
Data Compression With and Without Deep Probabilistic Models

- Entropy: fundamental lower bound for expected code word length of any symbol code C:

- Shannon code: reaches lower bound within less than 1 bit of overhead (per symbol)

- bonus: a Shanon code satisfies the above guarantee not only in expectation, but even individually
 for each symbol

Recap From Last Lecture:

Lecture 3 (5 May 2022); lecturer: Robert Bamler
more course materials online at https://robamler.github.io/teaching/compress22/

 x = "a" "b" "c" "d"
p(x) =

 x = "a" "b" "c" "d"
p(x) =

expected code word length: expected code word length:

Huffman Coding:
- conceptually simple algorighm (takes probability distribution as input and returns a code book as output)

- claim: Huffman Coding builds an optimal code book (i.e., it minimizes the expected code word length)

- While the code words and even their individual lengths may not be uniquely defined
 (due to ties during execution of the algorithm), the expected code word length is
 independent of how one breaks a tie:

Recap From Last Problem Set:

- proof of optimality of Huffman coding

- theoretical groundwork for more powerful (machine learning based) probabilistic models

Today:

see Problem Set 1

Optimality of Huffman Coding

Goal: find an optimal (uniquely decodable) symbol code for a given probability distribution p,
 i.e., one with the lowest expected code word length L.

Reminder: - Among all optimal uniquely decodable symbol codes for a given p, there is at least
 one prefix-free code.
 → Why?

 - We define "optimality" here as minimizing the expected code word length. This is
 appropriate for many applications, but there are also use cases of data compression
 where one should optimize different metrics.
 → Examples:

The Huffman algorithm for finite alphabets:

The Huffman algorithm constructs an optimal symbol code.
More precisely: assume we have

Then:

Theorem:

Reminder: We may assume, without loss of generality, that C is a prefix-free code (due to the
corollary to the Kraft-McMillan Theorem).

Lemma 1: Assume again (*), and let C be an optimal (w.r.t. p) prefix code; let's sort the symbols s.t.

We break ties by code word lengths (descendingly):

(if there are still ties after this, break them arbitrarily)

Then:

Proof of Lemma 1:

(i) by contradiction:

(ii) proof by contradiction, building on (i):

Lemma 2:

(i)

(ii)

Proof of Lemma 2: Assume that such a pair does not exist. But, from Lemma 1, we know:

Assume again (*), and let C be an optimal (w.r.t. p) prefix code. Then with
and:

Claim: either C is not optimal because we can drop the last bit of C(x) without
 violating the properties of a prefix code, or there exists a different pair of
 symbols that satisfy both (i) and (ii)

Proof of the claim:

Recap:

Then:

The Huffman algorithm constructs an optimal symbol code.
More precisely: assume we have

Lemma 1: Assume again (*), and let C be an optimal (w.r.t. p) prefix code; let's sort the symbols s.t.

We break ties by code word lengths (descendingly):

(if there are still ties after this, break them arbitrarily)

Then:

Lemma 2:

(i)

(ii)

→ by induction over

- base case:

Assume again (*), and let C be an optimal (w.r.t. p) prefix code. Then with and:

Proof of the Theorem (optimality of Huffman coding):

Theorem:

- induction step: assuming that theorem holds for

Claim: C is an optimal prefix code on (with respect to p)

Proof: if it isn't an optimal prefix code then there exists a better prefix code on

Thus, C is indeed an optimal prefix code on (which has size).

Recall that and (which are "contracted" in the
definition of C) are two symbols with lowest
probability.

⇒ Running Huffman algorithm on also contracts
 contracts and in the first step. The remaining
 steps of the algorithm then construct a prefix
 code with the same code word lengths as C on
 by induction assumption.

Remarks and Outlook:

- Huffman coding is still widely used in practice (e.g., in the "deflate" compression method used in
 zip/gzip and for compressed HTTP streams, in PNG, in most JPEGs, ...)

- However, Huffman coding is only an optimal symbol code. In Problem 2.4 of the current problem set
 (discussed tomorrow), your task is to think about the limitations of symbol codes. In the next lecture,
 we will start discussing so-called stream codes, which outperform Huffman coding (especially in the
 regime of low entropy per symbol, which is relevant for modern machine learning based data
 compression methods).

- On the next week's problem set (Problem Set 4), you will then use our implementation of Huffman
 Coding (from Problem Set 2) and you'll combine it with a machine learning model that you'll train
 yourself. The two components (model and entropy coding algorithm) together will result in a fully
 functioning (albeit ridiculously slow) deep learning based compression method for English text.

Probabilistic Models, Random Variables, and Correlations

Robert Bamler · 5 May 2022

Science Department

Course “Data Compression With and Without Deep Probabilistic Models” · Department of Computer Science

Quantifying Modeling Errors: The Kullback-Leibler Divergence

▶ Qualitatively: better probabilistic models ⇒ better compression performance

▶ Goal: quantify loss in compression performance due to imperfect probabilistic
models

Robert Bamler · Course “Data Compression With and Without Deep Probabilistic Models” · 5 May 2022 | 1

Reminder: Optimal Compression Performance

Consider general lossless compression setup (i.e., no longer restricted to symbol
codes)
▶ discrete message space X
▶ some data source generates a message x ∈ X with probability pdata(x)

▶ encoder C maps x injectively to a bit string C(x) ∈ {0, 1}∗

▶ Def: “bit rate” RC(x) := |C(x)|, i.e., length (in bits) of compressed representation
⇒ if C is the optimal code for pdata then: RC(x) = − log2 pdata(x) + ε ∀x ∈ X

(see Problem 2.4 on Problem Set 2)

⇒ optimal expected bit rate: Ex∼pdata

�
RCoptimal for pdata

(x)
�

= H[pdata] + ε

Robert Bamler · Course “Data Compression With and Without Deep Probabilistic Models” · 5 May 2022 | 2

Problem: In practice, we don’t know pdata.

▶ E.g., consider the probability distribution pdata for videos that you might take with
your phone’s camera.

▶ huge message space X (all possible HD videos);
▶ it’s inconceivable to know pdata exactly.

▶ We might, however, have some empirical samples (“training set”) from pdata.
⇒ Use these samples to fit a model pmodel that approximates the (unknown) pdata.

▶ Then, consider a compression code C that is optimal for pmodel:
▶ bit rate of a given message x: RC(x) = ∀x ∈ X
▶ expected bit rate: Ex∼p

�
RC(x)

�
=

▶ Idea: fit optimal pmodel by minimizing H(pmodel, pdata)

Robert Bamler · Course “Data Compression With and Without Deep Probabilistic Models” · 5 May 2022 | 3

Entropy, Cross Entropy, and Kullback-Leibler Divergence

▶ Compare:
▶ true entropy of the data source: H[pdata] = Ex∼pdata[− log2 pdata(x)]

▶ entropy of the model: H[pmodel] = Ex∼pmodel[− log2 pmodel(x)]

▶ Cross entropy between data source and model: H(pdata, pmodel) = Ex∼pdata[− log2 pmodel(x)]

▶ Def. “Kullback Leibler” divergence := bit rate overhead due to modeling errors

DKL(pdata || pmodel) := H(pdata, pmodel) − H[pdata] ≥ 0 (see Problem 3.2)

Robert Bamler · Course “Data Compression With and Without Deep Probabilistic Models” · 5 May 2022 | 4

Needed: Expressive Probabilistic Models

So far: x ∈ X∗ and pmodel(x) = (plength(k))
kQ

i=1
p(xi).

I.e., symbols were assumed to be “i.i.d.” (“independent and identically distributed ”)
▶ “identically distributed:” p is the same probability distribution for all i ∈ {1, . . . , k}

▶ We can easily overcome this limitation: pmodel(x) = (plength(k))
kQ

i=1
pi(xi)

▶ Construct an individual code book Ci (optimized for pi) for each i ∈ {1, . . . , k}.
▶ Easy to see: if all Ci are prefix codes then the concatenation of code words

C1(x1) || C2(x2) || . . . || Ck(xk) is still uniquely decodable.
▶ “independent:” the probability distribution pi does not change if we change the

value of some symbol xj with j ̸= i .
▶ simplistic assumption: e.g., in English text, pi(‘u’) increases considerably if xi−1 = ‘q’.
▶ This limitation is more difficult to overcome. → correlations

Robert Bamler · Course “Data Compression With and Without Deep Probabilistic Models” · 5 May 2022 | 5

