
Problem Set 2 published: 27 April 2021
discussion: 3 May 2021

Data Compression With Deep Probabilistic Models
Prof. Robert Bamler, University of Tuebingen

Course material available at https://robamler.github.io/teaching/compress21/

Problem 2.1: Kraft-McMillan Theorem

In the lecture, we stated and partially proved the Kraft-McMillan Theorem:

Theorem (Kraft-McMillan). The following two statements are true:

(a) All B-ary uniquely decodable symbol codes C satisfy the Kraft inequality,∑
x∈X

1

B`(x)
≤ 1. (1)

Here, X is the alphabet of the symbol code and `(x) is the length |C(x)| of the code
word C(x) (i.e., the number of B-ary bits that make up C(x)).

(b) For all functions ` : X→ {0, 1, 2, . . .} that satisfy the Kraft-inequality Eq. 1, there
exists a B-ary prefix-free symbol code (i.e., a B-ary prefix code) C with code word
lengths `, i.e., |C(x)| = `(x) ∀x ∈ X.

Answer the following questions about the Kraft-McMillan theorem:

(a) Prove the following statement by combining both parts (a) and (b):

For every uniquely decodable symbol code C, there exists a prefix code C̃ with the
same code word lengths, i.e., |C̃(x)| = |C(x)| ∀x ∈ X.

In the lecture, we proved part (a) of the Kraft-McMillan theorem but we didn’t complete
the proof of part (b). Let’s do this now. Consider Algorithm 1 on the next page, which
we introduced in the lecture.

(b) Line 4 of Algorithm 1 claims that ξ ∈ [0, 1). Why is this always the case at this
point in the algorithm?

(c) Denote the value of ξ after the update in Line 3 as ξx (where x is the iteration
variable of the for loop). Now consider two symbols x, x′ ∈ X with x 6= x′ and,
without loss of generality, ξx′ > ξx. Argue that ξx′ ≥ ξx +B−`(x). Then argue that
neither can C(x) be a prefix of C(x′), nor can C(x′) be a prefix of C(x).

(d) (Advanced:) Algorithm 1 is limited to a finite alphabet X because the for-loop
would not terminate if X was infinite. How could you use the same idea to prove
part (b) of the Kraft-McMillan Theorem in the case of a counably infinite alphabet?

1

https://robamler.github.io/teaching/compress21/

Algorithm 1: Constructive proof of Kraft-McMillan theorem part (b).

Input: Base B ∈ {2, 3, . . .}, finite alphabet X,
function ` : X→ {0, 1, 2, . . .} that satisfies Eq. 1.

Output: Code book C : X→ {0, . . . , B − 1}∗ of a prefix code that
satisfies |C(x)| = `(x) ∀x ∈ X.

1 Initialize ξ ← 1;
2 for x in X in order of nonincreasing `(x) do
3 Update ξ ← ξ −B−`(x);
4 Write out ξ ∈ [0, 1) in its B-ary expansion: ξ = (0.??? . . .)B;
5 Set C(x) to the first `(x) bits following “0.” in the above B-ary expansion

of ξ (pad with trailing zeros to length `(x) if necessary);

Problem 2.2: Entropy

In the lecture, we (re-)introduced the entropy to base B of a probability distribution p:

HB[p] = E[− logB p(x)] = −
∑
x∈X

p(x) logB p(x). (2)

(a) In the literature, the subscript B will often be dropped. Depending on context,
entropies are understood to be either to base 2 (mostly in the compression liter-
ature) or to the natural base e (in mathematics, statistics, or machine learning
literature). How do H2[p] and He[p] relate to each other?

(b) Consider a tuple of m ∈ N symbols. The symbols are i.i.d. (statistically indepen-
dent and identically distributed), i.e., the probability p̃ of a tuple of m symbols is
p̃
(
(x1, . . . , xm)

)
=
∏m

i=1 p(xi). Show that

HB[p̃] = mHB[p] ∀m ∈ N, ∀B ∈ R≥0 (3)

Problem 2.3: Block Codes and Theoretical Lower
Bound for Lossless Compression

In the lecture, we showed that the expected code word length L of a uniquely decodable
symbol code is lower bounded by the entropy HB of the symbols. We further showed that
this lower bound is nontrivial: for any probability distribution p of symbols, there exists
a symbol code (the so-called Shannon Code) that is prefix-free (and therefore uniquely
decodable) and for which L comes within less than one bit of this lower bound. Thus,
in summary, for the minimally possible expected code word length Lmin, we have

HB[p] ≤ Lmin ≤ LShannon < HB[p] + 1. (4)

2

So far, these results are limited to symbol codes, i.e., codes for which the encoding
C∗(x) of a sequence x = (xi)

k
i=1 of symbols xi is given by simple concatenation of

individual context-independent code words C(xi). In this problem, you will derive a
lower bound that holds for all lossless B-ary codes, not just for symbol codes. To do
so, we introduce the idea of a Block Code: Let m ∈ {2, 3, . . .} and assume that you
only care about messages x ∈ Xk whose length k is a multiple of m, i.e., k = nm for
some integer n. You can then group the symbols in the message x into n blocks of m
consecutive symbols each, and construct a symbol code for these blocks.

For example, a message x = (x1, x2, x3, x4, x5, x6) of length k = 6 can be reinterpreted
as a message of n = 2 blocks of size m = 3 each: x̃ =

(
(x1, x2, x3), (x4, x5, x6)

)
. In this

representation, each block is an element of the product alphabet Xm = X×X× . . .×X.
One can now construct a code book C̃(m) : Xm → {0, . . . , B − 1}∗ for this product

alphabet. In particular, we will consider the Shannon Code C̃
(m)
Shannon that one obtains

from applying the Shannon Coding algorithm to the product probability distribution
p̃
(
(x1, . . . , xm)

)
=
∏m

i=1 p(xi).

(a) Use Eqs. 3 and 4 to derive a lower and an upper bound for the expected length of

the encoding per original symbol (from X) for C̃
(m)
Shannon. You should find that the

lower bound does not change compared to Eq. 4, but the upper bound shrinks,
i.e., the range narrows.

(b) In the introduction to this problem, we highlighted the restrictions of symbol codes
in comparison to arbitrary lossless compression codes: in a symbol code, C∗(x)
has to be the concatenation of individual context-independent code words. Now
consider a block code for the special case m = k. What are its limitations compared
to an arbitrary uniquely decodable B-ary lossless compression code that is defined
on sequences of k i.i.d. symbols?

(c) What can you say about the Shannon block code C̃
(m)
Shannon with m = k in the

(practically relevant) limit of large k? Think about (i) its overhead in expected
bits per (original) code word over the theoretical lower bound; and about (ii) the
run-time complexity of the Shannon coding algorithm (Algorithm 1) on such a
block code as a function of k.

Problem 2.4: Huffman Coding

In the last tutorial, we introduced the Huffman Coding algorithm. It is restated in a
more formal manner in Algorithm Box 2. Like Shannon Coding, the Huffman Coding
algorithm takes a probability distribution p over symbols, and it constructs a code book
for a prefix code CHuffman whose expected code word length LHuffman satisfies the upper
and lower bounds from Eq. 4. Unlike Shannon Coding, a code book constructed by
Huffman coding is optimal in the sense that there is no uniquely decodable symbol code
with expected code word length shorter than LHuffman.

3

Algorithm 2: Huffman Coding (for base B = 2).

Input: finite alphabet X = {1, . . . , |X|}, probability distribution p on X.
Output: Code book CHuffman : X→ {0, . . . , B−1}∗ of an optimal prefix code on X.

1 Initialize a set of tree roots R← {(p(x), x) : x ∈ X};
2 Initialize a forest (V,E) whose vertices are initialized as V ← R, and with a (so

far) empty set of edges: E ← ∅;
3 Initialize an integer variable y∗ ← |X|;
4 while |R| > 1 do
5 Let (w, y), (w′, y′) be the two smallest elements of R, by lexicographic order;
6 Remove (w, y) and (w′, y′) from R (but not from V);
7 Update y∗ ← y∗ + 1;
8 Add the new element γ := (w + w′, y∗) to both R and V ;
9 Add labeled edges (γ, (w, y), label = 0) and (γ, (w′, y′), label = 1) to E;

10 Interpret the resulting tree as a trie of the code book CHuffman: for all x ∈ X,
the code word CHuffman(x) is obtained by identifying the unique leaf node
(w, y) ∈ V with y = x, walking along the unique path from the root node to
said leaf node, and concatenating the labels along the edges of this path.

In this problem, we set B = 2. (Note: to generalize Huffman coding to B > 2, you
would have to pad the alphabet X to a size that is a multiple of (B−1) by “making up”
additional symbols with zero probability; we won’t concern ourselves with this additional
complication here.)

(a) Consider the alphabet X = {1, 2, 3, 4, 5} and the probabilistic model p(1) = 0.3,
p(2) = 0.28, p(3) = 0.12, p(4) = 0.1, p(5) = 0.2. Execute the Huffman Coding
algorithm manually on paper and write down a table for CHuffman. Verify that you
obtained a prefix code.

(b) Extend your table from part (a) with a Shannon Code CShannon for the same
model p. To obtain CShannon, use Algorithm 1 with `(x) := d− log2 p(x)e ∀x ∈ X.
Verify again that you obtained a prefix code.

(c) Evaluate the entropy H2[p] and the expected code word lengths LHuffman and
LShannon. Verify that both codes satisfy Eq. 4 and that LHuffman ≤ LShannon (for this
particular example, you should find that LHuffman is strictly smaller than LShannon,
but equality is possible but for other probability distributions).

(d) Implement the Huffman Coding algorithm in Python by filling in the blanks in
the accompanying Jupyter notebook. You may want to refer back to the code
examples for Problem 1.3 on last week’s problem set.

4

Problem 2.5: RIP, Simplified Game of Monopoly

Starting next week, we will discuss methods from probabilistic machine learning that
will allow us to model complex data sources, such as natural language, images, or videos.
We will see that many of the concepts that we illustrated so far with the help of toy-ish
probabilistic models (like the “Simplified Game of Monopoly”) will carry over to these
more powerful and more realistic deep probabilistic models.

But before we put the Simplified Game of Monopoly to rest, here’s an off-topic brain
teaser for you: how would you actually build a 3-sided die as a physical object? What
(3-dimensional) shape would it have?

Don’t forget to provide anonymous feedback to this problem set in the cor-
responding poll on moodle.

5

https://moodle.zdv.uni-tuebingen.de/course/view.php?id=1372

	Kraft-McMillan Theorem
	Entropy
	Block Codes and Theoretical Lower Bound for Lossless Compression
	Huffman Coding
	RIP, Simplified Game of Monopoly

