
Today: Source Coding Theorem

Two fundamental truths about lossless compression ("good news and bad news"):

Data Compression With and Without Deep Probabilistic Models

Recap from last lecture:

Recap from tutorial:

Lecture 2 (28 April 2022)

- source coding vs channel coding
- source-channel separation

- symbol codes:

- bad news: Consider a data source that produces symbols with probability distribution p. Then, there
                     is a fundamental lower bound H[p], and no uniquely decodable compression code can reach
                     an expected code word length L that is lower than H[p].

- good news: For every data source, there exists a prefix-free (and thus uniqueley decodable) code
                        (the so-called "Shannon code") whose expected code word length approaches the
                        fundamental lower bound H[p] with an overhead of less than 1 bit per symbol.

- bonus: For finite alphabets, the Huffman coding algorithm always produces an optimal symbol code
               (i.e., a symbol code with lowest possible expected code word length L)

- Def. "expected code word length":

- Def. "prefix free symbol code C" (or "prefix code" for short):
  no code word C(x) is the prefix of another code word C(x')

- Def. "uniquely decodable symbol code C*: C* is injective

- prefix free ⇒ unique decodability; but inverse is not necessarily true

- Huffman coding: algorithm that takes a probabilistic model p (on a finite alphabet) and generates a
  prefix code that is "tailored" for this probabilistic model.



Kraft-McMillan Theorem

(a)

(Interpretation: we can't make code words arbitrarily short. If we shorten one code word by one bit,
                           then we may have to make some other code word(s) longer or else our code can no
                           longer be uniquely decodable) 

(b)

Corollary:

Lemma:

Proof of the Kraft-McMillan Theorem

Proof of part (a):

⇒ When searching for an optimal symbol code, it suffices to consider only prefix codes.
    (Actually, we don't really have to search directly for an optimal symbol code. It suffices to
    search for an optimal assignment of code word lengths l(x) that satisfy the Kraft inequality.
    Once we have that, we can construct a prefix code with these code word lengths, see below.)



(i) assume (for now) that      is finite.

(ii) if      is countably infinite:

Constructive proof, i.e., we show existence of such
a prefix code by providing an explicit algorithm that
constructs it for any   .

Algorithm (*):

- Input:

- Output:

- Steps: 

Claim:The resulting code book C is prefix free. (Proof: Problem Set 2)

Proof of part (b) of the Kraft-McMillan Theorem:



Simplified game of MonopolyExample:

Check that Kraft inequality holds for   :

Questions: (1) Can we efficiently find the optimal code word lengths l(x) that satisfy the Kraft McMillan
      inequalit and that lead to the lowest expected code word length L?

(2) Can we estimate the optimal expected code word length L without having to find the
      whole table of optimal code word lengths l(x)?

To address question (2), we use the following strategy:
 (i) We derive a lower bound on L.
(ii) We show that there exists a valid assignment of code word lengths that approaches the lower bound
      with less than one bit of overhead.



⇒ l* minimizes the expected code word length for under the relaxed constraint. Thus, for any
    other                    that satisfies the Kraft inequality, we have:

(ii) How closely can we approach this lower bound (taking into account that l(x) must be integer)?
     → Answer: within an overhead of less than 1 bit per symbol.

     Proof:

Note: If we use these code word lengths l(x) and apply Algorithm (*), then the resulting prefix code C
           is called the "Shannon Code for the probability distribution p".

           → see code C in the "Simplified Game of Monopoly" example above;
                more examples on Problem Set 2.


