
Problem Set 3 published: 5 May 2021
discussion: 10 May 2021

Data Compression With Deep Probabilistic Models
Prof. Robert Bamler, University of Tuebingen

Course material available at https://robamler.github.io/teaching/compress21/

Problem 3.1: Kullback-Leibler Divergence

In the lecture, we introduced two probability distributions, pdata and pmodel. Here,

� pdata is the true distribution of the data source, which we typically don’t know,
but we may have a data set of empirical samples from it (e.g., a data set of
uncompressed images if we’re concerned with image compression); and

� pmodel is an approximation of pdata that we use to construct our lossless compres-
sion code; For now, we assume that we can explicitly evaluate pmodel(x) for any
hypothetical message x.

We derived that, if a lossless compression algorithm is optimal with respect to pmodel,
then its expected bit rate on data from pdata is given by the cross entropy H(pdata, pmodel),

Ex∼pdata
[
R(x)

]
= H(pdata, pmodel) + ε ≡ −Ex∼pdata

[
log pmodel(x)

]
+ ε. (1)

Here, ε < 1 is a tiny overhead that is irrelevant for practical purposes, the bit rate R(x)
denotes the total length (in bits) of the compressed representation of a message x, and the
notation Ex∼pdata [R(x)] :=

∑
x pdata(x)R(x) denotes the formal expectation value under

the probability distribution pdata (in practice, we can’t evaluate Ex∼pdata [R(x)] because
we can’t evaluate pdata(x) but we can estimate Ex∼pdata [R(x)] by averaging R(x) over
samples in a finite training set or test set).

Since we can only use pmodel but not pdata to construct our lossless compression algo-
rithm, any deviation between the two probability distributions will degrade compression
effectiveness, and the expected bit rate will exceed the fundamental lower bound given
by the entropy H(pdata). We defined the overhead in expected bit rate due to a mismatch
between pmodel and pdata as the Kullback-Leibler divergence DKL(pdata||pmodel):

DKL(pdata||pmodel) := H(pdata, pmodel)−H(pdata). (2)

(a) Eq. 1 only makes a statement about the expected bit rate and not about the
specific bit rate R(x) for any particular message x. What can you say about R(x)
for any specific message x for (i) a lossless compression algorithm that is optimal
w.r.t. pmodel and (ii) for an arbitrary lossless compression algorithm.

1

https://robamler.github.io/teaching/compress21/

Figure 1: Illustration of Jensen’s inequality. Left: E[f(ξ)] for some convex function f .
Center: f(E[ξ]) for the same convex function f . Right: E[g(ξ)]) where g is the
affine linear function whose graph is a tangent to f , touching it at the point
(E[ξ], f(E[ξ])). Since f is convex, the tangent g to it satisfies g(ξ) ≤ f(ξ)∀ξ
and thus E[g(ξ)] ≤ E[f(ξ)]. Further, since g is affine linear, it can be pulled
out of the expectation: E[g(ξ)] = g(E[ξ]) = f(E[ξ]). Thus, in total, f(E[ξ]) ≤
E[f(ξ)] for any convex function f .

(b) Convince yourself that the following two expressions are valid formulations of the
Kullback-Leibler divergence:

DKL(p||q) = Ex∼p
[
log p(x)− log q(x)

]
= Ex∼p

[
log

p(x)

q(x)

]
(3)

(This is a fairly trivial exercise but Eqs. 2 and 3 are important to remember.)

(c) Since DKL measures the overhead in expected bit rate over its fundamental lower
bound we kind of already know that it cannot be negative. But let’s prove this in
a more direct way. The prove uses Jensen’s inequality (see Figure 1), which states
that, for any convex function f and any probability distribution p, we have:

f
(
Eξ∼p[ξ]

)
≤ Eξ∼p

[
f(ξ)

]
(for convex f). (4)

Prove that DKL(p||q) ≥ 0 using Eq. 3, Jensen’s inequality, and the fact that the
function f(ξ) = − log ξ is convex.

Problem 3.2: Lossless Compression of Natural Language
With Recurrent Neural Networks

This zip-file contains code for a simple character-based autoregressive language model.
It is a fork of the char-rnn.pytorch-repository1 on GitHub. We will talk more about
autoregressive models in the next lecture, but Figure 2 should give you enough of an
overview to dive into the code. In this problem, you will train the model on some
toy training data, you will then use the trained model to implement your own lossless
compression codec for text, and you will evaluate the codec’s performance and compare
to theoretical bounds and to existing lossless compression methods.

1https://github.com/spro/char-rnn.pytorch

2

https://github.com/spro/char-rnn.pytorch

??

a) training:

text sample
from training set:

hidden
representation:

generated
output: ?

start
sentinel T

?

e

?

x

?

b) sampling ("generating")

hidden
representation:

generated
output:

start
sentinelt

? ??

Figure 2: Autoregressive model for character based text generation. a) Training: the
training objective is to predict the next input character, i.e., the training
objective is to make the model output the next input character with high
probability. b) Sampling, as implemented in the function generate: the func-
tion feeds in the previous generated character as input for generating the next
character.

Although the compression codec you’ll implement this week will already be quite
effective (considering its simplicity), it will still be far from optimal and it will also be
very slow. We will improve upon it in upcoming problem sets as we learn about better
compression techniques.

The code comes as a git bundle. To extact it, run:

git clone char-rnn-compression.gitbundle char-rnn-compression

You’ll also need PyTorch and tqdm:

cd char-rnn-compression

python3 -m virtualenv -p python3 venv

source venv/bin/activate

pip install torch tqdm

The repository contains some toy data set of (historic) English text2 in the direc-
tory dat. In order to allow us to compare results quantitatively, the directory also
contains a canonical random split into training, validation, and test set.

(a) Train the model on the training set:

python3 train.py dat/shakespeare.txt

Training this small model doesn’t require any fancy hardware, it should only take
about 10 to 20 minutes on a regular consumer PC.

The script will use the training set at dat/shakespeare.train.txt. Before train-
ing and after every tenth training epoch, the script will evaluate the model’s perfor-
mance on the validation set (dat/shakespeare.val.txt) and it will print out the
cross entropy (to base 2). In regular intervals, the script will also print out samples
from the model (i.e., random generated text). You should be able to observe that

2Downloaded from https://raw.githubusercontent.com/karpathy/char-rnn/master/data/

tinyshakespeare/input.txt

3

https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt

the cross entropy decreases (because that’s essentially the objective function that
the training procedure minimizes), and the generated text should resemble more
and more the kind of text you can find in the training set. At the end of training,
the cross entropy should oscillate roughly around 2 bits per character.

The trained model will be saved to a file named shakespeare.pt. You can now
evaluate it again on the validation or test set:

python3 evaluate.py shakespeare.pt dat/shakespeare.val.txt

python3 evaluate.py shakespeare.pt dat/shakespeare.test.txt

(b) Familiarize yourself with the code in evaluate.py and in generate.py and try
to understand what the functions evaluate and generate do. What does calling
torch.multinomial(output dist, 1) in the method generate achieve? (In par-
ticular, you should understand that output dist is an unnormalized probability
distribution here.)

Note: Both function signatures contain an argument with name decoder. This is
reminiscent of the naming convention in the original code repository, which was
not implemented with data compression in mind. Despite its name, this argument
is not a decoder in the sense of data compression. It is just the trained model.

(c) You should have observed that generate generates random text. This makes sense
because the trained model parameterizes a probability distribution pmodel, so one
can draw random samples from it (the probability distribution is over sequences of
characters and aims to resemble the distribution of natural English text). However,
in compression, we don’t want to generate random text. We want the receiver to
be able to deterministically decode the exact same text that the sender encoded.
How can you achieve this using the trained probabilistic model. Make a sketch
similar to Figure 2 to illustrate your approach.

(d) Create a new file compression.py that contains a function encode huffman with
the following (or a similar) signature:

def encode_huffman(model, message, length_only=False):

The function takes a trained model (what was called decoder in the other func-
tions) and some text, and it should return a compressed bit string. If the boolean
switch length only it is set to True then the function shouldn’t really build up
the compressed message. Instead, it should only simulate the process and return
the length (in bits) of the compressed representation. This is for your convenience,
since in the evaluation you’ll mostly be interested only in the file size and not in
the actual contents of the file.

In order to solve this problem, you’ll need to bring in your implementation of
the Huffman Coding algorithm from last week’s problem set. You can also find a
solution to last week’s problem set on the course website.3

3https://robamler.github.io/teaching/compress21/

4

https://robamler.github.io/teaching/compress21/

Hint 1: you’ll have to build up a different Huffman tree for every single character
in the message.

Hint 2: you can apply the Huffman coding algorithm directly to an unnormalized
probability distribution since the overall scale doesn’t affect how the algorithm
operates.

(e) Evaluate the compression performance of your implementation on some sample
texts. Try it out on different kinds of texts, ranging from the validation set (which
should be very similar to the training set) to more modern English text (e.g., a
Wikipedia page) to text in a different language. Compare your codec’s compression
effectiveness to

� the information content (− log2 pmodel(x)) of the message x that was provided
to the encode function (calculating this will be very similar to the implemen-
tation of the evaluate function);

� the bit rate had you used Shannon coding instead of Huffman Coding (this
is
∑k

i=1d− log2 pmodel(xi|x1:i−1)e); and to

� standard lossless compression techniques such as gzip or bzip2 (make sure
you use the --best switch when running these baselines).

Also, write the compressed output to a binary file (pad to full bytes with trailing
zero bits for now, we will discuss this issue later) and try to compress this file with
gzip or bzip2.

(f) Implement a decoder and verify empirically that decode(encode(message)) ==

message. You can either use the very naive prefix code decoder from the first
problem set, or you can implement a more efficient decoder by exploiting the
Huffman tree structure.

Don’t forget to provide anonymous feedback to this problem set in the cor-
responding poll on moodle.

5

https://moodle.zdv.uni-tuebingen.de/course/view.php?id=1372

	Kullback-Leibler Divergence
	Lossless Compression of Natural Language With Recurrent Neural Networks

