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Problem 8.1: Understanding the ELBO

In the lecture, we introduced the evidence lower bound, or ELBO,

ELBO(0, 6) = Eyq, (zx=x) [ 10g po(x, 2) — log gy(2(x)] (1)

where py(X,2z) = po(z) pp(x|z) is the joint probability density of the generative model Py,
which has model parameters 6, and ¢,(z|x) is the probability density of the variational
distribution (or “approximate posterior”) @y, which has amortized variational parame-
ters ¢.

We arrived at the ELBO by considering the negative expected net bit rate of a modified
variant of bits-back coding that uses ()4 as a stand-in for the true posterior distribution.
Based on the fact that the regular bits-back coding algorithm is optimal, we argued that
our modification to the algorithm cannot reduce the net bit rate. This lead us to the
conclusion that the ELBO is indeed a lower bound on the evidence, i.e.,

ELBO(#, ¢) < log ps(x) Vo, ¢. (2)

In this problem, you will derive important equivalent formulations of the ELBO that
will allow you to interpret what happens when we maximize the ELBO over # and ¢. In
doing so, you will also prove the important Eq. 2 in a more direct way.

(a) Show by simple regrouping of the terms in Eq. 1 that

ELBO(6, ¢) = E,q,zx—x) [ 108 po(x|2)] — Dk1.[Qs(Z|X =x) || Po(Z)].  (3)

What would the encoder and decoder networks learn if, instead of maximizing the
ELBO, one would optimize only the first or only the second term on the right-hand
side of Eq. 3, respectively?

Solution: Eq. 3 follows directly by inserting py(x,z) = py(z) pg(x|z) into Eq. 1.

Optimiozing only the first term on the right-hand side of Eq. 3 and ignoring the KL-
term would amount to maximum likelihood estimation. The maximization over ¢
would learn a variational distribution that is peaked at z* := arg max, py(x|z) for
the given data point x, and that is as sharp as possible (since any deviation from
the peak z* would make the expectation value smaller). If the variational family
(i.e., the class of variational distributions that can be parameterized by the encoder
model) admits this, Q4(Z|X = x) would therefore collapse to a d-peak at z* and
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thus the expectation over @), would simply evaluate to log py(x|z*). Therefore, the
(concurrently executed) maximization over # would fit a likelihood model such that
pe(x|z*) is maximized for the given data point x. Thus, ignoring the KL-term on
the right-hand side of Eq. 3 would treat z as point-estimated model parameters, i.e.,
we would ignore their posterior uncertainty. In this sense, we would be treating z
on the same level as the model parameters 6.

Optimizing only the second term on the right-hand side of Eq. 3 would mean
minimizing the KL-divergence from the prior to the approximate posterior. The
KL-divergence takes its minimum value of zero if the two distributions are equal.
Thus, such a training objective would completely ignore the data and just train
an encoder network that always predicts the prior distribution. In this sense, the
KL-term in Eq. 3 can be regarded as a regularizer. |

Show again by simple regrouping of the terms in Eq. 1 that
ELBO(0, 6) = logpo(x) — D [Qu(ZIX = x) || B(ZX =x)]. (4

Notice that this confirms Eq. 2 since we know that the Kullback-Leibler divergence
Dy, is always nonnegative.

What is the name of the first term on the right-hand side of Eq. 4, and why would
we want to maximize it?

In many applications of variational inference, the generative model P(X,Z) is fixed
(i.e., there are no free model parameters #). In these applications, maximizing the
ELBO just amounts to minimizing the KL-term on the right-hand side of Eq. 4
over the variational parameters ¢. What does this minimization achieve, and why
is the method called “variational inference”?

Solution: Eq. 4 follows directly by inserting pg(x,z) = pg(x) pg(z|x) into Eq. 1
and noticing that log py(x) can be pulled out of the expectation since it does not
depend on z.

The term log py(x) is called the evidence. In a compression setup, we’d want to
maximize the evidence because the negative evidence is the theoretical lower bound
on the expected bit rate. Also beyond compression, one often seeks to maximize
the evidence because this means finding the model parametres 6 that best describe
the observed data x.

If the generative model is fixed (i.e., there are not free model parameters #) then
we only have to maximize the ELBO over the variational parameters ¢. This
is equivalent to minimizing the KL-divergence from the true posterior P(Z|X =
x) to the approximate posterior Q4(Z|X = x). In other words, it amounts to
searching among all distributions that can be expressed as Q4(Z|X = x) (this set
of distributions is called the variational family) for the member that is closest (in
KL-distance) to the true posterior. Thus, maximizing the ELBO is an approximate
form of Bayesian inference, which explains the name “variational inference”. W



Problem 8.2: Black Box Variational Inference

In this problem, we discuss the actual task of maximizing the ELBO in Eq. 1.

The most efficient way to maximize the ELBO is via the so-called coordinate ascent
variational inference (CAVI) algorithm [Blei et al., 2017]. Roughly speaking, this algo-
rithm can be derived by solving the equation V,, ELBO(, ¢) = 0 for one coordinate ¢;
at a time, by writing out the expectation E on the right-hand side of Eq. 1 as an explicit
integral over z, taking the derivative, and solving the resulting integrals analytically.
While this CAVI algorithm is extremely fast (and should therefore be preferred when-
ever possible!), its application is limited because the resulting integrals admit an analytic
solution only for very special models (e.g., so-called conditional conjugate models).

Mainstream adoption of variational inference only occurred after the invention of
so-called black box variational inference (BBVI), which generalizes the method to arbi-
trary model architectures. In this problem, you will prove the validity of two different
approaches to BBVI.

(a) Let’s first understand the problem: the ELBO in Eq. 1 is an expectation of a known
quantity log ps(x,z) —log ¢4(z|x) under a known distribution @,. This seems very
similar to the typical situation in supervised learning, where we usually have to
minimize some loss function that is the expectation of some known expression over
samples from the training set.

So why couldn’t we just use the same techniques that we know from supervised
learning and maximize the ELBO with regular stochastic gradient descent'? In
other words, why can’t we just do the following:

e draw some sample Zgample ~ Qy(Z|X = x);

e cvaluate the gradients of log py(X, Zsampie) — 108 ¢4 (Zsample|X) With respect to 0
and ¢;

e use these gradients as an estimate of the gradient of ELBO(0, ¢), and update
0 and ¢ with a small gradient step.

Hint: Focus on the optimization over ¢ and look at all places where ¢ appears in
the ELBO.

Solution:  The gradient step for ¢ in stochastic gradient descent has to be
constructed from an unbiased gradient estimate g, i.e., an estimate that satisfies
Eq,zx=x) [g] = V4 ELBO(6, ¢). However, the above estimate does not satisfy this
requirement because it only takes the gradient of the term inside the expectation
in Eq. 1. This neglects the fact that the distribution (,(Z|X = x) over which the
expectation is taken depends on ¢ itself. This dependency also contributes to the
gradient.

IMore precisely, stochastic gradient ascent since we want to mazimize, but that’s not the issue here.



More formally, we can write out the ELBO as follows:
ELBO(, ¢) = E,q,zx=x) | log po(x,2) — log q4(2[x)]

= /q¢(z|x) (logpg(x, z) — log q¢(z|x)) dz.

When we then take the gradient V,, ELBO(6, ¢), we mustn’t forget the contribution
from the first factor in the integral, ¢4(z|x).

This complication doesn’t arise when stochastic gradient descent is used in the
usual supervised learning setup, because the expectation there is over a fized train-
ing set, which does not depend on the model parameters over which one optimizes.

[ |

In the following parts, we will consider two possible solutions to the problem from
part (a). We will limit the discussion to the differentiation with respect to ¢, since
differentiation with respect to 6 does not pose a problem.

(b) The simplest form of BBVI uses so-called reparameterization gradients [Kingma
and Welling, 2014]. Assume, for example, that the variational distribution is a
normal distribution,

K

Q¢(Z|X) - HN(Zza ,U/i(x7 ¢>7 Ui(xv ¢)2) (5)

=1

where the means p;(x, ¢) and standard deviations o;(x, ¢) together comprise the
output g,(x) of the encoder network.

Convince yourself that, for such a variational distribution, the expectation of any
function ¢(z) can be written as follows,

EZNQ¢(Z|X=X) [t(Z)} = IE:e~/\/'(0,1) [t (“(X7 gb) + O'(Xw ¢) © 6)} . (6)

Here, p = (p1, ..., ) and o = (071, ..., 0%) are the concatenations into vectors of
the means and standard deviations, respectively, N'(0, ) is a k-dimensional stan-
dard Normal distribution (i.e., with zero mean and unit variance), and ® denotes
elementwise multiplication.

Now use Eq. 6 to fix the problem from part (a), i.e., to come up with an unbiased
estimate of V, ELBO(6, ¢).

Solution: Eq. 6 just expresses the normal distributed random variables z; with
mean p; and standard deviation o; as a scaled and shifted variant of a standard-
normal distributed random variables ¢; (you can formally prove the equivalence
either by noting that a scaled and shifted Gaussian is still a Gaussian, and then
calculating the mean and standard deviation of u; + o;¢;, or by comparing the
probability density functions).



Using Eq. 1, we can express the gradient of the ELBO as an expectation under a
distribution that is independent of the variational parameters ¢:

Vs ELBO(0, ¢) = V4 E,0,zix—x) | 10g ps(x, 2) — log g, (2[x)]
= Vy Een(o,1) [logpe (x, u(x,0) + o(x,0) O €)
~log g ((x,0) + o(x,0) @ €| x)]
= Eewvo.n [Vas (10% Po (X, u(x,¢) + o (x,0) @ €)

—log gy (p(x,0) + o(x,0) © € | X))]

where, in the last step, we pulled the gradient inside the expectation, which is
now allowed since the distribution N'(0, ) over which we take the expectation no
longer depends on ¢. |

(c) While the approach from part (b) can be generalized to some variational distribu-
tions other than the normal distribution, it does not work on arbitrary variational
distributions, in particular not on variational distributions over discrete z. For such
variational distributions, an alternative and more general approach called score
function gradient estimates (or the “REINFORCE method”) can be used [Ran-
ganath et al., 2014].

Similar to the approach in part (a), one first draws some sample Zgample ~ Qo(Z|X =
x). However, in the next step, one does not simply evaluate V¢( log po (X, Zsample) —
10 ¢ (Zsample|X) ) . Instead, one evaluates

where
g(l) = (V¢ log Q¢(Zsample|x)> (logpg(X, Zsample) - log q¢(zsamplelx)>; (8)
Q(Z) = —V¢> lOg q¢<Zsample|X)'

Show that ¢ is an unbiased gradient estimate of the ELBO, i.e., that

EzsampleNQ¢(Z|sz) I:g:| = v¢ ELBO(97 qb) (9)

Thus, g can be used to optimize the ELBO with stochastic gradient descent.

Hint: write out the expectation E in the definition of the ELBO (Eq. 1) as an
integral, pull the gradient operation Vy into the integral, and apply the product
rule of differential calculus. Then compare the result to the left-hand side of Eq. 9.



Solution:
Vs ELBO(0, ¢) = E,vq,(zix=x) [logpg(x, z) — log q¢(z|x)}
=V [ as(al) (108 u(x.2) ~ log (1) o)
— / ((Vo as(2lx)) (10g pa(x, 2) — log go(2]x))
+ as(71%) Vi (log po(x, 7) — log a5(z]x)) ) dz
= [ (V% 000s12) (s patx. ) ~ o)
— s(2]x) Vs log go(2]x) ) dz
= [ (T aolalx) (1ogpo(x.2) — log (o) d

+ Bung, (zx=x) [§?]

Our goal is to express V, ELBO(f, ¢) as an expectation under @)y so that we
can estimate it by sampling from Q4 (since evaluating the integral over z would
be infeasible in practice). The second term on the right-hand side of the above
equation is already an expectation under (). To get the first term into this form

as well, we have to multiply the integrand with 1 = Zig:ig. We can then simplify
by using the relation %ﬂf{l;@ = V, log ¢s(z|x). Thus,

/ (Vs qs(z|x)) (log pe(x, z) — log gs(z|x))dz
= /q¢(z]X) V¢¢q¢—(z|x) (logpg(x, z) — log q¢(z\x))dz

= /q¢(z|x) (V¢ log q¢(z|x)) (logpg(x, z) — logq¢(z|x))dz

= E,uq,(zx=x) [(V¢s log g4 (2[x)) (log py(x,z) — log Q¢(Z|X)]
~(1

= Eonq,zix—x [§"]-

Combining the last two equations proves Eq. 9. |

It turns out that the score-function gradients from Eqs. 7-8 can be simplified: we
don’t even need . Show that

EzsamplcNQ¢(Z‘X:x) [g(2)] = 0 (10)

Hint: Write out the expectation again as an integral, apply the chain rule of
differentiation and then pull the gradient operation out of the integral and use the
fact that the density ¢, is normalized.



Solution:

Epquzix=x) [97] = Eanquzix—x[ — Vs 1og gs(2[x)]

= () Y2 #X)
= /Q¢( ’ ) C]¢(Z‘X> d

—— [ Voalaix) s

= V([ as(alx) da)

=—Vy(1)=0

Note: Such contributions to a gradient estimate whose expectation value is zero
may still be useful because they may (if constructed well) reduce the variance of the
gradient estimate, which speeds up convergence of stochastic gradient optimization
because it allows using larger learning rates. Terms with this property are called
“control variates”, and there is still a lot of ongoing research about finding good
control variates (e.g., in automatic ways). [ |
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