Bits-Back Coding With Latent Variable Models

Last video:
- overview of probability theory & random vars.
- modeling error: KL-Divergence
 → need to model correlations!
 Problem 4.2 & 6.2
 \[H_p(x) + H_p(y) \geq H_p((x,y)) \]
- autoregressive models

This video:
- latent variable models
- Bayesian inference
- Bits-back coding

- can model long-ish range correlations
- compact to store

- struggle with very long correlations
- not parallelizable
Consider these hypothetical news headlines.

- Parliament Votes on New Labor Bill.
- Labor Union Votes to Extend Strikes.
- Soccer Player Scores First Goal Since Joining New Team.
- Guest Team is Leading by One Goal.

Observation: words within a headline appear to be correlated:

- Consider two positions \(i \neq j \); claim: \(X_i \) & \(X_j \) are not stat. indep.
- Words at these positions

\[
P(X_i = \text{"Goal"}, X_j = \text{"Team"}) > P(X_i = \text{"Goal"}) P(X_j = \text{"Team"})
\]

Model of the "Generative Process"

These pictures denote a joint prob. dist. that factorizes as follows:

\[
P(X, Z) = P(Z) P(X|Z) = P(Z) \prod_{i=1}^{k} P(X_i; | Z)
\]

("Topic Model", e.g. LDA: Blei & Ng 2003, blei quotes Pitchford et al. 2000)

\[\Rightarrow \text{marginal dist. of the message } X:
\]

\[
P(X) = \sum_Z P(X, Z) = \sum_Z \left(P(Z; z) \prod_{i=1}^{k} P(X_i; | z) \right)
\]

Claim: this model can capture correlations like

\[
P(X_i = \text{"Goal"}, X_j = \text{"Team"}) > P(X_i = \text{"Goal"}) P(X_j = \text{"Team"})
\]

Proof: exercise.
Data Compression With Latent Variable Models

\[P(X, Z) = P(Z) P(X | Z) \]

Ideally we would like to compress \(X \) with this model.

Problem: we don’t know value of \(Z \)

Problem Set 5: implement & compare 3 compression methods for \(Z \): 1.7

- **Problem 5.2:** treat \(X_i \) as independent
 - \(H_p \{ X \} = \sum \frac{1}{i} H_p \{ X_i \} \geq H_p \{ X \} \)

- **Problem 5.3:** MAP estimate
 - \(H_p \{ X \} \choose \{ Z \} = \sum \log P(Z | \hat{X}) + H_p \{ X | Z = \hat{X} \} \)

- **Problem 5.4:** belief back coding
 - \(H_p \{ X \} \choose \{ Z \} = H_p \{ X \} \)

Naive approach: MAP estimate

\[P(X, Z) = P(Z) P(X | Z) \]

- idea: encode some value \(\hat{Z} \) for \(Z \) using \(P(Z) \) & transmit
- then encode \(\hat{X} \) using \(P(X | Z = \hat{Z}) \)

\(= \prod_{i=1}^{k} P(X_i | Z = \hat{Z}) \)

\(\Rightarrow \) decoder can: decode \(\hat{Z} \) using \(P(Z) \)
- decode \(\hat{X} \) using \(P(X | Z = \hat{Z}) \)

Bit rate:

\[R^{(1)}(x) = -\log P(Z = \hat{Z}) - \log P(X = \hat{X} | Z = \hat{Z}) \]

\[= -\log P(X = \hat{X}, Z = \hat{Z}) \]

Chose \(\hat{Z} = \arg \min_{z} R^{(1)}(x) = \arg \max_{\hat{Z}} P(X = \hat{X}, Z = \hat{Z}) \)

\(\uparrow \)

\(\text{“minimum a-posteriori” (MAP) estimate of } Z \)

Overhead over theoret. bound:

\[R^{(2)}(x) - (-\log P(X = \hat{X})) = -\log P(X = \hat{X}, Z = \hat{Z}) + \log P(X = \hat{X}) \]

\[= -\log P(Z = \hat{Z} | X = \hat{X}) \sim \text{posterior distribution} \]
Bayesian Inference

- model: $P(X, Z) = P(Z) P(X|Z)$

 => know X, don't know Z (=>$\text{MAP estimate method has an overhead}$)

 => But: knowing X typically reveals some information about Z

 Parliament Votes on New Labor Bill.
 Labor Union Votes to Extend Strikes.
 Soccer Player Scores First Goal Since Joining New Team.
 Guest Team is Leading by One Goal.

 However: there can still be some ambiguity about Z (even after you know X)

 Parliament Votes on Aid for Community Sports Teams.

 => can only make prob. statements about Z

 $P(Z|X=x) = \frac{P(Z) P(X=x|Z)}{P(X=x)}$

 Remarks: in principle posterior distribution is known once you know $P(X, Z)$ & X

 in practice, however, calculating the posterior is often prohibitively expensive

 (=>$\text{Lecture 7: approximate Bayesian inference}$)

Understanding the overhead of MAP-est. method

- we could encode (X) in two different ways

 1. $Z=\text{"politics"}$, then we use $P(X|Z=\text{"politics"})$
 2. $Z=\text{"sports"}$, then we use $P(X|Z=\text{"sports"})$

 remember: overhead = $-\log P(Z=Z^*|X=X)$
Bits-Back Coding

Idea: "piggyback" some additional message into the choice of a setup: communicate multiple messages (e.g., multiple image patches) over a single channel

- Usually:

- Bits-back: (operates as a stack, i.e. "last in first out")

Algorithm: "Bits-Back Coding"

- Subroutine encode (x, compressed, P):
 - begin
 - \(z \leftarrow \text{decode from compressed using } P(2 | X = z) \)
 - \(\text{encode } x \text{ using } P(X | 2 = z) \) into compressed
 - \(\text{encode } z \text{ using } P(2) \) onto compressed
 - return compressed

- Subroutine decode (compressed, P):
 - \(z \leftarrow \text{decode from compressed using } P(2) \)
 - \(x \leftarrow \text{decode from compressed using } P(X | 2 = z) \)
 - \(\text{encode } z \text{ onto compressed using } P(2 | X = z) \)
 - return \((x, \text{ compressed})\)
not bit rate of bits-back coding:

\[R_{\text{net}}(x) = -\log \frac{P(x=x, z=z)}{P(z=z)} - \log P(z=z) - \log P(x=x) \]

\[= -\log \frac{P(x=x, z=z) P(z=z)}{P(x=x)} = -\log P(x=x) \]

\[\Rightarrow \text{bits-back coding is optimal (net).} \]

Next steps:

• How do we encode/decode fractional numbers of bits with stack semantics?

• What if we don’t know the exact posterior?
 \[\Rightarrow \text{Lecture 7: approximate Bayesian inference} \]

• How can we efficiently train deep latent variable models?
 \[\Rightarrow \text{Lecture 7 & subsequent: variational expectation maximizing deep generative models} \]