
Solutions to Problem Set 1
Data Compression With Deep Probabilistic Models
Prof. Robert Bamler, University of Tuebingen

Course material available at https://robamler.github.io/teaching/compress21/

Problem 1.1: Simplified Game of Monopoly

In the lecture, we introduced the “simplified game of Monopoly” as a simple toy model
for generating random messages that we might want to compress. The message x =
(x1, x2, . . . , xk) is a sequence1 of symbols xi, i ∈ {1, . . . , k} for some k ∈ N. Each
symbol xi ∈ X is a number from the alphabet X = {2, 3, 4, 5, 6}.

We assume the following:

� The sender obtains the message x in the following way: she throws a pair of
fair 3-sided dice k times. At each throw i, each of the two dice turns up with a
random number from 1 to 3 inclusively. The symbol xi ∈ X is the sum of these
two numbers.

� The receiver does not yet know the message x (otherwise we wouldn’t have to
transmit it to him). But the receiver does know that the message was construced
by following the above stochastic process (i.e., by repeated throws of a pair of
3-sided dice).

In the lecture, we further introduced five candidate binary code books for this data
source. These are labeled as C(α) with α ∈ {1, . . . , 5} in the table below.

x C(1)(x) C(2)(x) C(3)(x) C(4)(x) C(5)(x) p(x)
2 10 0 000 010 010 1/9 ≈ 0.11
3 11 1 001 10 01
4 100 10 010 00 00
5 101 11 011 11 11
6 110 100 100 011 110
L 8/3 ≈ 2.67

Now to the questions:

(a) The above stochastic process produces symbols x ∈ X with varying probabilities.
What is the probability p(x) for each x ∈ X? For your self-evaluation, p(2) is
already given in the above table.

Solution: p(2) = 1
9
; p(3) = 2

9
; p(4) = 3

9
= 1

3
; p(5) = 2

9
; p(6) = 1

9
. �

1We denote sequences, tuples, or vectors as boldface x in print. In handwriting, we use underlined
notation x instead (since boldface is difficult in handwriting).

1

https://robamler.github.io/teaching/compress21/

(b) The code books C(α) assign a code word C(α)(x) to each symbol x ∈ X. These code
words vary in length from 1 to 3 bits. Calculate the expected code word length L
for each code book C(α), i.e., the weighted average over the length of code words
C(α)(x) in code book C(α), averaged over all symbols x ∈ X and weighted by the
probability that the corresponding symbol x occurs. For your self-evaluation, L
for C(1) is already given in the above table.

Solution: L(1) = 8
3
≈ 2.67; L(2) = 16

9
≈ 1.78; L(3) = 3; L(4) = L(5) = 20

9
≈ 2.22.

�

(c) You should find that the code book C(2) has the shortest expected code word
length L. This may seem like a good thing since our goal is to encode the message
x = (x1, . . . , xk) into as short a bit string as possible. Argue why C(2) is not a
good code book nevertheless.

Solution: C(2) is not uniquely decodable (see definition in part (e)), i.e., while
C(2) maps different symbols to different code words, the symbol code C(2)∗ that it
induces maps some different messages (= sequences of symbols) to the same bit
string. For example: C(2)∗((5, 3)) = “111” = C(2)∗((3, 5)). Therefore, when the
receiver obtains the bit string “111”, it can’t reconstruct the original message. �

(d) An important class of symbol codes are so-called prefix codes. A prefix code (con-
fusingly also called prefix-free code) is a symbol code C with the following prop-
erty: no code word C(x) is a prefix of another code word C(x′) with x′ 6= x.
For example C(5) is not a prefix code because the code word for symbol 2, i.e.,
C(5)(2) = “010”, begins with “01”, which is the code word for the different sym-
bol 3, i.e., C(5)(3) = “01”. Thus, C(5)(3) is a prefix of C(5)(2). Which of the code
books in the above table define prefix codes?

Solution: Only C(3) and C(4) are prefix codes. �

(e) A code book C defines a mapping from single symbols x ∈ X to bit strings. It
also induces a mapping C∗ from sequences of symbols x ∈ X∗ to bit strings: one
explicitly writes out the message as a sequence of symbols, x = (x1, x2, . . . , xk) ≡
(xi)

k
i=1, and one then encodes each symbol xi into the code word C(xi) and one

concatenates the resulting code words into a single bit string. A prefix code,
as defined in (d), has the advantage that it is uniquely decodable: the induced
mapping C∗ is invertible, i.e., no two sequences of symbols are encoded to the
same bit string. Argue why prefix codes are always uniquely decodable. (Hint:
encode a short random sequence of symbols with the prefix code C(4) and then
think about how you would go about decoding the resulting bitsring back into the
original sequence of symbols; what could go wrong if you didn’t use a prefix code?)

Solution: We consider a prefix code C, a message x ∈ X∗, and the encoded bit
string C∗(x) = C(x1)||C(x2)|| . . . ||C(xk) ∈ {0, 1}∗ (where k is the length of the
message x). Consider the greedy following greedy algorithm for decoding C∗(x):

� Initialize an empty buffer: B ← “”.

2

� For each bit b in the encoded bit string:

– Append b to B, i.e., B ← B||b where “||” denotes concatenation.

– If the buffer B is equal to one of the code words of the code book C (i.e.,
if ∃x ∈ X : C(x) = B):

* Emit the (uniquely defined) symbol x for which C(x) = B.

* Reset B ← “”.

This algorithm emits a sequence of symbols. We show that the decoded sequence of
symbols is unique and equal to the original message by induction over the number
of emitted symbols.

� Base case (first emitted symbol): The encoded bit string C∗(x) starts with
the code word C(x1) with length `(x1) bits. Assume that the first symbol
that above algorithm emits is a different symbol, x′ 6= x1 with length `(x′)
bits. Therefore, the encoded bit string C∗(x) starts both with C(x1) and with
C(x′). Now,

– if `(x′) ≤ `(x1) then this implies that C(x′) is a prefix of C(x1) but this
is not possible in a prefix-free code since x′ 6= x1 by assumption;

– if `(x′) > `(x1) then this implies that C(x1) is a prefix of C(x′), which is
also not possible in a prefix-free code since x′ 6= x1 by assumption.

Thus, our assumption that x′ 6= x1 was wrong, and the first symbol emitted
by the greedy decoding algorithm indeed equals x1.

� Inductive step: After decoding the first symbol, the remaining bits of the com-
pressed bit string comprise the encoding of the message x̃ := (x2, x3, . . . , xk)
of length k − 1 and the remaining steps of the above decoding algorithm
decode x̃. Apply the base case to prove that the next emitted symbol is x2.

�

(f) Even though C(5) is not a prefix code as discussed in (d), it is still uniquely decod-
able. Why? (Thus, all prefix codes are uniquely decodable but not all uniqueley
decodable codes are prefix codes.)

Solution: The code words in C(5) are the same as the code words in C(4) apart
from the fact that the bits appear in reverse order. Therefore, to decode some bit
string with C(5), one can simply reverse the bit string, decode the message with
the prefix code C(4), and then reverse the sequence of decoded symbols. �

Problem 1.2: Naive Symbol Code Implementation

The accompanying Jupyter notebook has a section that will guide you to write a (com-
putationally inefficient but correct) implementation of an encoder and a decoder for a
generic prefix-free symbol code (see Problem 1.1 (d) for definition of “prefix-free”).

3

Solution: See notebook problem-set-01-solutions.ipynb. �

(a) Fill in the blanks to complete the implementations. Start with the encoder and
verify its correctness by running the provided unit test. Then complete the im-
plementation of the decoder and run its unit test. Finally, implement and run a
round-trip test as indicated in the notebook. Don’t worry about computational
efficiency for this exercise, we are only concerned with correctness for now.

(b) (Advanced difficulty:) While the decoder you implemented above should work, it
will be very inefficient because it iterates over the entire code book for every single
bit. If you know ahead of time that you’ll use the same codebook for many symbols
in a row, you can store the codebook in a more convenient data structure that will
allow you to narrow down the search with each bit. Sketch out what this data
structure will look like (hint: think about binary trees).

Problem 1.3: Binary Heap

On the next problem set, we will implement a generic algorithm for constructing optimal
code books, called Huffman coding. Our implementation will use a common abstract
data type known as a binary heap.

(a) (Re-)familiarize yourself with the concept of a binary heap (sometimes also called
a priority heap, a min-heap, or a max-heap). You don’t need to know how to
implement it, just recall which invariant it upholds and what the “insert” and
“pop” (or “extract”) operations do.

(b) Run the example code for the binary heap in the accompanying Jupyter notebook
and make sure you understand what it does.

4

	Simplified Game of Monopoly
	Naive Symbol Code Implementation
	Binary Heap

