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Abstract
Predicting the physico-chemical properties of pure substances and mixtures is a central task in thermodynamics.
Established prediction methods range from fully physics-based ab-initio calculations, which are only feasible for
very simple systems, over descriptor-based methods that use some information on the molecules to be modeled
together with fitted model parameters (e.g., quantitative-structure-property relationship methods or classical
group contribution methods), to representation-learning methods, which may, in extreme cases, completely
ignore molecular descriptors and extrapolate only from existing data on the property to be modeled (e.g., matrix
completion methods). In this work, we propose a general method for combining molecular descriptors with
representation learning using the so-called expectation maximization algorithm from the probabilistic machine-
learning literature, which uses uncertainty estimates to trade off between the two approaches. The proposed hybrid
model exploits chemical structure information using graph neural networks, but it automatically detects cases
where structure-based predictions are unreliable, in which case it corrects them by representation-learning based
predictions that can better specialize to unusual cases. The effectiveness of the proposed method is demonstrated
using the prediction of activity coefficients in binary mixtures as an example. The results are compelling, as the
method significantly improves predictive accuracy over the current state of the art, showcasing its potential to
advance the prediction of physico-chemical properties in general.

1. Introduction
Information on physico-chemical properties is crucial for
the conceptual design and optimization of processes in many
industries, including chemistry, pharmacy, and biotechnol-
ogy. Among the most important thermodynamic properties
are the activity coefficients of the components in a mix-
ture, which describe the deviation of a mixture from the
ideal mixture and enable the accurate prediction of reaction
and phase equilibria of mixtures. Activity coefficients at
infinite dilution are more sensitive thermodynamic proper-
ties than activity coefficients at finite concentration (and
the subsequently calculated reaction and phase equilibria).
Knowing the activity coefficients at infinite dilution allows
to predict the activity coefficients in binary mixtures of
any finite concentration as well as the activity coefficients
in multi-component mixtures. Unfortunately, measuring
thermodynamic properties of mixtures, such as activity co-
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efficients, is costly and time-consuming, and the number of
relevant mixtures exceeds the ones that can be studied exper-
imentally by orders of magnitude (Jirasek & Hasse, 2023).
Consequently, prediction methods for thermodynamic prop-
erties of mixtures are paramount. Recently, research on such
prediction methods has split into two branches.

On the one hand, descriptor-based methods correlate infor-
mation on the molecules to be modeled with properties of
interest. Among these, group-contribution methods, which
use the composition of the components in terms of structural
groups as molecular descriptors and whose underlying equa-
tions are usually derived from physical theories, are still the
gold standard for property prediction in many (industrial)
fields (Gmehling et al., 2015; Jirasek et al., 2023). The most
successful group-contribution method for predicting activity
coefficients is UNIFAC (Fredenslund et al., 1975; Weidlich
& Gmehling, 1987; Constantinescu & Gmehling, 2016),
which is available in different versions and established in
most process simulation software. Besides the physics-
based group-contribution methods, also other descriptor-
based methods that rely on various descriptors, such as
molecular weight or surface area, or boiling point, have been
proposed for predicting activity coefficients (Katritzky et al.,
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2010; Estrada et al., 2006; Giralt et al., 2004; Mitchell &
Jurs, 1998; Paduszynski, 2016; Ajmani et al., 2008; Behrooz
& Boozarjomehry, 2017; Medina et al., 2022).

In statistics parlance, such descriptor-based models are
called parametric models as they fit model parameters that
affect several related components (e.g., those sharing a given
structural group). Thus, parametric models can leverage sta-
tistical strength across chemically similar components.

On the other hand, recent idea transfer from the machine
learning community has led to an alternative approach to
predicting activity coefficients and other mixture properties,
which is based solely on learned representations without re-
lying on descriptors. So-called matrix completion methods
(MCMs) (Jirasek et al., 2020a;b; Hayer et al., 2022; Groß-
mann et al., 2022; Damay et al., 2021) ignore the chemical
structure of components and fit individual representation
vectors for each mixture component that appears in a set
of available experimental data. While this approach makes
MCMs more flexible than descriptor-based methods, it pre-
vents them from exploiting structural similarities across
components, and, therefore, from extrapolating to new com-
ponents. In statistics parlance, one says that MCMs are
“nonparametric in the components” (note that nonparamet-
ric models tend to have many parameters, similar to how a
“stepless” controller has infinitely many steps).

It was shown empirically (Jirasek et al., 2020a;b; 2022)
that purely nonparametric MCMs make more accurate pre-
dictions for activity coefficients than the descriptor-based
(parametric) state-of-the-art UNIFAC. However, since each
fitted parameter (i.e., each representation vector) in an MCM
only describes a single component, MCMs can only make
predictions for mixtures where each component appears in
some (other) mixtures in the available experimental data
(“in-domain predictions”). By contrast, descriptor-based
methods can exploit the structural similarity of components
to extrapolate to components that appear in no mixture in the
available experimental data (“out-of-domain predictions”).

In this work, we propose a new method for predicting
activity coefficients in binary mixtures that combines the
strengths of both the parametric (descriptor-based) and the
nonparametric (representation-based) approach while avoid-
ing their respective weaknesses. To do this, we phrase both
a parametric and a nonparametric model in a probabilistic
framework, and we fit them jointly using the so-called varia-
tional expectation maximization (variational EM) algorithm.
The algorithm finds an optimal compromise between the
parametric and the nonparametric part of a model, taking
into account how confident each part is in its fitted or pre-
dicted parameters (discussed in Section 2). Our evaluation
shows that weighing off the respective confidences of the
parametric and nonparametric models indeed improves the
accuracy of both in-domain and out-of-domain predictions.

While this paper focuses on the concrete task of predicting
activity coefficients of pure solutes at infinite dilution in
pure solvents at room temperature, the proposed method
can, e.g., be generalized to arbitrary temperatures and con-
centrations following the procedure described in Jirasek
et al. (2022), and to other thermodynamic properties of bi-
nary mixtures by fitting it to a corresponding dataset. More
generally, we argue that the variational EM algorithm is a
valuable tool in thermodynamic modeling since it allows
for combining the strengths of descriptor-based (parametric)
and representation-based (nonparametric) models, which is
a powerful approach beyond the modeling single thermody-
namic properties of binary mixtures.

In the remaining sections of this paper, we first formalize the
problem setup, present the proposed method, and discuss
several variants of its concrete execution. We then empiri-
cally evaluate the accuracy of predicted activity coefficients
and compare them to existing methods and simplified vari-
ants of our proposed method (ablation studies).

2. Method
2.1. Problem Setting

As in Jirasek et al. (2020a), we start from a data set of 4094
measured activity coefficients γ∞

i,j of solutes i at infinite
dilution in solvents j at 298.15 (±1) K. We use the same
data set as in previous work (Jirasek et al., 2020a), which
was taken from the Dortmund Data Bank (DDB) (Onken
et al., 1989), the largest database for phsico-chemical prop-
erties covering the most relevant molecular components
for technical processes. We refrain from using synthetic
datasets because this only demonstrates how well a method
can reproduce an available model and does not results in a
practically useful new model. The DDB dataset is illustrated
in the yellow/black matrix on the right of Figure 1 (which is
discussed in more detail in Section 2.2 below). The matrix
has M = 240 rows and N = 250 columns corresponding
to the M distinct solutes and N distinct solvents that appear
in the data set, and each black pixel indicates an available
experimental data point γ∞

i,j . Our goal is to predict activity
coefficients for the yellow parts of the matrix (“in-domain
predictions”), and to also extend the rows and columns of
the matrix, i.e., predict activity coefficients that involve yet
unstudied solutes or solvents (“out-of-domain predictions”).

A previous deep-learning-based approach (Medina et al.,
2022) addressed this prediction problem with a combination
of three neural networks. The first two networks are so-
called graph neural networks (GNNs) that take as input the
molecular graph structures of the solute and solvent, respec-
tively, i.e., each atom kind, their hybridizations and formal
charges, and the type of bond between each pair of atoms.
The GNNs map the molecular graphs to so-called abstract
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Figure 1. Model and data flow for training the proposed model. Left: graph neural networks take chemical structure information and
output the parameters of conditional prior probability distributions (Equation (1)) over abstract representation vectors. Right: the likelihood
(Equation (2)) models how well given representation vectors explain experimentally measured activity coefficients γ∞

i,j . We use variational
EM (Sections 2.3 and 2.4) to fit the neural network weights θ (parametric, descriptor-based part), and to find variational distributions for
each solute and solvent (nonparametric, representation-based part).

representation vectors u ∈ RK and v ∈ RK , respectively,
where the dimension K is a modeling choice. The third
neural network combines u and v and outputs a prediction
for the activity coefficient for the respective solute at infinite
dilution in the respective solvent. This existing approach can
perform out-of-domain predictions because the neural net-
works can extrapolate to new molecular structures as long
as they share some common substructures with the ones in
the training data. But this approach has the downside that
it uses an entirely parametric model, i.e., it is limited by
the expressiveness of the neural networks and cannot make
any exceptions in case some anomalous components behave
very differently than structurally similar components. Our
proposed method, described below, accounts for exceptions
with anomalous behavior in a nonparametric way.

2.2. Probabilistic Model

Like in Medina et al. (2022), discussed in Section 2.1 above,
our proposed model has a descriptor-based part (left half
of Figure 1) that processes the chemical structures of the
solute and solvent independently using two neural networks
(one for solutes and one for solvents), and our main results
were also obtained by using GNNs here (similar to the
model of Medina et al. (2022)). Unlike in the previous work,
these neural networks parameterize probabilistic models,
i.e., their outputs are not representation vectors u and v but
instead parameters that define so-called conditional prior
probability distributions pθ(u | r) and pθ(v | s), respectively.
Here, θ are the neural network weights, and the bar “|”
denotes conditioning on the chemical structure r and s of the
solute and solvent, respectively. Specifically, the conditional

priors in our empirical analysis are normal distributions,

pθ(u | r) = N
(
u; uµθ(r), diag(uσ2

θ(r))
)
;

pθ(v | s) = N
(
v; vµθ(s), diag(vσ2

θ(s))
) (1)

where the means uµθ(r),
vµθ(s) ∈ RK and variances

uσ2
θ(r),

vσ2
θ(s) ∈ RK

>0 are extracted from the outputs of
the two neural networks. Here, diag(u/vσ2

θ( · )) is a co-
variance matrix with the components of u/vσ2

θ( · ) on its
diagonal, and zeros on all off-diagonal entries. The infer-
ence algorithm, described in Section 2.3 and Section 2.4 be-
low, ensures that u/vσ2

θ( · ) estimates an uncertainty region
around the corresponding mean prediction u/vµθ( · ) of the
parametric part of the model. These uncertainty estimates
affect how strongly the parametric part of the model con-
strains (“regularizes”) the nonparametric part of the model
during training which we describe next.

The representation-based (nonparametric) part of our model
is a probabilistic MCM (Jirasek et al., 2020a). It repre-
sents each solute i and each solvent j that appears in the
experimental data with an individual representation vec-
tor ui,vj ∈ RK , respectively, which it uses to predict the
activity coefficients γ∞

i,j . Since activity coefficients range
over several orders of magnitude, we model their logarithm,
ln γ∞

i,j . We use a simple Gaussian likelihood,

p(ln γ∞
i,j |ui,vj) = N (ln γ∞

i,j ;ui · vj , λ
2) (2)

where “·” denotes the dot product and λ = 0.15 as proposed
in previous work (Jirasek et al., 2020a). While more expres-
sive likelihoods are compatible with our setup, we found
the simple choice of Equation (2) to be sufficient.
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2.3. Fitting the Model: Intuition

While the inference algorithm that we use is easy to im-
plement (see Algorithm 1 discussed in Section 2.4 below),
understanding why it works requires more explanation. We
therefore first motivate the algorithm in this section before
formalizing it mathematically in Section 2.4.

We propose to train the nonparametric and parametric parts
of the model jointly using the so-called variational expecta-
tion maximization (variational EM) (Dempster et al., 1977;
Beal & Ghahramani, 2003) algorithm. Variational EM al-
lows us to fit a model that can generalize across components
with similar chemical structures while still being able to
learn exceptions for individual components where the ex-
perimental data shows evidence for anomalous behavior.

The arrows in Figure 1 show the direction of data flow in
the algorithm. It concurrently fits both the neural network
weights θ of the conditional priors and a so-called varia-
tional distribution qϕ(ui) and qϕ(vj) for each solute i and
each solvent j that appears in the experimental data. The
weights θ of the conditional priors are fitted to model the
data as well as one can with a parametric model. By contrast,
the variational distributions are fitted in a nonparametric way.
They are fitted to find a compromise between the conditional
priors (which can share statistical strength across chemically
similar components but cannot make exceptions for anoma-
lous cases) and the experimental data (which may contain
evidence for anomalous behaviors, but which is often scarce
and generally affected by measurement errors).

Conceptual Remark on Empirical Bayes Methods.
Readers who are experienced with Bayesian inference may
find it strange that we fit the prior distribution to the data. In
normal Bayesian inference, one seeks the posterior distribu-
tion of some experimental data under a given probabilistic
model, and one assumes that the prior of the probabilistic
model is given (e.g., informed by expert knowledge). Varia-
tional EM falls into the class of so-called empirical Bayes
methods, which differ from normal Bayesian inference in
that they estimate the prior distribution from the data as well.
This would be an underspecified problem if the prior was
unconstrained, in which case the prior would overfit to the
data, and the resulting posterior would be equal to the prior
and thus also overfit, i.e., perfectly explain the available data
but fail to generalize beyond it. To avoid this collapse of
empirical Bayes, one has to constrain the prior to a smaller
class of distributions than the posterior.

In our setup, the necessary constraint on the prior comes
from the finite expressiveness of the neural networks: unless
the neural network for, e.g., solute representation vectors ui

is exorbitantly large, it cannot output completely indepen-
dent prior parameters

(
uµθ(ri),

uσ2
θ(ri)

)
for all solutes i

in the dataset. Thus, fitting the neural network weights θ
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Figure 2. Influence of prior uncertainty estimates (turquoise) on
the final fitted parameters (black) for methylsulfolane (least fre-
quent solvent, left) and water (most frequent solvent, right). Con-
centric ellipses show 25%, 75%, and 95% quantiles, respectively.
For low prior uncertainty (small turquoise ellipses, left), the final
fit is forced to closely match the prior, while a large prior uncer-
tainty (right) admits more freedom to the final fit. Discussion in
Section 2.3 and model architectures in Section 3.

cannot perfectly overfit the prior to the data. By contrast,
the variational distributions qϕ(ui) and qϕ(vj) are fitted
nonparametrically, i.e., with individual parameters for each
solute and solvent. The reason why these do not perfectly
overfit the data is because they are not fitted solely to the data
but instead obtained by (approximate) Bayesian inference
with the (non-overfitting) prior (explained in Section 2.4).

The role of prior uncertainties. Our ablation studies in
the results section show that it is indeed crucial that the
compromise between the parametric and the nonparamet-
ric fit takes the uncertainty estimates uσ2

θ(r) and vσ2
θ(s) of

the conditional priors into account. Figure 2 shows two
examples of how prior uncertainties affect the training in
variational EM. The two panels show 2-dimensional cuts of
the representation spaces for the solvents methylsulfolane
(left) and water (right). We picked the two dimensions in
representation space in which prior and variational distribu-
tion differ most (measured by Kullback-Leibler divergence
(Kullback & Leibler, 1951; Murphy, 2022)). The dashed
turquoise and solid black ellipses show 25%, 75%, and
95% quantiles of the conditional priors (Equation (1)) and
variational distributions, respectively.

The positions of the ellipses in representation space are not
directly interpretable, but their sizes indicate uncertainty
estimates. For example, the prior predictions for methyl-
sulfolane (left panel in Figure 2) have low uncertainty (the
turquoise ellipses are small). This is expected to happen
for solvents (and equally for solutes) where the dataset con-
tains structurally similar solvents that empirically behave
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similarly in mixtures, thus allowing the neural network to
effectively and confidently interpolate between them. The
low prior uncertainty causes variational EM to trust the prior
predictions, and to fit a variational distribution qϕ(vj) (solid
black ellipses) that closely follows the prior.

By contrast, the prior predictions for water (right panel in
Figure 2) have high uncertainty (the turquoise ellipses are
large). This is expected to happen if the dataset contains
solvents that are structurally similar to water but behave
very differently in mixtures. Such anomalous cases prevent
the neural network from interpolating effectively. However,
as we discuss in Section 2.4 below, the neural network is
at least fitted to detect such cases, and to reflect them by
outputting a large uncertainty estimate vσ2

θ(s). As can be
seen in the right panel of Figure 2, the high prior uncer-
tainty allows variational EM to fit the variational distribu-
tion (black ellipses) more freely, thus, in a sense, overriding
the descriptor-based prior (mean) prediction vµθ(s) (the
turquoise cross) in this case. Note that the uncertainty of
the (approximate) posterior (the size of the black ellipses)
for water is small despite the large prior uncertainty. This
is expected since the dataset contains a lot of experimental
data where the solvent is water.

2.4. Inference Algorithm

We now formally discuss the variational EM algorithm
(Dempster et al., 1977; Beal & Ghahramani, 2003) in the
concrete context of the model for activity coefficients in
binary mixtures which has been introduced in Section 2.2.
Combining the conditional priors (Equation (1)) and the
likelihood (Equation (2)), our probabilistic model defines a
joint probability density over all representation vectors ui

and vj , and all logarithmic activity coefficients ln γ∞
i,j in all

binary mixtures i−j in the dataset,

pθ(u,v, lnγ
∞ | r, s) =

( M∏
i=1

pθ(ui | ri)
)
×

×
( N∏

j=1

pθ(vj | sj)
)
×
( ∏
(i,j)∈D

p(ln γ∞
i,j |ui, vj)

)
.

(3)

Here, our notation of boldface symbols u, v, r, s, and
lnγ∞ on the left-hand side denotes the collection of all rep-
resentation vectors ui and vj and all chemical structures ri
and sj for all solutes i and all solvents j, respectively, that
appear at least once in the experimental data D, and all log-
arithmic activity coefficients ln γ∞

i,j of all binary mixtures
i−j for which experimental data is available. Similarly, the
first two products on the right-hand side of Equation (3) run
over all M solutes i and all N solvents j, respectively, and
the third product runs over all pairs (i, j) where we have
experimental data for the binary mixture i−j (i.e., the black
pixels in the yellow/black matrix on the right of Figure 1).

A naive approach to training the neural networks would
attempt to find the network weights θ that maximize the
so-called marginal likelihood pθ(lnγ

∞ | r, s) which is the
probability density of predicting the experimentally mea-
sured logarithmic activity coefficients lnγ∞ for all binary
systems that are contained in the available experimental
dataset. Unfortunately, the marginal likelihood is not ac-
cessible in our model because obtaining it would require
marginalizing Equation (3) over u and v,

pθ(lnγ
∞ |r, s)=

∫∫
pθ(u,v, lnγ

∞ |r, s)dudv (4)

which is a high-dimensional integral that is prohibitively
computationally expensive to calculate. Variational EM in-
stead resorts to an approximate method called variational
inference (Blei et al., 2017; Zhang et al., 2018), which pro-
vides a lower bound on the log marginal likelihood, called
the evidence lower bound (ELBO),

ELBO(θ, ϕ) ≤ ln pθ(lnγ
∞ | r, s) ∀θ, ϕ. (5)

Here, ϕ are the so-called variational parameters. We dis-
cuss ϕ and define the ELBO below. The ELBO is useful
because—unlike the marginal likelihood—it can be esti-
mated efficiently, and maximizing it over both θ and ϕ
serves as a proxy for maximizing the log marginal likeli-
hood on the right-hand side of Equation (5): since the bound
in Equation (5) holds for all values of ϕ, and ϕ only appears
on the left-hand side, maximizing the ELBO over ϕ makes
the bound as tight as possible. Maximizing the ELBO also
over θ thus finds neural network weights for which we can
at least give the best guarantee for the marginal likelihood.

To derive a valid expression for the ELBO, variational in-
ference replaces the integral on the right-hand side of Equa-
tion (4) with a form of biased importance sampling (Bamler
et al., 2017). One first chooses a family of typically sim-
ple probability distributions qϕ(u,v) that are parameterized
by ϕ and called variational distributions. For simplicity, we
use the so-called Gaussian mean-field approximation, i.e.,
we choose a family of fully factorized normal distributions
qϕ(u,v) =

(∏M
i=1 qϕ(ui)

)(∏N
j=1 qϕ(vj)

)
with

qϕ(ui) = N
(
ui;

uµ̃i,diag(
uσ̃2

i )
)
;

qϕ(vj) = N
(
vj ;

vµ̃j ,diag(
vσ̃2

j )
) (6)

where the variational means uµ̃i,
vµ̃j ∈ RK and variances

uσ̃2
i ,

vσ̃2
j ∈ RK

>0 together make up the variational parame-
ters ϕ. The ELBO is then (Blei et al., 2017)

ELBO(θ, ϕ) =
∑

(i,j)∈D

Eqϕ(ui) qϕ(vj)

[
ln p(ln γ∞

i,j |ui,vj)
]

−
∑
i

DKL

(
qϕ(ui)

∥∥ pθ(ui | ri)
)

(7)

−
∑
j

DKL

(
qϕ(vj)

∥∥ pθ(vj | sj)
)
.
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Here, the first term in the sum is the expectation value E[ · ]
of the log likelihood under the variational distribution,
which can be estimated by averaging the logarithm of Equa-
tion (2) over samples ui ∼ qϕ(ui), vj ∼ qϕ(vj). The fol-
lowing two terms in the sum are Kullback-Leibler (KL)
divergences (Kullback & Leibler, 1951; Murphy, 2022),
which quantify how much the variational distributions differ
from the conditional priors. For normal distributions, the KL
divergence can be calculated analytically (Murphy, 2022)

DKL

(
qϕ(ui)

∥∥ pθ(ui | ri)
)

=
1

2

K∑
α=1

[(uµ̃i,α − uµθ(ri)α
)2

u
σ2
θ(ri)α

+

u
σ̃2
i,α

u
σ2
θ(ri)α

(8)

+ ln
( u

σ2
θ(ri)α

)
− ln

(
uσ̃2

i,α

)
− 1

]
(analogously for DKL

(
qϕ(vj)

∥∥ pθ(vj | sj)
)
), where α in-

dexes the coordinate in K-dimensional representation space.

Maximizing the ELBO in Equation (7) over both θ and ϕ
trades off between three objectives:

(i) maximizing the first term on the r.h.s. of Equation (7)
over ϕ tries to fit variational distributions qϕ(ui) and
qϕ(vj) in a way that samples from these distributions
explain the experimental data in D;

(ii) maximizing the last two terms in Equation (7) over ϕ
(which amounts to minimizing the KL-divergences
over ϕ) regularizes the fits, i.e., it keeps the varia-
tional distributions qϕ(ui) and qϕ(vj) close to the con-
ditional priors. Here, the first term on the r.h.s. of
Equation (8) penalizes deviations between prior mean
and variational mean stronger for smaller prior vari-
ance u

σ2
θ(ri)α. Thus, the (parametric) prior model has

a stronger effect on the (nonparametrically fitted) varia-
tional distributions when it is confident in its prediction,
as claimed in the discussion of Figure 2;

(iii) minimizing the KL-divergences in Equation (7) also
over θ fits the neural networks that define the condi-
tional priors to the variational distributions, and thus
indirectly to the data. This includes fitting the prior
variances u/v

σ2
θ(·) to model the aleatoric uncertainty

observed in the data plus any changes between the vari-
ational distributions of structurally similar components
that cannot be resolved by the prior due to the finite
expressiveness of the neural networks.

We maximize the ELBO over θ and ϕ with stochastic gra-
dient descent, using reparameterization gradients (Kingma
& Welling, 2013) for the first term on the right-hand side
of Equation (7), and automatic differentiation provided by
common software frameworks for machine learning (Paszke

Algorithm 1 Variational Expectation Maximization for
GNN MCM
Input: dataset D of activity coefficients γ∞

i,j in binary mix-
tures, involving M distinct solutes i and N distinct solvents
j; model pθ as defined in Equations (1) and (2); variational
family qϕ as defined in Equation (6); dimension K of the
abstract representation space; learning rate α; size m of
minibatches.
Output: optimized parameters θ and ϕ.

Initialize θ and ϕ ≡
(
(uµ̃i,

uσ̃i)
M
i=1, (

vµ̃j ,
vσ̃j)

N
j=1

)
ran-

domly.
repeat

Draw a minibatch B of m index pairs (i, j) for which
experimental data γ∞

i,j exists in D.
Set I ← {i : (i, j) ∈ B} and J ← {j : (i, j) ∈ B}.
Draw standard normal noise uϵi ∼ N (0, IK×K)∀i ∈ I

and set ui ← uµ̃i +
uσ̃i ⊙ uϵi ∀i ∈ I.

(“⊙” denotes elementwise multiplication.)
Draw standard normal noise vϵj ∼ N (0, IK×K)∀j∈J

and set vj ← vµ̃j +
vσ̃j ⊙ vϵj ∀j ∈ J .

Set γL ← |D|
m

∑
(i,j)∈B ln p(ln γ∞

i,j |ui, vj).
▷ see Equation (2)

Set uL ← M
|I|

∑
i∈I DKL

(
qϕ(ui)

∥∥ pθ(ui | ri)
)
.

▷ see Equation (8)
Set vL ← N

|J |
∑

j∈J DKL

(
qϕ(vj)

∥∥ pθ(vj | sj)
)
.

Set ELBOB(θ, ϕ)← γL+ uL+ vL.
Compute gradients∇θ ELBOB(θ, ϕ),∇ϕ ELBOB(θ, ϕ)

using automatic differentiation.
Update θ ← θ + α∇θ ELBOB(θ, ϕ).
Update ϕ← ϕ+ α∇ϕ ELBOB(θ, ϕ).

until convergence.

et al., 2019). Algorithm 1 summarizes the algorithm. Our
implementation is available online (see section “Data and
Software Availability”). Training our largest model variant
(GNN MCM, see below) took about four hours on a single
GPU (Nvidia GeForce RTX 2080 Ti).

2.5. Predictions

Once our model is trained with variational EM, we use it for
predicting activity coefficients for binary mixtures whose
components can each be either in-domain (i.e., appearing
in other mixtures in the available experimental data) or
out-of-domain (i.e., previously unstudied components). Fig-
ure 3 shows an example where the solute i is out-of-domain
whereas the solvent j is in-domain. For the out-of-domain
solute i, we apply the trained neural network to its chem-
ical structure ri, which outputs the means and variances
of the conditional prior pθ(ui | ri) (Equation (1)). For the
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Figure 3. Data flow for a prediction where the solvent appears in the training set (in-domain) but the solute does not (out-of-domain). We
thus predict the solute representation vector ûi from the prior, and the solvent representation vector v̂j from the variational distribution qϕ,
see Equation (9).

in-domain solvent j, we directly use the variational distri-
bution qϕ(vj) (Equation (6)), which was fitted to the data
under consideration of its conditional prior. We then obtain
a prediction γ̂∞

i,j = exp(ln γ̂∞
i,j) by calculating the modes,

ûi := argmax
ui

pθ(ui | ri) = uµθ(ri);

v̂j := argmax
vj

qϕ(vj) =
vµ̃j ; (9)

ln γ̂∞
i,j := arg max

ln γ∞
i,j

p(ln γ∞
i,j | ûi, v̂j) = ûi · v̂j ;

where p(ln γ∞
i,j | ûi, v̂j) is the likelihood (Equation (2)). For

different combinations of in-domain and out-of-domain mix-
ture components, we adapt Equation (9) accordingly.

2.6. Model Details And Variants

In our experiments, we investigate two model variants that
differ in how they represent chemical information of solutes
and solvents, and how they parameterize the means and vari-
ances of the conditional prior distributions (Equation (1))
as functions of these chemical structures. A simple model
variant, which we call “MoFo MCM”, represents chemical
structures by the molecular formula (MoFo) (e.g., water
is represented as H2O). A more expressive model variant,
which we call “GNN MCM”, represents chemical structures
by their topological molecular graphs (e.g., water is rep-
resented as the graph H−O−H), and the model employs
graph neural networks (GNNs) (Gori et al., 2005; Scarselli
et al., 2008; Bronstein et al., 2021).

In detail, the MoFo MCM uses two neural networks (one
for solutes and one for solvents) that receive a fixed-size
integer-valued vector as input. Each entry of the input vector
corresponds to a given atom or bond type, and the values at
these entries count the number of occurrences of the given
atom or bond type in the molecule. Specifically, we use
16-dimensional input vectors for the 12 atoms O, Si, I, F,
Br, P, H, S, Sn, N, C, and Cl present in the dataset and the 4
bond types single, double, triple, and aromatic. The network
outputs a 2K-dimensional vector that is the concatenation
of the prior means u/vµθ(·) and variances u/vσ2

θ(·).

The GNN MCM uses two graph neural networks, whose
inputs are the molecular graphs of the solute and solvent,
respectively. More specifically, we encode atoms and bonds
from the same vocabulary as in the MoFo MCM with learn-
able real-valued vectors, which we use as initial node and
edge features for the GNN. In general, message-passing
GNNs operate on such graph-structured inputs by perform-
ing transformations of the node and edge features over mul-
tiple layers via a message-passing scheme (Gilmer et al.,
2017). The output of a GNN is computed from all node
features (and possibly edge features) at the last layer with a
readout function. Generally, the message-passing scheme
consists of a message step, an aggregation step, and an up-
date step. In each layer, a message is computed for each
directed edge utilizing a message function whose parame-
ters are part of the learnable neural network parameters θ.
Incoming messages are aggregated by a sum for each node.
The update function produces new node features depending
on the previous node features and the aggregated message,
and its parameters are also part of θ.

Message, aggregation, and update steps are specific to the
architecture of the GNN. In this work, we utilize the Feature-
wise Linear Modulation GNN (Brockschmidt, 2020). This
model uses the target features of a directed edge as input to
a hyper-network that determines element-wise affine trans-
formation parameters. Messages are computed by scaling
and shifting the input features with the element-wise affine
transformation parameters, where the input features result
from multiplying a learnable matrix with previous features.
The update function of a node sums over the aggregated
messages for each edge type, where also transformation
parameters are computed for each edge type.

3. Evaluation Setup
In Section 4 below, we compare the two variants of our
proposed method (“MoFo MCM” and “GNN MCM”) to
other existing prediction methods (which are called “base-
lines”) and to simplified variants of our models that have
parts removed (which are called “ablations”).
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Models And Baselines. We evaluate the two variants
“MoFo MCM” and “GNN MCM” of our proposed method.
As baselines, we compare to the group-contribution method
modified UNIFAC (Dortmund) (Weidlich & Gmehling,
1987; Constantinescu & Gmehling, 2016) (which we will
refer to simply as “UNIFAC” in the following) and to two
machine-learning based methods: the fully nonparamet-
ric MCM method by Jirasek et al. (2020a) and the fully
parametric neural-network-based method by Medina et al.
(2022). The latter uses a different GNN architecture (Gilmer
et al., 2017) than our conditional priors, and it includes more
chemical information in the prediction (such as orbital hy-
bridizations and formal atom charges).

Ablation Studies. We perform two ablation studies where
we remove parts of our method to investigate their contri-
bution to the method’s performance. For the first ablation
study, we use the same trained MoFo MCM and GNN MCM
models as for our main results, but we perform predictions
for in-domain components as if they were out of domain,
i.e., using the mode of the conditional prior as representa-
tion vector (see first line of Equation (9)), thus ignoring the
variational distributions at prediction time.

For the second ablation study, we simplify the model by
removing its nonparametric part, and we train it by maxi-
mum likelihood estimation (MLE) rather than variational
EM. Thus, in this ablation, the neural networks only output
means uµθ(ri) and vµθ(sj) and no variances, and we use
these means directly as representation vectors ui and vj ,
respectively, in the likelihood (Equation (2)), which our
training objective maximizes over the neural network pa-
rameters θ (similar to Medina et al. (2022)). Since there are
no variational distributions, predictions are again done as if
all mixture components were out of domain.

Training. We train our models with 10-fold cross valida-
tion (Goodfellow et al., 2016). For each split, we use 80%
of the dataset for training, 10% for testing, and 10% for a
validation set. The 10 resulting test set splits are pairwise
disjoint, and their union equals the full dataset. We use the
test set splits to evaluate the accuracy of model predictions,
where we consider a mixture “i−j” in the test set to be
out-of-domain if at least one of solute i or solvent j does
not appear in the corresponding training split. Note that our
10-fold cross validation is different from the work of Jirasek
et al. (2020a), which uses more computationally expensive
leave-one-out cross validation.

We implement our models in PyTorch (Paszke et al., 2019)
and use PyTorch Geometric (Fey & Lenssen, 2019) for the
GNN. All models are trained for 15, 000 epochs using the
Adam (Kingma & Ba, 2015) optimizer. In the MoFo (MLE)
ablation study, we use early stopping (Morgan & Bourlard,
1989; Zhang et al., 2023), i.e., we compute validation errors

every 10 epochs and use the model with the lowest vali-
dation mean squared error (MSE) to compute evaluation
errors on the test set. This is done to be as lenient as possi-
ble to the ablation study, and because MLE training is more
prone to overfitting than variational EM. When training with
variational EM, we do use the validation set.

To find well-performing hyperparameters (e.g., the learning
rate schedule and the dimension K of the abstract repre-
sentation space), we utilize a sparse random grid search.
We provide more information on this process in the supple-
mentary information. We choose the best model of the grid
search according to its MSE on a predefined dataset split
that is the same for all models and different from any other
split. In order to fairly compare all models, we exclude the
test data of the predefined dataset (that is used to determine
the hyperparameters) from the evaluation.

Medina et al. (2022) use a different dataset and train an
ensemble of 30 models for prediction where each model has
been trained on randomized train/validation splits. For a fair
comparison against this baseline, we train a separate GNN
MCM for each of these train/validation splits, using again a
sparse random grid search for hyperparameter tuning.

4. Results and Discussion
Figure 4 and Table 1 summarize our results by showing the
mean absolute error (MAE) and mean squared error (MSE)
of the predicted logarithmic activity coefficients of all evalu-
ated models. Solid bars in Figure 4 show evaluations based
on our full dataset. As the UNIFAC baseline cannot be
applied to all mixtures in our dataset, we also trained and
evaluated all models on a reduced dataset, which contains
only those data points that can be modeled by UNIFAC
(light hatched bars). The neural-network baseline method
by Medina et al. (2022) uses yet a different dataset. There-
fore, we trained and evaluated an additional instance of our
proposed GNN MCM method on their dataset, and we com-
pare its predictive accuracy to the results reported by the
authors of Medina et al. (2022) in Table 1. In the following,
we discuss all results in detail.

Comparison to Baselines. The proposed GNN MCM
(highlighted in gold in Figure 4) provides more accurate
predictions than all considered baselines, both in terms of
MAE and MSE, and for both in-domain and out-of-domain
predictions. Compared to UNIFAC (Weidlich & Gmehling,
1987; Constantinescu & Gmehling, 2016) (first row in Fig-
ure 4), the GNN MCM makes significantly more accurate
predictions even if we restrict the test set for GNN MCM
to the more difficult out-of-domain predictions (eighth row
in Figure 4). Predictive accuracy is further improved sig-
nificantly for in-domain predictions (fifth row in Figure 4).
Recall that, even for an in-domain prediction, the training
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Figure 4. In-domain prediction errors (upper part), out-of-domain
prediction errors (middle part), and ablations (lower section). The
“reduced” dataset (light hatched bars) contains only mixtures to
which UNIFAC is applicable. The proposed GNN MCM (gold
highlighting) has the best predictive accuracy for both in-domain
and out-of-domain predictions. Results labeled “ablation 1” (lower
section) show errors for in-domain prediction tasks only, but per-
formed as if these were out of domain.

data never contains the precise mixture i−j for which we
make a prediction; it only contains other mixtures that may
involve either solute i or solvent j or neither, but never both.
This is in sharp contrast to UNIFAC, whose training set has
not been disclosed. However, one must assume that a signif-
icant share of the dataset considered in this work was used
to fit UNIFAC, so the UNIFAC results should rather be seen
as correlations than predictions, making the performance of
the proposed GNN MCM even more impressive.

The comparison to the fully nonparametric MCM (Jirasek
et al., 2020a) (second row in Figure 4) is only possible for
in-domain predictions as this baseline cannot perform out-
of-domain predictions. Here, the GNN MCM (fifth row)
approximately halves MAE, and it reduces MSE (which is
more sensitive to outliers) even more significantly.

The published evaluation results in Medina et al. (2022)
do not distinguish between in-domain and out-of-domain
predictions, effectively averaging over both. Using the same
training data and evaluation setup, our proposed GNN MCM
significantly reduces both MAE and MSE (Table 1).

The fourth and seventh rows in Figure 4 show prediction

Table 1. Comparison of the proposed GNN MCM with the model
from We Medina et al. (2022) in terms of MAE and MSE. We
use the same dataset and splits as Medina et al. (2022). The table
shows mean and standard deviations over 30 splits.

model MAE MSE
GNN MCM 0.1542±0.0046 0.0905±0.0071

Medina et al. (2022) 0.1973±0.0067 0.1196±0.0074

errors of the MoFo MCM variant of our model, whose
conditional priors only utilize the molecular formula of mix-
ture components but not on their chemical structures. We
find that this model variant performs worse than the GNN
MCM model on both in-domain and out-of-domain predic-
tion tasks. For in-domain predictions, we can compare again
to the fully nonparametric MCM (second row in Figure 4),
which does not exploit any chemical information about the
mixture components. We find, as expected, that perfor-
mance improves with increasing granularity of exploited
chemical information: MoFo MCM performs better than
the fully nonparametric MCM but worse than GNN MCM.

Ablation 1: Predicting Without the Nonparametric
Model Part. Our first ablation discards the nonparametric
part of the model after training and performs predictions for
in-domain mixtures as if they were out-of-domain (i.e., only
using the conditional priors). The last two rows in Figure 4
show prediction errors of the MoFo MCM model and the
GNN MCM model for this ablation. Here, we evaluate on
the same dataset splits as in the in-domain predictions since
the splits for out-of-domain predictions contain tasks where
this ablation study would not change anything. Comparing
the last two rows of Figure 4 to rows four and five, we ob-
serve that discarding the nonparametric part of the model at
prediction time hurts predictive accuracy significantly, thus
confirming that the nonparametric fits of our method are
useful where they are available.

Ablation 2: Relevance of Variational EM. Our second
ablation study goes one step further and removes the non-
parametric part of the model already at training time. As a
result, the model can no longer be trained with variational
EM and has to be trained with standard maximum likelihood
estimation (MLE) instead (see “Ablation Studies” above).
We performed this ablation study only on the MoFo MCM
model as performing the same ablation for the GNN MCM
model would result in a simplified variant of the method by
Medina et al. (2022), which we already compare to as part of
our baselines (see Table 1 and “Comparison to Baselines”).

The results for in-domain and out-of-domain predictions are
labeled “MoFo MCM (MLE)” in Figure 4. For in-domain
predictions, we observe that models trained with MLE per-
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Figure 5. Improvement (in terms of mean average error, MAE)
of the proposed GNN MCM method over UNIFAC and MCM,
grouped by chemical category of the solute (see Table 7 in the
supplementary information for a definition of the categories). Our
method consistently improves over both UNIFAC and MCM across
almost all solute categories; we see regressions (negative improve-
ments) only on three categories with poor statistics in this evalua-
tion due to small sample sizes (see gray numbers).

form significantly worse than models trained with varia-
tional EM, but better than if we train with variational EM
and then discard the nonparametric part (see Ablation 1
above). For out-of-domain predictions, the picture is less
clear. Here, models trained with MLE perform slightly
better than their variational EM counterparts, in particular
in terms of MSE, which penalizes outliers more strongly.
A possible explanation is that variational EM allows the
parametric prior models to effectively ignore any mixture
components that can be better modeled in a nonparametric
way. This would make the priors in variational EM less
regularized, so they are more susceptible to overfitting to
the training data, which can result in worse generalization
to unseen mixture components in out-of-domain predictions.
However, this slight improvement of MoFo MCM (MLE)
over MoFo MCM on out-of-domain predictions comes at
the cost of significantly reduced performance on in-domain
predictions, where the lack of a nonparametric model part
prevents MoFo MCM (MLE) from specializing to compo-
nents showing an anomalous behavior. Further, the proposed
GNN MCM model further improves performance over both
MoFo MCM and MoFo MCM (MLE) significantly on both
in-domain and out-of-domain predictions.

Comparison by Chemical Structure. We analyze
whether the improved predictive accuracy of our proposed
GNN MCM method is systematic across all mixture types

Figure 6. Improvement of the proposed GNN MCM over UNIFAC
and over MCM, grouped by chemical category of the solvent (see
Table 7 in the supplementary information for a definition of the
categories). Our method consistently improves over both UNIFAC
and MCM across all solvent categories.

or limited to specific types of mixtures. For this purpose, we
manually assign each solute and solvent to a category based
on its chemical structure, e.g., category “XALK” for sub-
stituted alkanes and alkenes, or category “HET ARO” for
heteroaromatic compounds. Figure 5 and Figure 6 show the
improvement of our proposed GNN MCM over both UNI-
FAC (olive) and MCM (terracotta), grouped by the category
of the solute and solvent, respectively. We show in-domain
predictions here so that we can compare to MCM. Positive
values in the figures indicate that GNN MCM has a lower
mean average error (MAE) within the corresponding cate-
gory than the baseline, whereas negative values indicate that
the baseline performs better within a given category.

We find that the improvements of our proposed GNN MCM
are systematic across almost all categories of solutes and
solvents. The only regressions occur within the solute cat-
egories “S POL” (strongly polar sulfurous compounds),
“S NPOL” (weakly polar sulfurous compounds), and “FF”
(perfluorinated compounds). The results in these categories
should be taken with a grain of salt as the dataset contains
only very few mixtures that involve a solute from one of
these categories (gray numbers in Figure 5). Thus, within
these categories, the MAE averages only over 6, 4, or 2
values, respectively, making it highly susceptible to outliers.

Comparison by Data Availability. We finally analyze if
the improvement in predictive accuracy for a given mixture
depends on the amount of training data that is available for
the two mixture components. This analysis is motivated by
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Figure 7. Improvement (in terms of mean average error, MAE) of
the proposed GNN MCM method over UNIFAC and over MCM,
grouped by the frequency n of solutes (top) or solvents (bottom) in
the dataset. Our method consistently improves over both UNIFAC
and MCM across both common and uncommon mixture compo-
nents. Improvement over MCM (terracotta) is most pronounced
for uncommon solutes and solvents (with small n), which is as
expected since MCM is fully nonparametric.

the fact that our proposed GNN MCM trades off between
a parametric and a nonparametric part, where parametric
models tend to perform better in the low-data regime (be-
cause they can share statistical strength across structurally
similar components) while nonparametric models tend to
perform better in the high-data regime (because they can
fit the data better due to fewer constrains). We therefore
investigate whether our method manages to use the best of
both approaches in both regimes.

For each solute i, we set n(i) to the number of times that
i appears as a solute in the data set D. The inverse of this
function, i(n) := {i ∈ D : n(i) = n} maps each possible
solute count n ∈ N to all solutes in the data set that appear n
times in the dataset D. For each n where i(n) is not empty,
we now calculate the average prediction error for all binary
mixtures in the data set whose solute is in i(n). We proceed
analogously for the solvents.

Figure 7 shows the improvement of our proposed GNN
MCM over both UNIFAC (olive) and over MCM (terra-
cotta) as a function of the frequency n of solutes (top) and
solvents (bottom). We observe that GNN MCM improves
over both UNIFAC and MCM consistently across all so-
lute and solvent frequencies n (i.e., almost all points in the
plots lie above the dashed zero line). The improvement over
MCM (terracotta lines) is most pronounced in the regime
of small n, i.e., where few data points with the same solute
or solvent exist. This is to be expected since this is the
regime where a fully nonparametric model like MCM tends

to perform poorly. The strong improvement for the solvent
with highest n (right end of lower plot) can be explained
as this solvent is water, for which a lot of data points with
infrequent solutes exist in the dataset.

In summary, we find that our proposed method significantly
improves predictive accuracy over both fully parametric
and fully nonparametric baselines (Figure 4 and Table 1),
and that this improvement is consistent across mixture com-
ponents from different chemical categories (Figure 5 and
Figure 6) and across varying amounts of training data for
involved components (Figure 7).

5. Summary and Outlook
In this work, we propose a method for predicting physico-
chemical properties that combines a structure-based ap-
proach using graph neural networks (which are able to ex-
trapolate across substances with similar chemical structure)
with a representation-learning based approach (which allows
the model to override structure-based predictions in anoma-
lous cases). The method significantly improves predictive
accuracy over the state of the art in the studied problem of
predicting activity coefficients in binary mixtures.

Our ablation studies identify the variational EM algorithm
to be crucial for the success of the prediction method. We
think that variational EM can be a useful tool for many
physico-chemical prediction problems since it balances
structure-based and representation-learning based predic-
tions by weighing off their respective uncertainties.

Future work should explore the application of our method to
other properties such as diffusion coefficients or even funda-
mental quantities like interaction energies, which are at the
core of established physical models of mixtures and based
on which diverse mixture properties can be described. In a
broader context, our work provides additional evidence for
the efficacy of graph neural networks for processing chemi-
cal structure information. It would be interesting to study
whether activations of hidden layers of the graph neural net-
works can be made interpretable to human domain experts,
whether correlations between the hidden activations of dif-
ferent atoms can be used to identify relevant substructures
of molecules, and whether such substructures correspond
to the structural groups that are considered in established
group contribution methods like UNIFAC.

Data and Software Availability
We evaluate our methods on two datasets: a dataset that is
licensed from the Dortmund Data Bank (DDB) (Onken
et al., 1989) and a dataset collected by Brouwer et al.
(2021). The software packages for preprocessing and train-
ing our models are freely available. We provide the source
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code to replicate our results at https://github.com/
jzenn/gnn-mcm. For the comparison of our method to
the model proposed by Medina et al. (2022), we directly use
the files available from their GitHub repository.
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A. Supplementary Information
A.1. Model and Training Hyperparameters

To find well-performing hyperparameters we employ sparse random grid searches (RGS) for all models we consider in this
work. We train 30 models with hyperparameters sampled uniformly at random from a defined search space. Each of the
models is trained on the same training set and evaluated on the same test set. We pick the best model according to its mean
squared error (MSE) on the test set. To report fair error estimates, we exclude all data points of this test set from the 10-fold
cross validation. Since the sample size of 30 models is very small compared to the size of the search space, one might be
able to further improve on our results by extending the RGS.

We schedule the learning rate either using a constant schedule or one out of nine schedules. All schedules Si ∈ S (except
for the constant one) start from an initial learning rate ϵ that is decreased by a factor of (maximally) 10−1 (multiple times)
during training. After some initial warm-up steps Tw the Robbins-Monro Learning Rate Scheduler (Robbins & Monro,
1951) computes the learning rate at epoch t from an initial learning rate of ϵ0 as follows.

ϵt = ϵ0 /

(
t− Tw

b
+ a

)γ

(10)

The three parameter combinations we consider are shown in Table 2. The Cyclical Learning Rate Scheduler (Smith, 2017)
linearly increases the learning rate from an initial ϵ− = 10−1ϵ0 to ϵ+ = ϵ0 and back to ϵ−. This is done Tc number of times
during training. We consider Tc ∈ {1, 2, 4} The Step Learning Rate Scheduler decays an initial learning rate ϵ0 by γ every
Te epochs. Consequently, at epoch t the learning rate equals ϵγ⌊t/Te⌋

0 . We search over three combinations of parameters that
are depicted in Table 3.

Tw γ a b
1.5 · 103 0.5 1.0 150
1.5 · 103 0.6 1.0 300
1.5 · 103 0.8 1.0 900

Table 2. Combinations of parameters for the RM scheduler.

γ Te

0.8 1500
0.45 3750
0.1 7500

Table 3. Combinations of parameters for the Step scheduler.

The ELBO (that is maximized) can be formulated in various ways (Hoffman & Johnson, 2016), two of which we include in
the grid search: ELBO-KL maximizes the data log-likelihood under the variational distribution and simultaneously minimizes
a KL divergence between the variational posterior distribution and the prior distribution. ELBO-Entropy maximizes the data
log-likelihood as well as the log-prior under the variational distribution while simultaneously maximizing the entropy of the
variational distribution.

We apply skip connections (skip con. ̸= none) either every layer or every second layer. Additionally in the GNN MCM
model, we experiment with mean aggregation besides the sum aggregation.

Table 4 lists hyperparameter values we search over for the GNN MCM model. Table 5 lists hyperparameter values we search
over for the MoFo MCM model. Table 6 lists hyperparameter values we search over for the MoFo MCM (MLE) model.

GNN MCM (in-domain) ELBO-Entropy, 0.005, 16, 0, 0.1, 64, sum, 2, none, true

GNN MCM (out-of-domain) ELBO-Entropy, 0.0005, 8, 7, 0.0, 64, mean, 8, 1, true

Medina et al. (2022) ELBO-Entropy, 0.001, 16, 7, 0.1, 16, sum, 6, none, false
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parameter value
loss ELBO-KL, ELBO-Entropy
learning rate 0.005, 0.001, 0.0005, 0.0001
K 4, 8, 16
lr-scheduler 0, 1, 2, 3, 4, 5, 6, 7, 8
dropout prob. 0.0, 0.1
representation dim. 16, 32, 64, 128
aggregation sum, mean
L 1, 2, 4, 6, 8
skip con. none, every {1, 2}-th layer
bias true, false

Table 4. Hyperparameters of grid search for GNN MCM models.

parameter value
loss ELBO-KL, ELBO-Entropy
learning rate 0.005, 0.001, 0.0005, 0.0001
K 4, 8, 16
lr-scheduler 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
dropout prob. 0.0, 0.1
representation dim. 16, 32, 64, 128
L 1, 2, 4, 6, 8
skip con. none, every {1, 2}-th layer

Table 5. Hyperparameters of grid search for MoFo MCM models.

parameter value
learning rate 10−{2,3,4},5 · 10−{4,5}

K 4, 8, 16
lr-scheduler 0, 1, 2, 3, 4, 5, 6, 7, 8
dropout prob. 0.0, 0.1
representation dim. 16, 32, 64, 128
L 1, 2, 4, 6, 8
skip con. none, every {1, 2}-th layer

Table 6. Hyperparameters of grid search for MoFo MCM (MLE) models.

MoFo MCM (in-domain) ELBO-Entropy, 0.0005, 8, 4, 0.1, 16, 1, none

MoFo MCM (out-of-domain) ELBO-Entropy, 0.001, 8, 0, 0.1, 16, 6, 1

MoFo MCM (MLE) (in-domain) 10−2, 8, 1, 0.0, 64, 8, none

A.2. Solute and Solvent Categories

Table 7 defines the chemical categories used in the “Comparison by Chemical Structure” of the main text. We assigned
each solute and solvent to one of these categories manually based on their chemical structure formula using human expert
knowledge. These assignments were only used in the evaluation; the model is unaware of our assignments. Due to data
licensing, we do not provide the solutes and solvents that fall into the chemical categories listed in Table 7 but only provide
the total number of compounds in each category.

16



Balancing Molecular Information and Empirical Data in the Prediction of Physico-Chemical Properties

abbreviation description
AN alkanes (including compounds with long alkyl

groups ≥ 10 C-atoms)
EN alkenes and dienes
IN alkynes
C ARO aromatic compounds without heteroatoms
POL ARO aromatic compounds with substituent heteroatoms,

pi-systems with inductive and mesomeric effects
H ARO aromatic compounds with substituent heteroatoms

that can build stable hydrogen bonds
HET ARO heteroarenes
XALK chlorine, bromine, and iodine alkanes
OL alcohols
COO esters
NHR amines
ON ketones
AL aldehydes
COC ethers
CN nitrils
NO2 nitro compounds
COOH short carboxylic acids
FF perfluorinated compounds
CONR amides
S NPOL weakly polar sulfurous compounds
S POL strongly polar sulfurous compounds
H2O water and heavy water

Table 7. Manually assigned chemical categories for solutes and solvents.
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