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Problem 6.1: Understanding Information Content

This problem was triggered by the results of the interactive part of the last lecture,
which indicated that there seems to be a severe lack of understanding about the general
concepts of lossless compression and information content among a significant part of
the class. This problem invites you to rethink these concepts by applying them to the
absolute simplest conceivable setup.

You should also see this problem as a blueprint of how to learn any new topic (not
just in this course). If there’s something you feel you don’t quite understand yet, then I
encourage you to use the same strategies that you would use if you were debugging some
code that doesn’t work: reduce the problem to the absolute simplest form, understand
that, and then gradually build up from that.

Problem Setup. Consider a data source that generates messages x. Different from
the problems so far, we don’t care what these messages are—they could be sequences of
symbols but they don’t have to be. All we care about is that the messages come from a
finite set X, and that they are uniformly distributed, i.e., P (X = x) = 1

|X| ∀x ∈ X.

(a) What is the information content of any message x ∈ X?

(b) If you were to write out the size |X| ∈ N of the set X in binary, how many bits
would you need? Express the number of bits as a mathematical function of |X|
and compare it to your result from part (a).

(c) Consider the following method of mapping messages x ∈ X to a bit string: let
f be an arbitrary bijective function from X onto the set {0, . . . , |X| − 1}. Then,
to turn x ∈ X into a bit string, we simply write out the binary expansion of the
integer f(x).

Using your result from part (b), derive an upper bound on the bit rate R(x) ∀x ∈ X
when using this method. Then use your result from part (a) to show that this
method achieves the theoretical lower bound on the expected bit rate for lossless
compression (within less than one bit of overhead), i.e., that the method is optimal.

(d) Now forget about everything you’ve learned in this course so far and argue, without
using any equations, why the lossless compression method from part (c) is obviously
optimal.
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Problem 6.2: Mutual Information

This problem picks up and completes the
discussion on Problem Set 4 by introduc-
ing the concept of the mutual information
IP (X;Y ) between two random variables X
and Y . The figure on the right sum-
marizes all relations between the joint en-
tropy HP

(
(X, Y )

)
, the marginal entropies

HP (X) and HP (Y ), the conditional entropies
HP (Y |X) and HP (X|Y ), and the mutual information IP (X;Y ) (red boxes).

We consider a probabilistic model P and two discrete random variables X and Y . On
Problem Set 4, we derived the chain rule of the entropy (see above figure),

HP

(
(X, Y )

)
= HP (X) + HP (Y |X) = HP (Y ) + HP (X|Y ). (1)

Eq. 1 directly corresponds to how compression with autoregressive models works (see
Problem 3.2 on Problem Set 3). To encode both X and Y with an autoregressive
compressor, one first encodes X into HP (X) bits (in expectation) and transmit the
encoded bit string. Then, one exploits the fact that the receiver already knows X and
one encodes Y into only HP (Y |X) bits in expectation. According to Eq. 1, this procedure
encodes both X and Y into HP

(
(X, Y )

)
bits in total (in expectation), i.e., it reaches

optimal compression performance (apart from any overhead due to a suboptimal coding
algorithm, e.g., if restricting oneself to a symbol code).

We now ask ourselves the question: how many bits did we save by exploiting the fact
that the receiver already knew X at the point when we encoded Y ? Or, equivalently:
how many additional bits would we have had to transmit had we treated X and Y
separately and encoded them into HP (X) and HP (Y ) bits (in expectation), respectively
(see first two rows in the above figure)?

The overhead of treating X and Y separately instead of encoding the tuple (X, Y )
jointly is called the mutual information IP (X;Y ),

IP (X;Y ) := HP (X) + HP (Y )−HP

(
(X, Y )

)
. (2)

Remark: You may assume in this problem that all random variables are discrete. How-
ever, it is interesting to note that, unlike the problems on Problem Set 4, the derivations
in this problem actually generalize to the continuous case when we interpret H as the
differential entropy, which we will define later in the course. While an individual differ-
ential entropy cannot be interpreted as a number of bits, differences between differential
entropies can.

(a) Symmetry of the Mutal Information: Convince yourself that the mutual
information is symmetric, i.e., IP (X;Y ) = IP (Y ;X).
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(b) Interpretation of the Mutual Information: Show that the mutual information
can also be expressed as follows (see also last three rows in above figure),

IP (X;Y ) = HP (X)−HP (X|Y ) (3)

= HP (Y )−HP (Y |X).

It is important to understand how these realtions can be interpreted: the inter-
pretation of the first line in Eq. 3 is that IP (X;Y ) quantifies how much we learn
about X if someone tells us the value of Y (i.e., how much knowing Y reduces the
entropy of X, in expectation). The second line in Eq. 3 expresses the same with
the roles of X and Y swapped.

(c) Nonnegativity of the Mutual Information: Convince yourself that the mutual
information can be expressed as follows,

IP (X;Y ) = EP

[
log

P (X, Y )

P (X)P (Y )

]
. (4)

Then show that IP (X;Y ) ≥ 0.

Hint: the proof is essentially identical to the proof that DKL ≥ 0, see Prob-
lem 3.1 (c) of Problem Set 3. In fact, IP (X;Y ) = DKL

(
P (X, Y )

∣∣∣∣P (X)P (Y )
)
.

(d) Chain Rule of Mutual Information: Now consider three random variables X,
Y , and Z. Show that

IP (X;Y, Z) = IP (X;Y ) + IP (X;Z |Y ). (5)

Here, the notation IP (X;Y, Z) denotes the mutual information between X and
the tuple (Y, Z) (i.e., we could write it more explicitly as IP

(
X; (Y, Z)

)
). On the

right-hand side, the conditional mutual information IP (X;Z |Y ) is understood to
condition everything on Y (and then averaged over it), i.e.,

IP (X;Z |Y ) := HP (X|Y ) + HP (Z|Y )−HP

(
(X,Z)

∣∣Y )
. (6)

Hint: write IP (X;Y, Z) in the form of Eq. 4, then use properties of the logarithm.

Problem 6.3: Conditional Independence and Data
Processing Inequality

In this problem, you will prove a fundamental theorem of communication systems: the
data processing inequality. Consider three random variables X, Y , and Z. In the general
case, one can use the chain rule of probability theory to factorize P (X, Y, Z) as follows,

P (X, Y, Z) = P (X)P (Y |X)P (Z|X, Y ). (7)
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Eq. 7 is a general statement about any probability distribution P because it follows
directly from the definition of a conditional probability. Thus, the factorization on the
right-hand side of Eq. 7 can capture arbitrary dependencies between X, Y , and Z. For
example, if you were to use this factorization in a compression method that encodes
first X, then Y , and finally Z, then the encoded values of both X and Y will have an
influence on the probabilistic model P (Z|X, Y ) that you will use to encode Z.

In many practical situations, dependencies between random variables are more con-
strained. Imagine, for example, a game of telegraph (German: “Flüsterpost”) with three
players, Alice, Bob, and Charley. Alice thinks of a word X and whispers it into Bob’s
ear. Bob comprehends a word Y , which may or may not be different from X depending
on how well Alice and Bob communicated. Bob then whispers Y into Charley’s ear, who
ultimately comprehends a word Z, which he says out lout.

Surely the final output Z depends on the initial input X, but the dependency is only
indirect through Y . If Bob tells us the intermediate word Y then we can make some
probabilistic prediction about Z, and it would be irrelevant for this prediction whether
or not we also knew X. In such a situation, we say that X and Z are conditionally
independent given Y . More formally,

X and Z are conditionally independent given Y :⇔ P (Z|X, Y ) = P (Z|Y ). (8)

If we assume conditional independence between X and Z given Y , then the factorization
in Eq. 7 simplifies,

P (X, Y, Z) = P (X)P (Y |X)P (Z|Y ) (if X, Z cond. indep. given Y ). (9)

Notice that, on the right-hand side of Eq. 9, each random variable in the sequence
X, Y , Z is conditioned only on its immediate predecessor but not on any others. We
say that X, Y , and Z form a Markov chain X → Y → Z. As an example of a Markov
chain (apart from the game of telegraph), consider your WiFi connection followed by
your telephone line; or consider X, Y , and Z being three different layers in a deep neural
network, assuming that the network has no skip connections (but it may have stochastic
connections such as dropout).

(a) Symmetry of Conditional Independence: Show that an equivalent way of
characterizing conditional independence is as follows,

X and Z are cond. indep. given Y ⇔ P (X,Z |Y ) = P (X|Y )P (Z|Y ). (10)

This formulation highlights the analogy to regular (i.e., unconditional) statistical
independence (which we would have if P (X,Z) = P (X)P (Z)). It also makes it
obvious that conditional independence is symmetric: X and Z are conditionally
independent given Y iff Z and X are conditionally independent given Y . Therefore,
we can also characterize conditional independence by swapping X and Y in Eq. 8:

X and Z are cond. indep. given Y ⇔ P (X |Y, Z) = P (X|Y ). (11)
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(b) Data Processing Inequality: Assume that X, Y , and Z form a Markov Chain
X → Y → Z (i.e., X and Z are conditionally independent given Y ). Show that
they satisfy the important data processing inequality,

IP (X;Y ) ≥ IP (X;Z) (for a Markov chain X → Y → Z). (12)

In other words, Y reveals at least as much about X as Z does.

Hint: Consider the difference, IP (X;Y ) − IP (X;Z), and write out both infor-
mation contents in the form of Eq. 3. Then convince yourself that HP (X|Y ) =
HP (X |Y, Z) for a Markov Chain X → Y → Z, and use this to show that

IP (X;Y )− IP (X;Z) = IP (X;Y |Z) ≥ 0 (13)

where the proof that IP (X;Y |Z) ≥ 0 is analogous to Problem 6.2 (c).

(c) Data Processing Inequality, Alternative Form: Use the symmetry of the
mutual information and of conditional independence to derive from Eq. 12 that,
for any Markov chain X → Y → Z,

IP (Y ;Z) ≥ IP (X;Z) (for a Markov chain X → Y → Z). (14)

In other words, Y reveals at least as much about Z as X does.

(d) What is Information? The data processing inequality can be interpreted as
follows. Assume we feed some input data X into some (possibly nondeterministic)
machine that processes the data and outputs Y , and we then feed Y (but not X)
into some other (possibly nondeterministic) machine that outputs Z. Using the
interpretation of the mutual information from Problem 6.2 (b), the data processing
inequality Eq. 12 then tells us that the second machine, which processes Y to Z,
can only destroy any information that’s left about X, it cannot (re-)generate any
information about X.

Think about what this means for the interpretation of our notion of “information”.
How well does our formal notion of the “information content” capture what we
would colloquially consider “information”?

For example, think about a cryptographic setup where X is a clear text message,
Y is the encrypted representation of X, and Z is the decrypted message (thus,
Z = X). What does Eq. 12 imply in this case about IP (X;Y )? Or think about
a crime scene, where the perpetrator first destroys as much evidence as they can,
and the police then try to recover it. How much information about the crime do
the police unveil, according to our very specific notion of information?

These considerations should be a reminder that information theory uses a very
specific notion of the term “information”. Any information theoretical statement
should always be considered within the context of this specific notion of “infor-
mation”, which can sometimes be misleading. In particular, information theory
does not take computational feasibility into account (the absence of a so-called
computational model is one of the main differences between information theory
and cryptography).
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Don’t forget to provide anonymous feedback to this problem set in the cor-
responding poll on moodle.
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