Data Compression With and Without Deep Probabilistic Models

Lecture 3 (5 May 2022); lecturer: Robert Bamler
more course materials online at https://robamler.github.io/teaching/compress22/

Recap From Last Lecture:

- Entropy: fundamental lower bound for expected code word length Lc of any symbol code C:
HE)O] <L I_C v Un’?veéf Aeeodable

- Shannon code: reaches lower bound within less thanwad (per symbol)
Hlp] L., <H 11+ Hip] =, [og, p/X)}

- bonus: a Shanon code satisfies the above guarantee not only in expectation, but even individually

for each symbol
-~> M“pdVMo,L;).«. (‘ouJéQ “‘/%Z f(x>

Recap From Last Problem Set:

Huffman Coding:
- conceptually simple algorighm (takes probability distribution as input and returns a code book as output)

- claim: Huffman Coding builds an optimal code book (i.e., it minimizes the expected code word length)
—7 Praa'p‘. '600109/

- While the code words and even their individual lengths may not be uniquely defined
(due to ties during execution of the algorithm), the expected code word length is
independent of how one breaks a tie:

2(x)= 3 &y 2z z 7 2
(6= 9 ce)= 6o di 1o A

X>= @ O/D lld" éle/ﬂq/(\/e/) x= "a" "p" "¢" "d"
= a ‘ 7 p(X) = '/6 % 1/3 l/3

1
expected code word Iength' expected code word length:
L;L)oéoj(x):’x}%-x},t)<Z-[- x[Z)__:Z
<X
- Z .
B8 o
Today:

- proof of optimality of Huffman coding

- theoretical groundwork for more powerful (machine learning based) probabilistic models

Optimality of Huffman Coding

Goal: find an optimal (uniquely decodable) symbol code for a given probability distribution p,
i.e., one with the lowest expected code word length L.

Reminder: - Among all optimal uniquely decodable symbol codes for a given p, there is at least
one prefix-free code.

—SWhY? s Kalt e 1l

- We define "optimality" here as minimizing the expected code word length. This is
appropriate for many applications, but there are also use cases of data compression
where one should optimize different metrics.

— Examples: s, o (Lo cpura. & ;@Q»§ s

The Huffman algorithm for finite alphabets: see Problem Set 1

Theorem: The Huffman algorithm constructs an optimal symbol code.
More precisely: assume we have

foncle dflalel X it [X]22 }®
.),,OL. At r.’;\‘-afa, 1 w.'th /(x) S0 UxeX

Then:
Y un’? f’/Oc s// . Cooé—s C ou X Mafl a2 e =p. ooty
\//a/o/ (@tyﬁll\ Wi/, ‘{)0 . 3 o Nz/%»&a, C,a(g C/_/ W/')Zé SaeQ

Coﬂ/o, 4 (0&7 A—@/ /'.e./ }C[A)}: ,CH(K)/ V){f%

Reminder: We may assume, without loss of generality, that C is a prefix-free code (due to the
corollary to the Kraft-McMillan Theorem).

Lemma 1: Assume again (*), and let C be an optimal (w.r.t. p) prefix code; let's sort the symbols s.t.
,o(x) < }o(xz) 4/0& y <
We break ties by code word lengths (descendingly):

i~ P(k,') ID/XH) Hoon /Q (X,> /(x,ﬂ>

(if there are still ties after this, break them arbitrarily)

Then: (l> /Qc (X'> ? QC (XZ> 2 /QC(>(3> 2 o
i) L6)= 2.0

Proof of Lemma 1:

(i) by contradiction: &S 5«2 ?'. V""#‘ /gc/s‘/) </€(/>".'4>/>
we bace)0[&;) ;7s\$ P[X,'H> =

:TDP(X,') :/”[*i{/> fen [C. (>‘/'> Z ’QC(’V,Q,)
= ,)[x,-) </’(";4z) and /gc [*i) </€(AH()

= C S "‘o‘\/ o‘f%r"“!(Lecq’”ﬁé vte C‘av// Socaf/g

() —ith Clyy)
(w‘w(/ féq/(,c@ L>
(i) proof by contradiction, building on (i)(:CA we brow ZC Ai))//66«'(/ > by
(ko shows L 60 = () For Cophion
Q05 vme /€C<><,> >/€C[><2> /'e""“/?)

—-’:>/€C (><I> > /gc[x’> Y x! € x,

Lo s Ceaalt ke gu ,p‘/ﬁw/ /'0’[1'\4“;‘*@ bocas we Co-///o/oza/
dle (qgo(/4‘71 o'(D C(X,) aﬂw/ we o/s!/(Zwvﬂ o pre b oot

i §><'.' Ct') s /’@’[[”0{)3’

|

- M !
ey (&'> - ﬂ&_lxo d thea : &) /s ﬂf(ga/""°[’>r of (G5,
~ > C is 'wvl/'e{-\(Loeo C‘aw/rda//}m_J
(,,/,ce (),7 /0[8/)>O) .5 f 3><,'. b/ IS q/f-«m/& O"p (ZX/)
L:; FG)»@&) fhoea: £.6)(Z) ’af’:fffi’> -/

206 = [yl >2.6!
FCG) oy > @) pretia ofa%, N) /
Lemma 2: Assume again (*), and let C be an optimal (w.r.t. p) prefix Gode. Then > x'e€X with xFx
and:

@x(@:fc (x) 2 2. &) VFex, ayf
i) C(x) 2\ C’(x') 0‘1// ol on Cogl b F

Proof of Lemma 2: Aswm%%mﬁ exist. I§\ut, from Lemma 1, we know:
T tx! ot el ()

Claim: either C is not optimal because we can drop the last bit of C(x) without
violating the properties of a prefix code, or there exists a different pair of
symbols that satisfy both (i) and (ii)

¢

Proof of the claim:

Lot Y -":C(\) W:)u\ [oes;’(b,VL z/fo//’eo/) = Nwa

:;a,
Ve £ <x) = "ac)o'l
if C) s /Mf& oAy fhen « l
C(—f) (s w,(go /bé'l[h: 07Q C[Y) > Q"‘f’ﬂ/h‘@"\ %(x) - [O(IO l,O
me5J~/ =~}
£ 1o polne of CE) H, v LA
.."‘F-b/ /9/7/@%(o) e C(f;) ’?,(0(/01 I /
2.G&) 2 yl=_2 6~
L/“-—_/
[0‘4/?51' c»/guja,//
(gt €6 5 one ik slarler than () aud qpeal b
Clm/vl -]'Lte,,, C(X) is /We‘(‘\(of C(x), gacd Hos Cis tw{‘/o'?‘[—‘x ‘éee)
or C(Q) has sa=e L@ry%[\ as C(X>/ 01‘10/ Y ’\S one 13’/‘ SAW‘Z@V
+(\QV| ba%/‘ ﬂn/{/y@lb(070 Lr%Ll 7 (;/) LID(V/J
Recap: Theorem: The Huffman algorithm constructs an optimal symbol code.
More precisely: assume we have
» Gaile a(f‘aLmL x with);F{?Z %
. rquL;(;éf /}J;,‘L/lmm Iz X - [o1] with f’&) >0 VYxe#
Then:
ch' . a/er. Sy . [9-475 C o« ?(#.,1][Miqim 2e H.e e,\ffcév/(’o—/(
word l?ep?ﬂn L/w.r.f. /a: T Hotbuan oty Cy will Ho sqme colb wors ["7%/
" Cl)| = |)] Wk €F,
Lemma 1: Assume again (*), and let C be an optimal (w.r.t. p) prefix code; let's sort the symbols s.t.
r(‘ﬁ) 5.,)(?&) < r[x}> <L
We break ties by code word lengths (descendingly): L {*/) = I 6 /
|‘F ’)(x’.> :/)(x;”> H‘m ki) > ,Q{);H/)
(if there are still ties after this, break them arbitrarily)
Then: (1) A(x) % /Q(xl) 2 Q[x}) 2 ...
(};) ﬂ(x,) = /Q(Xz)
Lemma 2: Assume again (*), and let C be an optimal (w.r.t. p) prefix code. Then 3 &X’e?(with xqﬁx(and:
() L6)=06!) 2 R(5) YSeK, ad
(i) co) % ") only e in (as4 Li’(
Proof of the Theorem (optimality of Huffman coding):
— by induction over |¥]
- base case: |¥| =2 . ,
(eyl ates S0 v (')
Cepl 28, fr bk .
@ Fonly fuo opfmal potic ooy (4")z0
[,0 q A (!q “ vy

Y. s

- induction step: |%|>7 assuming thattheorem holds for V [%'] = |%| -1

L? {'/dm lémmv Z E{X:ﬁx wo 'fé, 107o57l
caa/ﬁ n/pw/g ‘f‘Lw{)[q/%oh 2 /Q'g/ L ?L

Ls ’-{’ p&) Q/(x() arm)vz 0/"447« PL{Q 2
(GM»e;O& ffoLS '}‘(-\,0»\ df/éf Lémmi

?X,i&z WVLLl ["«ws’/' /ozaés o
ot(ga Con/(zpol (‘W/e Wavo/g

- Caws//vc/ a KC\(C’”/e C ﬁ’m ¢ Ly ?W//7

-
)8
S O AR
T Y Y @ (¢o), o) > A (m,) C65)) e o
o{((ﬂlqlr(

Coruse ((‘“‘7’@) (0//4
[$ 5“—4//7 Hao /5@94 v‘ wage ,Q(K) o x> x)

. bhace (o—esf /'DZ

Motr cnde wadds ofitber oily (osf LA
.~ i (%\fx”xz}> v ?’)%3

,-"-7'*1 C(f 7<(/ <oy

¥ (x) F(;—) P x X
F{"/)’Lfé) X :‘%&
- fxex
- (= ¢ (% X
(> ?'(x) JH g ;p&\' :*&
ﬁv‘a//a///o/

L} Claim: C is an optimal prefix code on’AX/ (with respect to p)
L

Proof: if itisn't an optimal prefix code then there exists a better prefix code C on9(

=2 Cagn Cunnyv(ﬂ[Q /’é'![,\(fo-o/é C ou q(é/‘//%"“"&)’/ oo goéfg.
C”(><,) = C (ﬁ) I(” !

l{ ‘I
Cq/xz> = C (“B) I %
o 7 ooy LI o)LL), %

c!' goiwed/ thom to wew ypuk (R ~

N ;qvp—gp ap ava R
(!

ya

C

1
< c

Thus, C is indeed an optimal prefix code on % (which has size) &)= (%/(-1).

> /n,/a/cv(‘"” [/ a/(es‘; lw(a/f
N?; HVYZV(A«as Co.//é o N""'DZL'

—

Coﬂ/@ wor (nyéj C

Ls> Recall that x, and x, (which are "contracted" in the
definition of C) are two symbols with lowest
probability.

= Running Huffman algorithm on X also contracts
contracts %, and %, in the first step. The remaining
steps of the algorithm then construct a prefix
code with the same code word lengths as € on ’X
by induction assumption.

Remarks and Outlook:

- Huffman coding is still widely used in practice (e.g., in the "deflate" compression method used in
zip/gzip and for compressed HTTP streams, in PNG, in most JPEGs, ...)

- However, Huffman coding is only an optimal symbol code. In Problem 2.4 of the current problem set
(discussed tomorrow), your task is to think about the limitations of symbol codes. In the next lecture,
we will start discussing so-called stream codes, which outperform Huffman coding (especially in the
regime of low entropy per symbol, which is relevant for modern machine learning based data
compression methods).

- On the next week's problem set (Problem Set 4), you will then use our implementation of Huffman
Coding (from Problem Set 2) and you'll combine it with a machine learning model that you'll train
yourself. The two components (model and entropy coding algorithm) together will resultin a fully
functioning (albeit ridiculously slow) deep learning based compression method for English text.

BERHARD KARLS

U[wl[[VE RS I TAT Science Department
TUBINGEN

Course “Data Compression With and Without Deep Probabilistic Models” - Department of Computer Science

]
Probabilistic Models, Random Variables, and Correlations

Robert Bamler - 5 May 2022

UNIVERSITAT §
TUBINGEN

Quantifying Modeling Errors: The Kullback-Leibler Divergence

» Qualitatively: better probabilistic models = better compression performance

» Goal: quantify loss in compression performance due to imperfect probabilistic
models

Robert Bamler - Course “Data Compression With and Without Deep Probabilistic Models - 5 May 2022 I

UNIVERSITAT §
TUBINGEN

Reminder: Optimal Compression Performance

Consider general lossless compression setup (i.e., no longer restricted to symbol

codes) > Poblon, 24

» discrete message space X

» some data source generates a message X € X with probability pgata(X)
» encoder C maps X injectively to a bit string C(x) € {0,1}"
» Def: “bit rate” Rz(x) := |C(x)], i.e., length (in bits) of compressed representation

= if C is the optimal code for pyaia then: Ro(X) = —logy Pata(X) +¢ VX € X
(see Problem 2.4 on Problem Set 2)

= | optimal expected bit rate: Ey.p,... [Rcopnma| forpdm(x)] = H[pgata] + ¢

Robert Bamler - Course “Data Compression With and Without Deep Probabilistic Models” - 5 May 2022 |2

EBERHARD KARLS oo

UNIVERSITAT
TUBINGEN

Problem: In practice, we don’t kKnow pyata-

» E.g., consider the probability distribution pyata for videos that you might take with
your phone’s camera.

» huge message space X (all possible HD videos);
» it's inconceivable to know pgyaia €Xxactly.

» We might, however, have some empirical samples (“training set”) from pyata-
= Use these samples to fit a model pmogel that approximates the (unknown) pyata.

» Then, consider a compression code C that is optimal for pmoder:
> bit rate of a given message x: Rg(X) = “,&77}0,,[”/([(<) vxex

> expected bit rate: Exp, | [Rc(x)] = EY“}%A Z’/ﬂg‘z Paodd (x)} = H (PJJ_!/ Proodil)
T e

» |dea: fit optimal Pmoger Y minimizing H(Pmodel, Pdata) g ey

Robert Bamler - Course “Data Compression With and Without Deep Probabilistic Models” - 5 May 2022

UNIVERSITAT
TUBINGEN

Entropy, Cross Entropy, and Kullback-Leibler Divergence

» Compare:
» true entropy of the data source: H[pyata] = Ex~psual— 1082 Paata(X)]

4 ‘#un,/am Cnu Aﬂ[(M(?v bowva/ Q]C Q)r/a((a,[L‘% '?7101' @C‘qq // 9\4;/,447

> entropy of the model: H[Pmogel] = Ex-ppoge[— 1082 Pmodel (X)]
~—?no1[Co /e/ewn'{ Ve 0/44 Cowyrersfo‘q

» Cross entropy between data source and model: H(Pgata: Pmodel) = Ex~pgaal— 1082 Pmodel(X)]

-9}0@5%1\54//7 4([4:'(%%& L;erqu,' @ <oy 650(.‘,“4,[6 bQ'S?//Om f,,m/lé"g {:M fr/a‘q

» Def. “Kullback Leibler” divergence := bit rate overhead due to modeling errors

‘DKL(pdata || Pmodel) = H(Pdata, Pmodel) — H[Pdata] > 0‘ (see Problem 3.2)

Robert Bamler - Course “Data Compression With and Without Deep Probabilistic Models” - 5 May 2022
l.‘\lHH\}\'\H\\I:l:“AA =
UNIVERSITAT
TUBINGEN

Needed: Expressive Probabilistic Models

k
So far: x € X* and Pmodel(X) = (Dengin(K)) P(X;).
i=1
l.e., symbols were assumed to be “i.i.d.” (“independent and identically distributed”)
» ‘identically distributed:” p is the same probability distribution for all i € {1,... k}
k

> We can easily overcome this limitation: pmodel(X) = (Piengin(k)) pi(Xi)
i=1

=

» Construct an individual code book C; (optimized for p;) foreach i € {1,... k}.
» Easy to see: if all C; are prefix codes then the concatenation of code words
Ci(x1) || Ca(X2) | --- || Ck(xk) is still uniquely decodable.

» ‘“independent:” the probability distribution p; does not change if we change the
value of some symbol x; with j # /.

> simplistic assumption: e.g., in English text, p;(‘u’) increases considerably if x;_1 = ‘q’.
» This limitation is more difficult to overcome. — correlations

Robert Bamler - Course “Data Compression With and Without Deep Probabilistic Models” - 5 May 2022

