
Solutions toProblem Set 3
Data Compression With Deep Probabilistic Models
Prof. Robert Bamler, University of Tuebingen

Course material available at https://robamler.github.io/teaching/compress21/

Problem 3.1: Kullback-Leibler Divergence

In the lecture, we introduced two probability distributions, pdata and pmodel. Here,

� pdata is the true distribution of the data source, which we typically don’t know,
but we may have a data set of empirical samples from it (e.g., a data set of
uncompressed images if we’re concerned with image compression); and

� pmodel is an approximation of pdata that we use to construct our lossless compres-
sion code; For now, we assume that we can explicitly evaluate pmodel(x) for any
hypothetical message x.

We derived that, if a lossless compression algorithm is optimal with respect to pmodel,
then its expected bit rate on data from pdata is given by the cross entropy H(pdata, pmodel),

Ex∼pdata
[
R(x)

]
= H(pdata, pmodel) + ε ≡ −Ex∼pdata

[
log pmodel(x)

]
+ ε. (1)

Here, ε < 1 is a tiny overhead that is irrelevant for practical purposes, the bit rate R(x)
denotes the total length (in bits) of the compressed representation of a message x, and the
notation Ex∼pdata [R(x)] :=

∑
x pdata(x)R(x) denotes the formal expectation value under

the probability distribution pdata (in practice, we can’t evaluate Ex∼pdata [R(x)] because
we can’t evaluate pdata(x) but we can estimate Ex∼pdata [R(x)] by averaging R(x) over
samples from a finite training set or test set).

Since we can only use pmodel but not pdata to construct our lossless compression algo-
rithm, any deviation between the two probability distributions will degrade compression
effectiveness, and the expected bit rate will exceed the fundamental lower bound given
by the entropy H(pdata). We defined the overhead in expected bit rate due to a mismatch
between pmodel and pdata as the Kullback-Leibler divergence DKL(pdata||pmodel):

DKL(pdata||pmodel) := H(pdata, pmodel)−H(pdata). (2)

(a) Eq. 1 only makes a statement about the expected bit rate and not about the
specific bit rate R(x) for any particular message x. What can you say about R(x)
for any specific message x for (i) a lossless compression algorithm that is optimal
w.r.t. pmodel and (ii) for an arbitrary lossless compression algorithm.

Solution: Regarding (i): for all intents and purposes, a lossless compression
code that is optimal w.r.t. pmodel satisfies a relation similar to Eq. 1 even on a per-
message level: for all messages x, the bit rate R(x) is very close to the information

1

https://robamler.github.io/teaching/compress21/

Figure 1: Illustration of Jensen’s inequality. Left: E[f(ξ)] for some convex function f .
Center: f(E[ξ]) for the same convex function f . Right: E[g(ξ)]) where g is the
affine linear function whose graph is a tangent to f , touching it at the point
(E[ξ], f(E[ξ])). Since f is convex, the tangent g to it satisfies g(ξ) ≤ f(ξ)∀ξ
and thus E[g(ξ)] ≤ E[f(ξ)]. Further, since g is affine linear, it can be pulled
out of the expectation: E[g(ξ)] = g(E[ξ]) = f(E[ξ]). Thus, in total, f(E[ξ]) ≤
E[f(ξ)] for any convex function f .

content of the message x, i.e, − log pmodel(x). If we ignored for a minute that R(x)
has to be an integer then we would have an exact relation R(x) = − log pmodel(x)
for any optimal lossless code because we can solve the same “relaxed minimization
problem” that we solved for the optimal code word lengths `(x) for symbol codes:
just reinterpret the set of all messages x as a (typically infinite) vocabulary and
then construct an optimal uniquely decodable symbol code that treats the entire
message as a single symbol from the vocabulary. The restriction that R(x) has to
be an integer will lead to small deviations between R(x) and the exact information
content of x. But, unlike the code word lengths `(x) in a symbol code, the bit rate
R(x) of the entire message is typically much larger than one, so rounding effects
are negligible.

Regarding (ii): if the lossless compression code isn’t optimal w.r.t. pmodel then, by
definition, the expected bit rate Ex∼pdata [R(x)] is strictly larger than H(pdata, pmodel)
but we can’t say much about the bit rate R(x) of an individual message x. It
could obviously be arbitrarily large (if the code is poorly designed) but, maybe
less obviously, one can also make R(x) for any specific x as small as a single bit at
the price of increasing R(x′) for all other messages x′ 6= x by only a single bit: start
from an arbitrary lossless compression code, then define a new code that assigns
the length-1 bit string “1” to your favorite message x. To all other messages x′ 6= x,
the code assigns the bit string consisting of a zero bit followed by its representation
in the original code. This new code is uniquely decodable because the decoder just
has to read the first bit to decide whether to stop and return x as the decoded
message, or whether it should switch to the original decoder and start decoding
the message. �

(b) Convince yourself that the following two expressions are valid formulations of the

2

Kullback-Leibler divergence:

DKL(p||q) = Ex∼p
[
log p(x)− log q(x)

]
= Ex∼p

[
log

p(x)

q(x)

]
(3)

(This is a fairly trivial exercise but Eqs. 2 and 3 are important to remember.)

Solution: Both formulations follow directly from the definition of DKL in Eq. 2,
the definitions of the entropy and the cross entropy (see Eq. 1), the properties of
the logarithm, and the linearity of the expectation value:

DKL(p||q) = H(p, q)−H(p)

= −Ex∼p
[

log q(x)
]

+ Ex∼p
[

log p(x)
]

= Ex∼p
[

log p(x)− log q(x)
]

= Ex∼p

[
log

p(x)

q(x)

]
.

�

(c) Since DKL measures the overhead in expected bit rate over its fundamental lower
bound we kind of already know that it cannot be negative. But let’s prove this in
a more direct way. The prove uses Jensen’s inequality (see Figure 1), which states
that, for any convex function f and any probability distribution p, we have:

f
(
Eξ∼p[ξ]

)
≤ Eξ∼p

[
f(ξ)

]
(for convex f). (4)

Prove that DKL(p||q) ≥ 0 using Eq. 3, Jensen’s inequality, and the fact that the
function f(ξ) = − log ξ is convex.

Solution: Let f : R>0 → R be the convex function with f(ξ) := − log ξ (you can
see that f is convex by noting that its second derivative, f ′′(ξ) = 1

ξ2
, is nonnegative

for all ξ). Then start from the last formulation of DKL in Eq. 3 and apply Jensen’s
inequality:

DKL(p||q) = Ex∼p

[
log

p(x)

q(x)

]
= Ex∼p

[
− log

q(x)

p(x)

]
= Ex∼p

[
f

(
q(x)

p(x)

)]

≥ f

(
Ex∼p

[
q(x)

p(x)

])
= f

(∑
x

p(x)
q(x)

p(x)

)
= f

(∑
x

q(x)

)
= f (1) = 0

where, on the second line, we explicitly wrote out the expectation as a weighted
sum and then used the fact that a normalized probability distribution sums to 1.

�

3

??

a) training:

text sample
from training set:

hidden
representation:

generated
output: ?

start
sentinel T

?

e

?

x

?

b) sampling ("generating")

hidden
representation:

generated
output:

start
sentinelt

? ??

Figure 2: Autoregressive model for character based text generation. a) Training: the
training objective is to predict the next input character, i.e., the training
objective is to make the model output the next input character with high
probability. b) Sampling, as implemented in the function generate: the func-
tion feeds in the previous generated character as input for generating the next
character.

Problem 3.2: Lossless Compression of Natural Language
With Recurrent Neural Networks

This zip-file contains code for a simple character-based autoregressive language model.
It is a fork of the char-rnn.pytorch-repository1 on GitHub. We will talk more about
autoregressive models in the next lecture, but Figure 2 should give you enough of an
overview to dive into the code. In this problem, you will train the model on some
toy training data, you will then use the trained model to implement your own lossless
compression codec for text, and you will evaluate the codec’s performance and compare
to theoretical bounds and to existing lossless compression methods.

Although the compression codec you’ll implement this week will already be quite
effective (considering its simplicity), it will still be far from optimal and it will also be
very slow. We will improve upon it in upcoming problem sets as we learn about better
compression techniques.

The code comes as a git bundle. To extact it, run:

git clone char-rnn-compression.gitbundle char-rnn-compression

You’ll also need PyTorch and tqdm:

cd char-rnn-compression

python3 -m virtualenv -p python3 venv

source venv/bin/activate

pip install torch tqdm

The repository contains some toy data set of (historic) English text2 in the direc-
tory dat. In order to allow us to compare results quantitatively, the directory also
contains a canonical random split into training, validation, and test set.

1https://github.com/spro/char-rnn.pytorch
2Downloaded from https://raw.githubusercontent.com/karpathy/char-rnn/master/data/

tinyshakespeare/input.txt

4

https://github.com/spro/char-rnn.pytorch
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt

(a) Train the model on the training set:

python3 train.py dat/shakespeare.txt

Training this small model doesn’t require any fancy hardware, it should only take
about 10 to 20 minutes on a regular consumer PC.

The script will use the training set at dat/shakespeare.train.txt. Before train-
ing and after every tenth training epoch, the script will evaluate the model’s perfor-
mance on the validation set (dat/shakespeare.val.txt) and it will print out the
cross entropy (to base 2). In regular intervals, the script will also print out samples
from the model (i.e., random generated text). You should be able to observe that
the cross entropy decreases (because that’s essentially the objective function that
the training procedure minimizes), and the generated text should resemble more
and more the kind of text you can find in the training set. At the end of training,
the cross entropy should oscillate roughly around 2 bits per character.

The trained model will be saved to a file named shakespeare.pt. You can now
evaluate it again on the validation or test set:

python3 evaluate.py shakespeare.pt dat/shakespeare.val.txt

python3 evaluate.py shakespeare.pt dat/shakespeare.test.txt

(b) Familiarize yourself with the code in evaluate.py and in generate.py and try
to understand what the functions evaluate and generate do. What does calling
torch.multinomial(output dist, 1) in the method generate achieve? (In par-
ticular, you should understand that output dist is an unnormalized probability
distribution here.)

Note: Both function signatures contain an argument with name decoder. This is
reminiscent of the naming convention in the original code repository, which was
not implemented with data compression in mind. Despite its name, this argument
is not a decoder in the sense of data compression. It is just the trained model.

Solution: The function generate takes an initial string of characters prime str,
and it then samples text from the model that starts with the prime str. It does so
by unrolling the model as illustrated in Figure 2 (b). Here, the step from the hidden
representation hi to the generated character (depicted as a circle with question
mark in the figure) deserves special attention. It is the only step in the process
that is stochastic. By contrast, all other steps in the model are deterministic. The
hidden representation hi parameterizes a probability distribution over characters.

The function generate first obtains a vector of (unnormalized) probabilities for
each character in the alphabet and assigns it to the variable output dist. Here,
“unnormalized” means that the components of output dist don’t necessarily sum
up to one. But they are still all nonnegative, and the the probability of the ith char-
acter in the alphabet is implicitly defined as output dist[i]

/∑
j output dist[j].

Calling torch.multinomial(output dist, 1) draws a single sample from this

5

distribution, taking care of the normalization internally (according to the docu-
mentation3).

The function evaluate estimates the cross entropy H(pdata, pmodel) by performing
an empirical average over − log pmodel(x) on a random sample from the data pro-
vided in the argument text file. It normalizes the cross entropy by the length of
the sample, i.e., it returns the cross entropy per character. The length of the sam-
ple can be controlled by the argument chunk len. By default, chunk len is rather
small so that the evaluation doesn’t take too much time, but this has the effect
that the estimate will be noisy, i.e., the return value of evaluate will fluctuate
quite a bit across function invocations. Such fluctuations are OK for debugging
output, but when you evaluate the model later you should set chunk len to a
larger value so as to reduce the variance.

The estimation of the cross entropy also has to take into account that the model
only outputs unnormalized probabilities. The model parameterizes probabilities by
the logits (i.e., the logarithms of unnormalized probabilities). Thus, the negative
log probability of character i is given as

− log p(i) = − log
exp(logit[i])∑
j

exp(logit[j])
= log

∑
j

exp(logit[j])

− logit[i].

Here, a naive evaluation of the first term on the far right-hand-side would be
numerically unstable because the exponential function can easily overflow. The
function evaluate therefore applies the so-called “log-sum-exp trick” to make the
calculation numerically stable. The trick is to subtract maxk logit[k] from all
logits, observing that such a global shift does not change value of the right-hand
side (apart from changing the rounding errors). �

(c) You should have observed that generate generates random text. This makes sense
because the trained model parameterizes a probability distribution pmodel, so one
can draw random samples from it (the probability distribution is over sequences of
characters and aims to resemble the distribution of natural English text). However,
in compression, we don’t want to generate random text. We want the receiver to
be able to deterministically decode the exact same text that the sender encoded.
How can you achieve this using the trained probabilistic model. Make a sketch
similar to Figure 2 to illustrate your approach.

Solution: This is precisely the concept of “entropy coding”, of which the symbol
codes that we’ve been discussing so far are an example: entropy coding employs a
probabilistic model but it still admits deterministic generation. In contrast to the
function generate, which uses the probabilistic model to draw random samples,
we will now use the probabilistic model to construct an optimal symbol code, which
we then use to decode a symbol from a bit string.

3https://pytorch.org/docs/stable/generated/torch.multinomial.html

6

https://pytorch.org/docs/stable/generated/torch.multinomial.html

a) encoding: b) decoding:

hidden
representation:

compressed
bit string:

start
sentinel

decoded
message: T

101

e

11

x

0

t

100

message to be
compressed:

hidden
representation:

compressed
bit string:

start
sentinel

101 11 0 100

T e x t

Figure 3: Encoding and decoding with a symbol code that is informed by an autore-
gressive model. Both encoding and decoding unroll the autoregressive model,
which produces a sequence of probability distributions over the alphabet of
characters. We use these probability distributions to construct a sequence of
Huffman Codes, one Huffman Code per encoded/decoded character. a) at en-
coding time, we know the entire message, so we can simply unroll the model
on the message and use the resulting Huffman Codes to encode each charac-
ter. b) at decoding time, we start without any knowledge of the message, but
we can unroll the autoregressive model up to its first step as this doesn’t yet
require any input from the message. We can then construct the Huffman Code
for the first character, decode the character, and feed it into the autoregressive
model in order to transition to the second step. We then repeat this process,
consuming a small chunk of the compressed bit string at each step.

You can think of this approach as the probabilistic model making a “fuzzy” predic-
tion for the next character. To turn this fuzzy prediction into a precise prediction,
we have to inject additional information in the form of a few bits from the com-
pressed bit string. The better the fuzzy prediction was to begin with (i.e., the
better the probabilistic model resembles the true data distribution), the less ad-
ditional information in the form of compressed bits you have to inject. Figure 3
illustrates our approach for encoding and decoding. �

(d) Create a new file compression.py that contains a function encode huffman with
the following (or a similar) signature:

def encode_huffman(model, message, length_only=False):

The function takes a trained model (what was called decoder in the other func-
tions) and some text, and it should return a compressed bit string. If the boolean
switch length only it is set to True then the function shouldn’t really build up
the compressed message. Instead, it should only simulate the process and return
the length (in bits) of the compressed representation. This is for your convenience,
since in the evaluation you’ll mostly be interested only in the file size and not in
the actual contents of the file.

In order to solve this problem, you’ll need to bring in your implementation of
the Huffman Coding algorithm from last week’s problem set. You can also find a

7

solution to last week’s problem set on the course website.4

Hint 1: you’ll have to build up a different Huffman tree for every single character
in the message.

Hint 2: you can apply the Huffman coding algorithm directly to an unnormalized
probability distribution since the overall scale doesn’t affect how the algorithm
operates.

Solution: See accompanying code.

� To bring the solutions into your code base, cd into your code base and then
run

git stash

git checkout -b solutions 802c25f

git pull path/to/char-rnn-compression-solutions.gitbundle

� If you never cloned the original code repository from the problem set, then
run instead:

git clone path/to/char-rnn-compression-solutions.gitbundle \

char-rnn-compression

cd char-rnn-compression

python3 -m virtualenv -p python3 venv

source venv/bin/activate

pip install torch tqdm

� If you haven’t done so already, train the model with the following command:

source venv/bin/activate

python3 train.py dat/shakespeare.txt

� Then encode some text file (e.g., the validation set, which is included in the
gitbundle at dat/shakespeare.val.txt) by running:

python3 compression.py shakespeare.pt \

dat/shakespeare.val.txt encode

This prints some statistics to the terminal and it writes the compressed bit
string to a file at dat/shakespeare.val.txt.compressed. If you’re only
interested in the statistics and you don’t need the compressed data, then add
the --length only flag:

python3 compression.py shakespeare.pt \

dat/shakespeare.val.txt encode --length_only

�

(e) Evaluate the compression performance of your implementation on some sample
texts. Try it out on different kinds of texts, ranging from the validation set (which
should be very similar to the training set) to more modern English text (e.g., a

4https://robamler.github.io/teaching/compress21/

8

https://robamler.github.io/teaching/compress21/

Wikipedia page) to text in a different language. Compare your codec’s compression
effectiveness to

� the information content (− log2 pmodel(x)) of the message x that was provided
to the encode function (calculating this will be very similar to the implemen-
tation of the evaluate function);

� the bit rate had you used Shannon coding instead of Huffman Coding (this
is
∑k

i=1d− log2 pmodel(xi|x1:i−1)e); and to

� standard lossless compression techniques such as gzip or bzip2 (make sure
you use the --best switch when running these baselines).

Also, write the compressed output to a binary file (pad to full bytes with trailing
zero bits for now, we will discuss this issue later) and try to compress this file with
gzip or bzip2.

Solution: I tested the compression method on the validation and test sets, and
on plain-text versions of the Wikipedia articles on Claude Shannon in the En-
glish and German language. The Wikipedia articles were preprocessed to ensure
that they contain only characters in the alphabet (e.g., by replacing German um-
lauts with their non-umlaut counterparts). The preprocessed Wikipedia articles
are included in the gitbundle at dat/wikipedia-{en, de}.txt, and will be re-
ferred to as wikipedia-en and wikipedia-de below, respectively. The following table
summarizes the results:

msg. len bits per character
(chars) Huffman Shannon inf. cont. gzip bzip2 bzip2’

validation set 106,864 2.38 2.72 2.12 3.43 2.82 2.40
test set 219,561 2.38 2.73 2.12 3.33 2.65 2.38

wikipedia-en 24,618 4.99 5.67 5.14 3.22 2.92 5.14
wikipedia-de 8,426 6.77 7.70 7.19 3.96 3.76 7.22

Here, “msg. len” is the length of the uncompressed message x (number of char-
acters), “inf. cont.” is the information content, − log2 pmodel(x), of the message
under our trained autoregressive model, and bzip2’ is the result of compressing
the output of our method (the autoregressive model with Huffman Coding) with
bzip2. Both gzip and bzip2 were always run with the --best switch.

We observe that Huffman coding with the trained model outperforms the standard
methods gzip and bzip2 on messages that are very similar to the training set, but
compression performance degrades the more the message differs in style from the
training data. The validation and test set are both very similar to the training set,
and the model performs essentially equally well on both (which is to be expected
since I never actually used the validation set for hyperparameter tuning). The
model performs worse on the English language Wikipedia article and even worse
on the Germen language Wikipedia article. This can be explained since modern
English language is different from the Shakespeare training text, but still closer to
it than German language text.

9

We further observe that Huffman Coding performs better than Shannon Coding
(as expected since both are symbol codes but only the Huffman Code is guaran-
teed to always be an optimal symbol code). Further, both Huffman Coding and
Shannon Coding have an overhead over the information content when evaluated
on the validation and test set, as expected. Interestingly, however, the bitrate of
Huffman Coding on the Wikipedia articles is actually lower than the information
content. As discussed in Problem 1.1. (a), this means that the Huffman Coder
cannot be an optimal lossless compression algorithm w.r.t. to the trained model.
Indeed, Huffman Coding is only an optimal symbol code, but not an optimal loss-
less compression code in general. Later in the course, we will learn about so-called
stream codes, which are practical near-optimal compression algorithms that go
beyond symbol codes. Using these stream codes will close the gap between the
information content and the practically achievable bitrate on all data sets up to a
very small overhead.

Finally, we observe in the last column of the table that further compressing the
already compressed output of our Huffman Coder does not actually reduce the file
size. In contrast, it usually even makes things worse, even on the out-of-distribution
data where our method performs poorly. This is because bzip2 compresses its
input data by detecting repeated sequences that are aligned with byte boundaries.
Since the Huffman Coder produces code words of odd lengths using a different
code book for every symbol, there is no reason why it should produce repeated bit
strings that are aligned with byte boundaries more often than one would expect
in a string of uniformly random distributed bits. As we’ve learned in the lecture,
there’s no silver bullet in compression: you always have to make assumptions about
the data source and you can’t, in expectation, beat the cross entropy between the
true data distribution and your model of it. In the case of bzip2’, the model that
the bzip2 algorithm (implicitly) uses just doesn’t match the true characteristics
of our Huffman Coder. �

(f) Implement a decoder and verify empirically that decode(encode(message)) ==

message. You can either use the very naive prefix code decoder from the first
problem set, or you can implement a more efficient decoder by exploiting the
Huffman tree structure.

Solution: See again accompanying code in the file compression.py. The class
HuffmanDecoder provides a decoder that exploits the Huffman tree structure. In
principle, this makes the decoder more efficient than our naive decoder from Prob-
lem Set 1. In practice, however, both the Huffman encoder and the Huffman
decoder are still embarrassingly slow simply because Python is not a good fit for
such bit-level manipulations. In future coding problems, we will therefore mostly
outsource the coding part to a more efficient library implemented in Rust.

To verify empirically that decoding reconstructs the exact original message, run:

python3 compression.py shakespeare.pt \

dat/wikipedia-de.txt encode

10

python3 compression.py shakespeare.pt \

dat/wikipedia-de.txt.compressed \

decode > dat/wikipedia-de.txt.decompressed

sha1sum dat/wikipedia-de.txt dat/wikipedia-de.txt.decompressed

The last command should print the same checksum for both files. �

11

	Kullback-Leibler Divergence
	Lossless Compression of Natural Language With Recurrent Neural Networks

