
1/8/22, 5:20 PM problem-set-05 - Jupyter Notebook

localhost:8888/notebooks/problem-set-05.ipynb 1/9

Problem Set 5: Bits-Back Coding With Latent Variable Models ¶
This problem set is part of the course "Data Compression With Deep Probabilistic Models" by Prof. Robert Bamler at University of
Tuebingen, Germany. You can find more course materials (lecture notes, video recordings, and solutions) at the course website,
https://robamler.github.io/teaching/compress21/ (https://robamler.github.io/teaching/compress21/)

Problem Set Published: 20 May 2021
Discussion: 31 May 2021
Updated: 8 Jan 2021 (ported to constriction version 0.2)

This problem set is provided both as a jupyter notebook and as a PDF rendering of the same notbook. The jupyter notebook contains several
blanks where you have to fill in your code to solve the problems. I kept all output that I obtained from running my solutions in the notebook and
in the PDF, so that you can compare them to your results. For this purpose, you may find it useful to refer to the PDF rendering of the notebook
because my program output will obviously disappear from this notebook as soon as you run your code.

In response to several questions in the lecture on Tuesday, and deviating from the foreshadowing on last week's problem set, we will defer the
planned discussion of mutual information to the next problem set and use this problem set to practice Bayesian inference and the bits-back
coding method. In this problem set, you will implement several compression methods that use a latent variable model, and you will compare
the empirical compression performance across these methods by comparing the resulting bit rates for some sample messages. The methods
that you will implement are:

1. a naive method that simply ignores correlations between symbols in a message;
2. encoding and transmitting a MAP estimated latent variable, then encoding the message conditioned on the MAP estimate; and
3. bits-back coding.

You won't have to write much code for this problem set because all the setup is already done for you. You only need to fill in the most critical
parts. But, in order to do this, you have to understand what all the setup does. So read the instructions carefully and make sure you understand
every part before you move on to the next.

Problem 5.1: Prerequisites
You won't yet write much code in this problem, we'll just set up everything here so that you can get your hands dirty in Problems 5.2-5.4.

This problem set focuses on the interplay between source coding and probabilistic modelling.

we will focus on the question: "which random variables have to be encoded or decoded with which probabilistic models at what time?"
we will not (for now) address the question: "how do we encode the random variables into a bit string (once we've figured out what random
variables we want to encode and with which model)."

Don't worry: you'll learn the answer to the second question in the next lecture. For now, just think of the encoding algorithm that you'll use
below as something similar to Huffman Coding, just with smaller overhead.

Problem 5.1 (a): a library of entropy coding primitives
To actually perform the encoding and decoding, we'll use the constriction library (https://bamler-lab.github.io/constriction/), which was
specially developed with research and teaching use cases in mind. This library is still in its early days (quite literally!), so you may find some
bugs. Please report issues (https://github.com/bamler-lab/constriction/issues) (or ping me on discord) if constriction doesn't work on your
system, so I can try to fix it.

To test if constriction works on your system, please follow these steps:

1. Make sure you use Python version 3.7, 3.8, or 3.9, on either Linux, Windows, or Mac OS. Other systems are currently not supported.
2. Install constriction via pip (and let's also install matplotlib while we're at it):

In []:

3. Once constriction is installed, import it and run the example code below.

Carefully read the example code and make sure you understand how to use the showcased parts of the library.
If the example code doesn't work on your system, then please let me know, either on discord or by filing an issue
(https://github.com/bamler-lab/constriction/issues).

!pip install constriction~=0.2.1 matplotlib

https://robamler.github.io/teaching/compress21/
https://bamler-lab.github.io/constriction/
https://github.com/bamler-lab/constriction/issues
https://github.com/bamler-lab/constriction/issues

1/8/22, 5:20 PM problem-set-05 - Jupyter Notebook

localhost:8888/notebooks/problem-set-05.ipynb 2/9

In [2]:

Your Task

To verify that you understand how the library works, change the above example so that it still encodes both message1 and message2 , but
now with different entropy models. While message1 should be encoded and decoded as before, message2 should now be encoded and
decoded with a model that supports only the alphabet (i.e., it doesn't support the symbol " "), and the probabilities are

, , and . Your implementation should print the compressed representation as being
[2884514895 59071] , and it should then be able to successfully reconstruct both messages.

Hint: since constriction.stream.model.Categorical can only model distributions over symbols starting at zero, define a categorical
probability distribution over the alphabet instead and encode message_2 - 1 . When you decode the message, use
reconstruction2 = decoder.decode(...) + 1 .

If you want to play around more with this library then you may want to refer to the API documentation (https://bamler-
lab.github.io/constriction/apidoc/python/).

{1, 2, 3} 0

𝑃 (= 1) = 0.5𝑋𝑖 𝑃 (= 2) = 0.2𝑋𝑖 𝑃 (= 3) = 0.3𝑋𝑖

{0, 1, 2}

In [4]:

Compressed data has 64 bits (includes padding to a multiple of 32 bits).

[3521629398 430756]

Both messages reconstructed successfully.

import constriction

import numpy as np

Specify a probabilistic model of a data source (typically referred to as an "entropy model").

We'll use a categorical distribution with P(X=0) = 0.3, P(X=1) = 0.4, P(X=2)=0.2, and P(X=3) = 0.1

in this example.

symbol_probabilities = np.array([0.3, 0.4, 0.2, 0.1], dtype=np.float64) # (must be 64-bit floats)

entropy_model = constriction.stream.model.Categorical(symbol_probabilities)

Define two toy example messages; symbols must be 32-bit signed integers within the range from

`lowest_symbol` (inclusively) to `lowest_symbol + len(symbol_probabilities)` (exclusively).

message1 = np.array([3, 0, 1, 0, 2, 3, 2, 2], dtype=np.int32)

message2 = np.array([1, 3, 2, 1, 3], dtype=np.int32)

Construct an entropy coder that uses the Asymmetric Numeral Systems (ANS) method (more on this

method in the next lecture). Then encode both messages with the coder and the entropy model.

Please note:

- we encode the messages *in reverse order* (first `message2`, then `message1`) because the

ANS coder operates as a stack ("last in first out");

- we encode both messages with the same entropy model to keep things simple; but you could as

well use a different entropy model for each message, as long as you then also use the

correct entropy model for each message upon decoding (see below); and

- when you construct the `coder` below, you could also provide some initial bit string to the

constructor; in this case, encoding would *append* to the existing bit string.

coder = constriction.stream.stack.AnsCoder()

coder.encode_reverse(message2, entropy_model)

coder.encode_reverse(message1, entropy_model)

Get the compressed data as an array of unsigned 32-bit integers (this is how `constriction`

represents compressed data by default).

compressed = coder.get_compressed()

print(f'Compressed data has {len(compressed) * 32} bits (includes padding to a multiple of 32 bits).')

print(compressed) # should print "[3521629398 430756]"

Create a decoder and decode the messages.

Please note:

- we're *popping the meessages off the stack*, so we'll first get `message1` and then `message2`;

- the `AnsCoder` class actually doesn't distinguish between an encoder and a decoder, i.e., you

could also use the original `coder` for decoding; and

- the first argument for the method `decode_iid_categorical_symbols` is the number of symbols you

want to decode.

decoder = constriction.stream.stack.AnsCoder(compressed)

reconstruction1 = decoder.decode(entropy_model, 8) # (decodes 8 i.i.d. symbols)

reconstruction2 = decoder.decode(entropy_model, 5) # (decodes 5 i.i.d. symbols)

Verify correctness.

assert np.all(reconstruction1 == message1)

assert np.all(reconstruction2 == message2)

print("Both messages reconstructed successfully.")

An `AnsCoder` encapsulates a compressed bit string. Encoding symbols *appends* data to the

encapsulated bit string and decoding symbols *consumes* data from the encapsulated bit string

(with "stack" semantics). Thus, once you've decoded all symbols, the bit string is empty:

assert len(decoder.get_compressed()) == 0

import numpy as np

import constriction

import matplotlib.pyplot as plt

https://bamler-lab.github.io/constriction/apidoc/python/

1/8/22, 5:20 PM problem-set-05 - Jupyter Notebook

localhost:8888/notebooks/problem-set-05.ipynb 3/9

In [5]:

Verify Model Correctness and Generate Toy Data

It's always a good idea to check empirically if we've made any obvious mistake in the model definition (like missing a prefactor, etc.). We want
to catch such mistakes early because they will be very hard to detect later on (even if we made a mistake in the model definition, it's possible
that all the compression methods on top of it will still technically work, they will just perform worse than they could).

A simple way to check for obvious errors in the model definition is to implement the generative process in the most naive way possible (so that
you can be sure it's correct), generate some random samples from the model, plot histograms of these random samples, and then just visually
compare the histograms to the model. As a side effect of this, we also get some toy data that we will later use to test our compression
methods.

NOTE: We only test the likelihood here, i.e., we pretend that we know the value of the latent variable . In the full problem, we assume that at
least the receiver doesn't know the value of .

𝑍

𝑍

In [6]:

Your Task

Look at the above graphs and make sure you understand what they show (you'll probably have to refer to the code for this purpose). Then
make sure that you understand why the graphs are consistent with what we expect from the model. In particular, you should notice:

domain_z = np.arange(10, 60 + 1)

domain_x = np.array([False, True])

def prior(z):

 prior_probability = 1 / len(domain_z)

 if isinstance(z, np.ndarray):

 # if `z` is an array then return an array with the prior probability of each `z`

 # (which is the same for all elements since the prior probability doesn't depend on `z`)

 return np.full(z.shape, prior_probability)

 else:

 return prior_probability

def likelihood(x_i, z):

 # This is essentially an `if` statement except that it generalizes to the case where `x_i` is

 # an array of booleans (in which case it evaluates the likelihood on each element and returns

 # an array of the results). To see this, evaluate the expression on the next line for

 # `x_i = True` and for `x_i = False` in your head and verify for yourself that you get the

 # correct result in both cases.

 return ((1 - x_i) * (z - 5) + x_i * 5) / z

rng = np.random.RandomState(123) # Always set a random seed so that you can reproduce failing tests.

num_samples_per_z = 1000

samples_x = np.empty((len(domain_z), num_samples_per_z), dtype=np.int32)

fig, axs = plt.subplots(1, (len(domain_z) + 9) // 10, figsize=(15, 2.5), sharey=True)

for z_index, z in enumerate(domain_z):

 # Generate some samples from the likelihood P(X_i | Z=z) in the most naive way possible

 # so that we can be sure that these samples are generated corretly.

 for i in range(num_samples_per_z):

 samples_x[z_index, i] = (rng.choice(z) < 5) # Note: `rng.choice(z)` returns a value from 0 to

 if z_index % 10 == 0:

 ax = axs[z_index // 10]

 ax.set_title(f'$z = {z}$')

 ax.hist(

 samples_x[z_index],

 weights=[1/num_samples_per_z] * num_samples_per_z, # Probably not the nicest solution, but

 label='empirically')

 ax.plot([0, 1], likelihood(domain_x, z), 'o', label='model likelihood')

 ax.set_xlabel('value x_i')

 ax.set_xlim(-0.5, 1.5)

 ax.set_xticks([0, 1])

 ax.set_xticklabels(['False', 'True'])

axs[0].set_ylabel('fraction of symbols\nwith value x_i')

axs[0].legend(loc='upper left')

fig.subplots_adjust(wspace=0.04)

1/8/22, 5:20 PM problem-set-05 - Jupyter Notebook

localhost:8888/notebooks/problem-set-05.ipynb 4/9

that the models (organge dots) match the empirical distributions (blue bars) up to small deviations that seem consistent with random noise;
that the likelihood for looks like it's symmetric; why is that what we expect for the case ?
that, for increasing , both the empirical distribution and the likelihood start to favor the False symbol; why is that too consistent with our
expectation?

𝑧 = 10 𝑧 = 10

𝑧

Problem 5.1 (c): Test Harness
As a final setup step, the following code defines a generic function to test a compression method. Read the doc string and make sure you
understand it, then move on to Problem 5.2, where you'll finally be able to get your hands dirty.

In [7]:

Various Compression Techniques
Problems 5.2-5.4 make up the meat of this problem set. You'll implement three different techniques to encode data from the data source
defined in Problem 5.1 above. You'll start with a trivial technique in Problem 5.2 and then gradually increase the complexity in Problems 5.3
and 5.4. In Problem 5.5, you'll compare the empirical compression performance of these three techniques.

Problem 5.2: Compressing Without Exploiting Correlations

Problem 5.2 (a): Define a Simplified Model of the Data Source
In the simplest way, we could just ignore the correlations between the symbols that result from the marginalization over the latent variable

. Thus, while the data that we want to compress will still come from the probability distribution defined in Problem 5.1 above, we don't
actually use this probability distribution as our entropy model for compression. Instead, we will use a simplified model that factorizes over

𝑋𝑖

𝑍 𝑃

𝑃
′

def test_compression_method(encode, decode, message_length=100):

 """Verify correctness and evaluate compression performance of an encoder-decoder pair.

 This function encodes several random messages from the model into a single bit string

 by repeatedly calling the provided callback `encode`. It then decodes all messages from

 the compressed bit string by repeatedly calling the provided callback `decode`, and it

 verifies that all decoded messages match the original messages. The function returns

 the average bit rate per message (averaged over all tested messages).

 Thus, this function simulates a real-world scenario where you'd typically use a single

 channel to communicate several messages. Note that all sample messages are *independent*

 draws from the above probabilistic model. Thus, while the symbols *within each message*

 are all generated with the same latent z, the value z will differ across messages.

 Therefore, the *concatenation* of the sample messages would *not* be distributed

 according to the probabilistic model. Again, this simulates the typical real-world

 scenario: if you were to communicate, e.g., a sequence of images, then you'd expect each

 individual image to show a consistent scene, but it would be unreasonable to assume that

 the concatenation of all images would also show a single scene.

 Args:

 encode: a function with the signature `encode(message, existing_compressed)`. Should

 compress the `message` by appending an encoded representation of it to

 `existing_compressed` and return the resulting (longer) compressed bit string.

 decode: a function with the signature `decode(compressed, num_symbols)`. Should

 decode `num_symbols` symbols from the *end* of the bit string `compressed` and

 return a tuple `(symbols, remaining)`, where `symbols` are the decoded symbols

 and `remaining` is any part of the original bit string `compressed` that was not

 used up by the decoding process.

 message_length: the number of symbols in each sample message (defaults to 100).

 Returns:

 float: the average bit rate per message.

 """

 assert message_length <= samples_x.shape[1]

 # Compress the messages, starting with no compressed data, and growing the buffer of

 # compressed data in each step.

 # [Technical note: this function is for demonstration purpose; in a real application, you'd

 # want to pass around `AnsCoder`s instead of compressed data so that the `encode` callback

 # doesn't have to copy compressed data into and out of an `AnsCoder` all the time.]

 compressed = np.array([], dtype=np.uint32)

 for i, z in enumerate(domain_z):

 compressed = encode(samples_x[i, :message_length], compressed)

 total_bitrate = len(compressed) * 32 # `compressed` is an array of unsigned 32-bit integers.

 # Decompress the data and verify that this reconstructs the original messages. We iterate

 # *in reverse order* since we assume that the provided encoder-decoder pair operate as a stack.

 for i, z in reversed(list(enumerate(domain_z))):

 reconstructed, compressed = decode(compressed, message_length)

 assert np.all(reconstructed == samples_x[i, :message_length])

 return total_bitrate / len(domain_z)

1/8/22, 5:20 PM problem-set-05 - Jupyter Notebook

localhost:8888/notebooks/problem-set-05.ipynb 5/9

all symbols,

and we simply encode all messages (regardless of the value of that was used to generate them) by encoding each symbol with the entropy
model . We therefore don't even have to encode and transmit any value of to the receiver.

Your Tasks

1. Show that the best choice for (i.e., the one that minimizes the expected bit rate) is the marginal symbol distribution,

2. Then implement the function marginal_symbol_probability below and verify that it returns the correct result when applied to
domain_x .

(𝐗) = ()𝑃
′

∏
𝑖=1

𝑘

𝑃
′
𝑋𝑖

𝑍

𝑃
′

𝑍

()𝑃
′
𝑋𝑖

() := 𝑃 (𝑍 = 𝑧) 𝑃 (|𝑍 = 𝑧).𝑃
′
𝑋𝑖 ∑

𝑧=10

60

𝑋𝑖

In [8]:

In [9]:

Looks reasonable, it's somewhere between the cases for and from the above figure.𝑧 = 10 𝑧 = 60

Problem 5.2 (b): Implement And Test the Encoder and Decoder

Your Task

Let's get real! Implement functions encode_independently and decode_independently that encode and decode a message using
the simplified entropy model . These methods should behave as described in the doc string of the function test_compression_method
defined in Problem 5.1 (c) above. You may find it useful to refer back to Problem 5.1 (a) to refresh your memory of how to construct an
AnsCoder with some existing compressed data, how to encode and decode some symbols with it, and how to get the compressed data out

of an AnsCoder .

Once you've implemented both the encoder and the decoder, run the unit test as indicated below and make sure that it passes.

𝑃
′

In [10]:

In [11]:

Problem 5.3: Compressing With a Maximum A-Posteriori (MAP) Estimate of
In this problem, you will encode the message with a more accurate model than the simplified model from Problem
5.2. To do this, you will exploit the fact that the stochastic process that generated the message used the same value of the latent variable
for generating all symbols within any given message. Thus, the likelihood should be a better model than for encoding the
messages.

Unfortunately, the receiver doesn't know which was used to generate the message. Thus, you'll have to encode and transmit not only the
message but also the value of the latent variable (even though is not part of the message).

While the sender might know the true value of that was used during the generation of the message (depending on the circumstances of how
our compression method gets deployed), knowing this value on the sender side doesn't actually help. All we want to achieve is to compress a
given message into as short a bit string as possible. The fact that we have to transmit some value for to do this is more of a nuissance,
and nobody forces us to transmit the value of that was actually used in the generative process. Therefore, instead of using the "ground
truth" value of , we will use the value that minimizes the total resulting bit rate. As we discussed in the lecture, we get by minimizing
the joint information content with a fixed message ,

𝑍

𝐱 = (, ,… ,)𝑥1 𝑥2 𝑥𝑘 𝑃
′

𝑧 𝑍

𝑥𝑖 𝑃 (𝐗|𝑍 = 𝑧) 𝑃
′

𝑧

𝐱 𝑧 𝑍 𝑧

𝑍

𝐱 𝑍

𝑍

𝑍 𝑧
∗

𝑧
∗

𝐱

𝑧
∗ = arg [− log𝑃 (𝐗 = 𝐱,𝑍 = 𝑧)] = arg [log𝑃 (𝑍 = 𝑧) + log𝑃 (= |𝑍 = 𝑧)] .min

𝑧

max
𝑧 ∑

𝑖=1

𝑘

𝑋𝑖 𝑥𝑖

Out[9]: array([0.818539, 0.181461])

Out[11]: 69.01960784313725

def marginal_symbol_probability(x_i):

 # YOUR TASK: calculate P'(x_i) and return it. If `x_i` is an array of symbols rather than

 # a single symbol, then calculate P' of each symbol and return an array of the results.

 # (about 4 lines of code)

should return `array([0.818539, 0.181461])`

marginal_symbol_probability(domain_x)

def encode_independently(message, existing_compressed):

 # YOUR TASK: fill in the function body (about 3-5 lines of code)

def decode_independently(compressed, num_symbols):

 # YOUR TASK: fill in the function body (about 3-5 lines of code)

This should run without raising an exception and return an average bit rate of about 69

test_compression_method(encode_independently, decode_independently)

1/8/22, 5:20 PM problem-set-05 - Jupyter Notebook

localhost:8888/notebooks/problem-set-05.ipynb 6/9

Note that:

The logarithm may seem unnecessary for taking the , but it is important in practice because it prevents numerical underflow as
 is exponentially small in .)

As discussed in the lecture, the solution is also called the maximum a-posteriori (MAP) solution since maximizing the joint distribution
 over all possible values of is equivalent to maximizing the posterior distribution,

 (because the posterior and the joint only differ by the positive multiplicative factor ,
which is a constant for any given message).

Your tasks

1. Implement the function map_estimate below, which takes an array of symbols xs .
2. Make sure you didn't make any obvious mistake by running the code below that tests map_estimate on some of our sample messages

and generates a visualization of the results.
3. Then implement an encoder and decoder (similar to Problem 5.2) and test them.

Remember that, in this problem, you have to transmit both the message and the latent variable , and you'll need to use different
entropy models for the two. You should have experience in this kind of task from solving Problem 5.1 (a).
Also remember that the AnsCoder that we're using here is a stack. So you'll have to encode first and then because the
decoder will have to decode first so it can use it to construct the entropy model for decoding . (For this problem, you could also
use a constriction.stream.queue.RangeEncoder , which operates as a queue, but Problem 4 below will be much easier to
solve with a stack.)

argmax

𝑃 (𝐗 = 𝐱 |𝑍 = 𝑧) = 𝑃 (= |𝑍 = 𝑧)∏𝑘

𝑖=1 𝑋𝑖 𝑥𝑖 𝑘

𝑧
∗

𝑃 (𝐗 = 𝐱,𝑍) 𝑍

𝑃 (𝑍 |𝐗 = 𝐱) = 𝑃 (𝐗 = 𝐱,𝑍) / 𝑃 (𝐗 = 𝐱) 𝑃 (𝐗 = 𝐱)

𝐱

𝐱 𝑧
∗

𝐱 𝑧
∗

𝑧
∗

𝐱

In [12]:

Check that you didn't make any obvious mistake:

In [13]:

You should see that the MAP estimate is close to the ground truth for long messages (right plot) but the two may be very different for short
messages (left plot). This is to be expected since short messages are more susceptible to noise, so a message generated with may, by
coincidence, actually look more as if it had been generated with some different . In such a case, it would be foolish to compress the
message with the entropy model since you'll get a lower bit rate with the entropy model .

𝑍 = 𝑧

𝑍 = 𝑧∗

𝑃 (𝐗|𝑍 = 𝑧) 𝑃 (𝐗|𝑍 =)𝑧∗

In [14]:

In [15]:

Out[15]: 69.6470588235294

def log_joint_probability(xs, z):

 # This is already provided for you. You don't need to change it (but you should understand it!)

 return np.log(prior(z)) + np.sum(np.log(likelihood(xs, z)))

def map_estimate(xs):

 # YOUR TASK: fill in the function body (1 line of code if you know the numpy method to call;

 # maybe 4 lines of code otherwise)

fig, axs = plt.subplots(1, 3, figsize=(8, 2.5), sharey=True)

for ax, message_length in zip(axs, [10, 100, 1000]):

 map_estimates = [map_estimate(samples_x[i, :message_length]) for i in range(len(domain_z))]

 ax.set_title(f'$k={message_length}$')

 ax.plot(domain_z, map_estimates, label='MAP estimate')

 ax.plot(domain_z, domain_z, '--', c='gray', label='ground truth')

 ax.set_xlabel('true z')

axs[0].set_ylabel('MAP estimate')

axs[-1].legend(loc='upper left', bbox_to_anchor=(1, 1))

fig.subplots_adjust(wspace=0.04)

Categorical = constriction.stream.model.Categorical # Let's define a shortcut for this.

def encode_map(message, existing_compressed):

 # YOUR TASK: fill in the function body (about 4-8 lines of code)

def decode_map(compressed, num_symbols):

 # YOUR TASK: fill in the function body (about 4-8 lines of code)

This should run without raising an exception and return again an average bit rate of about 69.

You'll do a more thorough quantitative comparison between the different methods in Problem 5.5 below.

test_compression_method(encode_map, decode_map)

1/8/22, 5:20 PM problem-set-05 - Jupyter Notebook

localhost:8888/notebooks/problem-set-05.ipynb 7/9

Problem 5.4: Bits-Back Coding
You'll now implement the bits-back coding algorithm. This compression method is similar to the method you implemented in Problem 5.3
above. However, instead of setting to the MAP estimate, the encoder will sneak some side information into the chosen value of . This side
information can be any bit string, e.g., some previously compressed message. The decoder will then be able to recover this side information (in
addition to being able to recover the encoded message).

𝑍 𝑍

Problem 5.4 (a): Bayesian Inference (i.e., Obtaining the Posterior Distribution)
As discussed in the lecture, the first step of bits-back coding is to perform Bayesian inference. Thus, given a message that you want to
compress, you have to find the posterior probability distribution,

Your task

1. Implement a function posterior_probabilities , which takes an array of symbols xs (the "s" is for plural here), and which returns
an array of floats of length len(domain_z) , which sums up to one (up to rounding errors) and which lists the posterior probabilities

 for all .
2. Then run the code below that tests posterior_probabilities on some sample messages and generates a visualization of the

results. Check if the plots look plausible as explained underneath the plots.

𝐱

𝑃 (𝑍 |𝐗 = 𝐱) = =
𝑃 (𝐗 = 𝐱,𝑍)

𝑃 (𝐗 = 𝐱)

𝑃 (𝑍) 𝑃 (𝐗 = 𝐱 |𝑍)

𝑃 (𝑍 =) 𝑃 (𝐗 = 𝐱 |𝑍 =)∑
𝑧′

𝑧′ 𝑧′

𝑃 (𝑍 = 𝑧 |𝐗 = 𝐱) 𝑧 ∈ {10, 11,… , 60}

In [16]:

Let's evaluate the posterior probability distribution on several sample messages and compare it to the MAP approximation:𝑃 (𝑍 |𝐗 = 𝐱) 𝐱

In [17]:

Looking at the above plots, you should find that:

The MAP estimate (dotted purple vertical line) sits indeed always at the maximum of the posterior distribution (blue bars).
The posterior distribution is very broad throughout the upper row, where we condition on messages of only length . This is
plausible since, the fewer symbols we have, the more uncertain we are about which parameter was used to generate the symbols. By
contrast, the posterior becomes sharper towards the lower rows, where grows, i.e., where we condition on more data.

𝑘 = 10

𝑧

𝑘

def posterior_probabilities(xs):

 # YOUR TASK: fill in the function body (about 5 lines of code)

fig, axs = plt.subplots(3, (len(domain_z) + 9) // 10, figsize=(13, 5), sharex=True, sharey=True)

for i, message_length in enumerate([10, 100, 1000]):

 for z_index, z in enumerate(domain_z):

 message = samples_x[z_index, :message_length]

 posterior = posterior_probabilities(message)

 map_result = map_estimate(message)

 if z_index % 10 == 0:

 ax = axs[i, z_index // 10]

 ax.text(.5,.83, f'$k={message_length}$', horizontalalignment='center', transform=ax.transAx

 ax.bar(domain_z, posterior, label='$P(Z=z \,|\, \mathbf{X}=\mathbf{x})$')

 ax.plot([z] * 2, [-1, 2], '--', c='orange', label='true z')

 ax.plot([map_result] * 2, [-1, 2], ':', c='purple', label='MAP')

 ax.set_ylim(0, .17)

 if i == 2:

 ax.set_xlabel('z')

 if z_index == 0:

 ax.set_ylabel('probability')

axs[0,-1].legend(loc='upper left', bbox_to_anchor=(1, 1))

plt.subplots_adjust(hspace=0.1, wspace=0)

1/8/22, 5:20 PM problem-set-05 - Jupyter Notebook

localhost:8888/notebooks/problem-set-05.ipynb 8/9

Overall, the posterior distribution shifts to the right as the ground truth (dashed orange vertical line) moves to the right. In particular, in the
last row (), the posterior alwayas has a clearly discernible peak, and the ground truth always lies within the peak).𝑘 = 1000

Problem 5.4 (b): Bits-Back Coding
Now implement the bits-back coding method. As discussed in the lecture, the encoder should do the following:

1. construct an AnsCoder from the provided bit string existing_compressed ;
2. decode (no typo) some of those bits into using the posterior ;
3. encode the message , where the entropy model is the likelihood with being the value decoded in step 2;
4. encode using the prior model ;
5. return the (entire) compressed data that's now on the AnsCoder ;

And the decoder should invert the steps of the encoder, in reverse order (since the coder is a stack).

Your tasks

Fill in the blanks in the function bodies below and then run the unit test.

𝑧 𝑃 (𝑍 |𝐗 = 𝐱)

𝐱 𝑃 (𝐗 |𝑍 = 𝑧) 𝑧

𝑧 𝑃 (𝑍)

In [18]:

In [19]:

Problem 5.5: Quantitative Evaluation and Comparison of the Three
Methods
This is the most important problem on this problem set. If you can solve this problem (i.e., answer all questions below with confidence)
then you've understood how bits-back coding works.

In Problems 5.2, 5.3, and 5.4, you've implemented three different methods for compressing data from the same data source. Let's now
compare how well these three methods perform as a function of the message length :𝑘

Out[19]: 65.88235294117646

Categorical = constriction.stream.model.Categorical # Let's use our shortcut again.

def encode_bitsback(message, existing_compressed):

 coder = constriction.stream.stack.AnsCoder(existing_compressed)

 if len(existing_compressed) != 0:

 # YOUR TASK: decode a latent variable `z` using the posterior distribution

 # (about 1-3 lines of code)

 else:

 # Bits-back coding expects some side information that it uses to set `z`. If no side

 # information is available yet (the "initial bits problem"), then we'll just set `z` to

 # the MAP estimate (like in Problem 5.3) since that's the best we can do in this situation.

 # Note that the *decoder* won't be aware that we didn't use any side information, so it'll

 # still generate and return some side information, which the caller can simply ignore.

 z = map_estimate(message)

 # YOUR TASK: fill in the rest of the bits-back encoder (about 3-5 lines of code)

def decode_bitsback(compressed, num_symbols):

 # YOUR TASK: fill in the function body (about 6-10 lines of code)

This should run without raising an exception and return an average bit rate of about 66.

You'll do a more thorough quantitative comparison between the different methods in Problem 5.5 below.

test_compression_method(encode_bitsback, decode_bitsback)

1/8/22, 5:20 PM problem-set-05 - Jupyter Notebook

localhost:8888/notebooks/problem-set-05.ipynb 9/9

In [20]:

Your tasks

You should be able to understand pretty much every aspect about the above plot. Explain the following observations:

Why do all methods become more effective (i.e., the bit rate per symbol drops) as the message length grows? (This is important to
understand for the MAP and the bits-back method; for the "independent" method, it is just due to a small constant overhead of the coder,
which becomes a bottleneck for very small .)
How is it possible that "compression" with the MAP method (orange curve) actually increases the file size over the uncompressed
representation (dotted gray line) for very low ? (Hint: think about the extreme case of : what does the MAP method transmit in this
case?)
Why does the compression performance of the MAP method (orange curve) approach the bits-back performance (green curve) in the limit

?
In the limit , all curves seem to converge to two different constant values. What are these constants (express both of them as
entropies of something under some probabilistic model)? In particular, the fact that you were able to outperform the "independent" method
—which would be the optimal compression method if the symbols were statistically independent (i.e., uncorrelated)—demonstrates that
the symbols that our latent variable model produces really are correlated (I believe this was another source of confusion in the lecture).

Note: if you decrease the message length even further then you will get very noisy results because you'll then average over very little data
(also, the coder has a small constant overhead of about 32 bits, which will become a bottleneck for very small). Already in the above plot, the
fact that the "bits-back" curve and the "independent" curve seem to meet at does not have any fundamental reason.

𝑘

𝑘

𝑘 𝑘 = 1

𝑘 → ∞

𝑘 → ∞

𝑋𝑖

𝑘

𝑘 = 10

Obligatory Final Remark
Please don't forget to provide feedback to this problem set in the poll on moodle!

Out[20]: <matplotlib.legend.Legend at 0x7fae33c153a0>

test_lengths = [10, 30, 100, 300, 1000]

bitrates_independently = [

 test_compression_method(encode_independently, decode_independently, message_length) / message_lengt

 for message_length in test_lengths]

bitrates_map = [

 test_compression_method(encode_map, decode_map, message_length) / message_length

 for message_length in test_lengths]

bitrates_bitsback = [

 test_compression_method(encode_bitsback, decode_bitsback, message_length) / message_length

 for message_length in test_lengths]

fig, ax = plt.subplots(figsize=(6, 5))

ax.set_xscale('log')

ax.plot(test_lengths, bitrates_independently, 'o-', label='independently')

ax.plot(test_lengths, bitrates_map, 's-', label='MAP')

ax.plot(test_lengths, bitrates_bitsback, 'd-', label='bits-back')

xlims = ax.get_xlim()

ax.plot(xlims, [1, 1], '--', color='gray', label='uncompressed')

ax.set_xlim(xlims)

ax.set_ylim(0.6, 1.3)

ax.set_xlabel('message length k [log]')

ax.set_ylabel('bits per symbol')

ax.legend()

