapsed dimensions constitute an
overhead in conventional neural compression approaches,
which is often dealt with by a pruning step. One curious
consequence of our approach is that it automatically spends
close to zero bits encoding the collapsed latent dimensions.

As an illustration, we trained a VAE as used in the color
image compression experiment with a high β setting to
purposefully induce posterior collapse, and examine the
average number of bits spent on various latent channels.
Figure 7 shows the prior p(zi), aggregated (approximate)
posterior q(zi) := Ex[q(zi|x)], and histograms of posterior
means µi(x) for the first six channels of the VAE; all the
quantities were averaged over an image batch and across
latent spatial dimensions. We observe that channels 2, 3,
and 5 appear to exhibit posterior collapse, as the aggregated
posteriors closely match the prior while the posterior means
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tightly cluster at zero; this is also reflected by low average
KL-divergence between the variational posterior q(zi|x)
and prior p(zi), see text inside each panel. We observe that,
for these collapsed channels, our method spends fewer bits
on average than uniform quantization (baseline) at the same
total bitrate, and more bits instead on channels 1, 4, and 6,
which do not exhibit posterior collapse. The explanation is
that a collapsed posterior has unusually high variance σ2

i (x),
causing our model to refrain from long code words due to
the high penalty ∝ σ2

i (x) per bitrateR(ξ̂i) in Eq. 9.

5. Conclusions
We proposed a novel algorithm for discretizing latent rep-
resentations in trained latent variables, with applications to
both data and model compression. Our proposed “Varia-
tional Bayesian Quantization” (VBQ) algorithm automati-
cally adapts encoding accuracy to posterior uncertainty esti-
mates, and is applicable to arbitrary probabilistic generative
models with factorized prior and mean-field variational pos-
terior distributions. As our approach separates quantization
from model design and training, it enables “plug-&-play”
compression at variable bitrate with pretrained models.

We showed the empirical effectiveness of our proposed VBQ
method for both model and data compression. For model
compression, VBQ retained significantly higher task per-
formance of a trained word embedding model than other
methods that compress in post-processing. For data com-
pression, we showed that VBQ can outperform JPEG over a
wide range of bitrates with a single trained standard VAE.
Given its versatility, we believe that VBQ holds promise
for compressing Bayesian neural networks, especially in
applications that demand rate-distortion trade-offs. Lastly,
as VBQ relies on accurate posterior approximation , its rate-
distortion performance provides a new metric for quantita-
tive evaluation of approximate Bayesian inference methods.

6. Theoretical Considerations
Here, we provide additional theoretical insights into the
proposed VBQ method based on reviewer feedback.

Dense Quantization Grid. Section 3.3 describes the pro-
posed VBQ algorithm in terms of quantiles ξi. While quan-
tiles simplify the discussion, it is also instructive to consider
what effectively happens directly in representation space.

In the space of representations z, VBQ optimizes over a
dense quantization grid, shown in Figure 8 (left) for a single
dimension zi. Each code point ξ̂i ∈ (0, 1), i.e., each quantile
with a finite-length binary representation, defines a grid
point ẑi = F−1(ξ̂i). The height of each orange bar in the
figure shows the bitlength R(ẑi). Interestingly, the grid
places many points with small R(ẑi) in regions of high

Figure 8. Dense quantization grid of VBQ (left) and a subset of it
(center) that resembles the more common uniform grid (right).

prior probability density (purple curve), while regions of
low prior probability contain only grid points with large
R(ẑi). This observation can be formalized as follows.

Theorem 1. For a latent dimension zi with prior p(zi) and
for any interval I ⊂ R, there exists a grid point ẑi ∈ I
whose bitlength is bounded by the information content of I,
i.e.,R(ẑi) ≤ − log2 P (I) with P (I) =

∫
I p(zi) dzi.

Proof. R(ẑi) is the number of nontrivial bits in the quan-
tile ξ̂i := F (ẑi). For example, the quantiles 1

4 = (0.01)2,
1
2 = (0.1)2, and 3

4 = (0.11)2 each have at most one non-
trivial bit (since the initial “0.” and terminal “1” are con-
sidered trivial), and they are equally spaced with spacing
1
4 = 2−2. Incrementing the number of bits by one divides
the spacing in half. Thus, for any r ∈ N, the quantiles
with at most r nontrivial bits are equally spaced with spac-
ing 2−r−1. The prior CDF F maps any interval I ⊂ R to
an interval F (I) ⊂ (0, 1) of size |F (I)| = P (I). Since
P (I) > 2−r−1 for r = b− log2 P (I)c, the interval I con-
tains at least one grid point ẑi withR(ẑi) ≤ r.

Delimination Overhead. The above theorem provides an
upper bound on the bitrate for a single coordinate zi. En-
coding a high dimensional latent representation z requires
some overhead for delimiting the individual coordinates.

We provide a theoretical upper bound on this overhead for a
severely restricted variant of VBQ that does not have access
to posterior uncertainty estimates and that operates only on
a subset of the proposed grid. Specifically, we pick only one
grid point for each interval In = [n− 1

2 , n+
1
2 ) with n ∈ Z.

According to Theorem 1, there always exists a grid point
ẑi ∈ In with R(ẑi) ≤ − log2 P (In). Thus, the resulting
subset of the grid (Figure 8, center) resembles the more
commonly used uniform grid (Figure 8 right), whose bitrate
under standard entropy coding is the information content.

If we restrict VBQ to this sparse subset of the dense grid,
then the algorithm collapses to a method known as Shannon-
Fano-Elias coding (Cover & Thomas, 2012), whose over-
head over the information theoretically minimal bitrate is
known to be at most one bit per dimension. The full VBQ al-
gorithm has more freedom: it exploits posterior uncertainty
estimates to reduce accuracy where it is not needed, thus
saving bits and improving compression performance.
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This document provides details of the proposed compression
method (Section S1), model and experiment details (Sec-
tion S2), and additional examples of compressed images
(Section S3).

S1. Delimitation Overhead
We elaborate on the “encoding” paragraph of Section 3.3
of the main paper. After finding a quantized code point ξ̂i
for each dimension i ∈ {1, . . . ,K} of the latent space,
these code points have to be losslessly encoded into a sin-
gle bitstring for transmission or storage. We experimented
with two encoding schemes, described in Subsections S1.1
and S1.2 below. Subsection S1.3 provides further analysis.

S1.1. Encoding via Concatenation

We first describe an encoding scheme that we did not end
up using, but that makes it easier to understand the objective
function of VBQ (Eq. 8 of the main text). This encoding
scheme concatenates the binary representations of ξ̂i (Eq. 4
of the main text) for all i ∈ {1, . . . ,K} in to a single bit-
string. As each dimension i contributes R(ξ̂i) bits to the
concatenated bitstring, this encoding scheme justifies the
rate penalty term “λR(ξ̂i)” in Eq. 4 of the main text.

One also has to transmit the rates R(ξ̂i) (in compressed
form using traditional entropy coding) so that the decoder
can split the concatenated bitstring at the correct positions.
While this incurs some overhead, the variable-bitlength rep-
resentation of ξ̂i also saves one bit per dimension i because
the last bit in the binary representation of each ξ̂i does not
need to be transmitted as it is always equal to one (other-
wise, the optimization algorithm in VBQ would favor an
equivalent shorter binary representation of ξ̂i).

*Equal contribution 1Department of Computer Science, Uni-
versity of California, Irvine. Correspondence to: Yibo Yang
<yibo.yang@uci.edu>, Robert Bamler <rbamler@uci.edu>.

S1.2. Encoding via Standard Entropy Coding

The actual encoding scheme we ended up using does not
deal with the binary representation of each ξ̂i explicitly.
Instead, we treat each ξ̂i as a discrete symbol and directly
encode the sequence (ξ̂i)

K
i=1 of symbols via entropy coding

(e.g., standard arithmetic coding). The entropy coder needs
a model of the probability p(ξ̂i) of each symbol. For model
compression, we use the empirical frequencies, which we
transmit as extra header information that counts towards
the total bitrate. For data compression, we estimate the
frequencies on training data and include them in the decoder.

Transmitting the empirical frequencies lead to a negligible
overhead in the word embeddings experiment. Only a few
hundred code points (depending on λ) had nonzero frequen-
cies, so that the compressed file size was dominated by the
encoding of K = V d = 107 quantized latent variables.

S1.3. Justification of the Rate Penalty Term λR(ξ̂i)
All experimental results are reported with the encoding
scheme of Section S1.2 as it lead to slightly lower bitrates
in practice. A peculiarity of this encoding scheme is that
it ignores the length R(ξ̂i) of the binary representation of
each ξ̂i. For a sequence of symbols ξ̂ ≡ (ξ̂i)

K
i=1 with an

i.i.d. entropy model p(ξ̂i), an optimal entropy coder (such as
arithmetic coding) achieves the total bitrateR(ξ̂) = dh(ξ̂)e
with the information content

h(ξ̂) =
K∑

i=1

h(ξ̂i) = −
K∑

i=1

log2 p(ξ̂i). (S1)

In particular, Eq. S1 does not depend onR(ξ̂i). This poses
the question whether the rate penalty term “λR(ξ̂i)” in the
VBQ objective (Eq. 8 of the main text) is justified. Ide-
ally, the algorithm would minimize λh(ξ̂i) = −λ log2 p(ξ̂i)
instead, but this quantity is unknown until the quantiza-
tions (ξ̂i)Ki=1 and therefore the empirical frequencies p(ξ̂i)
are obtained. Our experiments suggest thatR(ξ̂i) is a useful
proxy for the eventual value of h(ξ̂i).

Figure S1 plots the rate estimateR(ξ̂i), i.e., the integer num-
ber of bits in the binary representation of ξ̂i (x-axis) against
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Figure S1. Relation between rate estimate R(ξ̂i) and the actual
contribution h(ξ̂i) of code point ξ̂i to the total bitrate under en-
tropy coding. The approximate affine linear relationship justifies
minimizing R(ξ̂i) as a proxy for h(ξ̂i) in VBQ.

the actual contribution h(ξ̂i) = − log2 p(ξ̂i) to the total
bitrate according to Eq. S1 (y-axis). The figure shows exper-
imental data for compressed word embeddings at 1.32 bits
per latent dimension. We make the following observations:

• For most code points ξ̂i, the dependency between h(ξ̂i)
and R(ξ̂i) can be approximated by an affine linear
function, thus justifying the use of R(ξ̂i) in the opti-
mization of Bayesian AC.

• The slope of the approximate linear dependency is
larger than one. This may be understood by the penalty
term λR(ξ̂i) in the objective function (Eq. 8 of the
main text), which causes the method to avoid code
points ξ̂i with large rate estimates R(ξ̂i), thus reduc-
ing their empirical frequencies p(ξ̂i) and increasing
their information content h(ξ̂i) = − log2 p(ξ̂i). This
observation does not invalidate the use of R(ξ̂i) as
an estimate for h(ξ̂i) since the different slope can be
absorbed in a rescaling of the parameter λ

• For rates R(ξ̂i) ≥ 4, there are two code points for
each rate with considerably lower information content.
These code points correspond to the two extremes for
each rate, i.e., ξ̂i closest to zero or one, respectively.
The observation that the two extremes have lower in-
formation content (i.e., higher empirical frequencies)
can be explained by the fact that the empirical prior dis-
tribution whose CDF we use to map latent variables zi
to quantiles ξi does not fully capture the true distribu-
tion of variational means. Indeed, experiments with
a more long tailed empirical prior distribution lead to
marginally better performance, but the simplicity of a
Gaussian empirical prior seemed more valuable to us.

S2. More Experimental Details
S2.1. Word Embeddings

The word embeddings experiment involved only minimal
hyperparameter tuning, and we only optimized for perfor-
mance of the uncompressed model since the goal of the
experiment was to test the proposed compression method
on a model that was not tuned for compression. We trained
for 105 iterations with minibatches of 104 randomly drawn
words and contexts due to hardware constraints. We tried
learning rates 0.1 and 1 and chose 0.1.

S2.2. Experiments on Images

As mentioned in the main text, we used regular VAEs in the
image experiments with standard normal prior p(z) and fac-
torized normal posterior q(z|x) with diagonal covariance.

S2.3. MNIST

The VAE’s inference network has two convolutional layers
followed by a fully connected layer. The two conv layers
use 32 and 64 filters respectively, with kernel size 3, stride
size 2, and ReLU activation. The fully connected layer has
output dimension 10 so that µ and σ2 of q(z|x) each has
dimension 5.

The generative network architecture mirrors the inference
network but in reverse, starting with a dense layer mapping
5 dimensional latent variables to 1568 dimensional, treated
as 32-channel 7x7 activations, and followed by two decon-
volutional layers of 64 and 32 filters (with identical padding
and stride as the convolutional layers). The output is de-
convolved with a single 3x3 filter with sigmoid activation
function. For each pixel, the (scalar) output of the last layer
parameterizes the likelihood of the pixel being white.

We trained the network on binarized MNIST images for 100
epochs, using the Adam optimizer with learning rate 10−4.

S2.4. Frey Faces

On the Frey Faces dataset, we observe poor reconstruction
quality by training on binarized images with a factorized
Bernoulli likelihood model; instead, we treat each pixel
as an observation from a factorized categorical likelihood
model with 256 possible outcomes.

The VAE’s inference network has two layers. The first
layer flattens the input image, converts each pixel value in
{0, 1, ..., 255} into a one-hot vector ∈ R256, and uses it to
index a 128-dimensional dense vector. The second layer
flattens the result of the first layer as its input (which has
dimensionality equal to 128 × number of pixels), and fully
connects its input to 8 hidden units. The final output is split
to obtain 4-dimensional µ and logσ2 of q(z|x).
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The generative network has two fully connected layers. The
first layer uses 4 hidden units and ReLU activation; the sec-
ond layer uses 256 × number of pixels hidden units, and
takes a 256-way softmax to compute the categorical proba-
bility of of each pixel value taking value in {0, 1, ..., 255}.
We obtained the Frey Faces images from https://cs.
nyu.edu/˜roweis/data.html. We trained on a ran-
dom subset of 1800 images for 800 epochs, using the Adam
optimizer with learning rate 10−4.

On both MNIST and Frey Faces, we vary the rate-distortion
trade-off parameter λ of Variational Bayesian Quantization
between 10−5 and 104.

S2.5. Color Image Compression

As mentioned in the main text, the VAE here uses a fully
convolutional architecture with 3 layers of 256 filters each,
the same as in (Ballé et al., 2017); see the latter for detailed
descriptions. We tuned the variance σ2 of the likelihood
model on a logarithmic grid from 10−4 to 0.1 and set it to
0.001. The VAE was trained on the same dataset as in (Ballé
et al., 2017) for 2 million steps, using Adam with learning
rate 10−4.

In the image compression R-D curves, λ ranges from 2−6

to 216. In Figure 5 of the main text, λ was set to 17.5
for VBQ to match the bitrate of the other methods. The
uniform quantization result was obtained with 4 quantization
levels, on a separately tuned model that had an additional
convolutional layer of 64 channels. The additional conv
layer was to reduce the latent dimensionality, as uniform
quantization could not achieve bitrates lower than 0.5 even
with only 2 grid points in the original 3-layer model.

S3. Additional Image Compression Examples
Starting on the next page, we provide detailed compression
results for individual images from the Kodak dataset. For
each image, we show the rate-distortion performance by
various methods, followed by reconstructions using our
proposed method and JPEG at equal bitrate.1

1The present version of this document contains a subset of
example images due to a file size limit on arXiv submissions.
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Figure S2. Proposed. bits-per-pixel: 0.27, PSNR: 23.595, MS-SSIM: 0.871

Figure S3. JPEG. bits-per-pixel: 0.27, PSNR: 22.015, MS-SSIM: 0.816
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Figure S4. Proposed. bits-per-pixel: 0.19, PSNR: 29.226, MS-SSIM: 0.882

Figure S5. JPEG. bits-per-pixel: 0.19, PSNR: 26.658, MS-SSIM: 0.747
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Figure S6. Proposed. bits-per-pixel: 0.19, PSNR: 30.664, MS-SSIM: 0.94

Figure S7. JPEG. bits-per-pixel: 0.19, PSNR: 26.201, MS-SSIM: 0.842
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Figure S8. Proposed. bits-per-pixel: 0.34, PSNR: 22.177, MS-SSIM: 0.903

Figure S9. JPEG. bits-per-pixel: 0.34, PSNR: 21.331, MS-SSIM: 0.882
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(a) Proposed. bits-per-pixel: 0.22, PSNR: 29.584, MS-SSIM: 0.935 (b) JPEG. bits-per-pixel: 0.22, PSNR: 26.543, MS-SSIM: 0.846
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Figure S11. Proposed. bits-per-pixel: 0.2, PSNR: 29.523, MS-SSIM: 0.928

Figure S12. JPEG. bits-per-pixel: 0.2, PSNR: 26.6, MS-SSIM: 0.838
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Figure S13. Proposed. bits-per-pixel: 0.21, PSNR: 28.77, MS-SSIM: 0.908

Figure S14. JPEG. bits-per-pixel: 0.21, PSNR: 26.247, MS-SSIM: 0.818
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(a) Proposed. bits-per-pixel: 0.2, PSNR: 29.006, MS-SSIM: 0.936 (b) JPEG. bits-per-pixel: 0.2, PSNR: 25.389, MS-SSIM: 0.835
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Figure S16. Proposed. bits-per-pixel: 0.2, PSNR: 31.425, MS-SSIM: 0.945

Figure S17. JPEG. bits-per-pixel: 0.2, PSNR: 26.976, MS-SSIM: 0.833
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Figure S18. Proposed. bits-per-pixel: 0.24, PSNR: 24.254, MS-SSIM: 0.882

Figure S19. JPEG. bits-per-pixel: 0.24, PSNR: 22.562, MS-SSIM: 0.818


