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Recap From Last Week (1 of 3): Two probability distributions

> Pgata: true probability distribution of the data generative process
> typically unknown, i.e., we can’t evaluate the true probability pyaia(X) Of @ given message Xx;

> but we may have access to a data set D of empirical samples from pyata.
= then we can estimate expectations under pyaa as follows:

Ex~poaa [ F(X)] f(x) (assuming i.i.d. samples and expectation exists)

(Dl-200 [D] D
> Pmodel: Probabilistic model of the data source

> approximates Pyata;
> let’'s assume, for now, that we can evaluate pqaia(X) € [0, 1] for any given message x.
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Recap From Last Week (2 of 3): Entropy vs. Cross Entropy

Consider the expected bitrate Ex.p,,.[Rc(X)] of a lossless compression code C:
» fundamental lower bound: true entropy of the data source:
‘Entmpy: H[pPgata]l = Ex~pgaal— log2 pdata(x)”
Intrinsic property of the data source (i.e., independent of our model).
We can’t reach this bound because we can’t optimize C for pyata.
We can’t even calculate H|[pgata] because we can'’t evaluate pyata(X)-

» practically achievable expected bit rate: cross entropy between pyata & Pmodel:

Cross entropy: H(Pgata: Pmodel) = Ex~paual— l0g2 pmodel(x)”
Assumes that the code C is optimal for pmoegel, Which is more realistic.
We can estimate H(pgata, Pmodel) (25suming that we can evaluate pyogel(X)).
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Recap From Last Week (3 of 3): Kullback-Leibler (KL) Divergence

We need accurate probabilistic models to achieve good compression performance.

» Modeling error: How many additional bits do we need to transmit (in
expectation) due to an inaccurate model?

Kullback-Leibler Divergence:
DKL(pdata H pmodel) = H(pdataapmodel) H[pdata]
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» Problem 3.1: explicit proof that Dk, (p, q) > 0 for any p and q (“Gibb’s theorem”)

» Problem 3.2: fit pmogel t0 @ data set by minimizing Dk (Pgatas Pmodel) NUMerically
» To reach low Dk (Pgata; Pmodel), We Need an expressive model architecture.
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Interlude: Probability Theory & Random Variables

What makes up a probabilistic model:

» sample space Q) (abstract space of “all states of the world”)

» event E c Q: “event E occurs” := “the world is in some state w € E”.

» probability measure: a function P : ¥ — [0, 1] where

> Y is a so-called o-algebra on Q. (a set of all “expressible” events E ¢ Q)
> P(@) -0 and P(Q) :{\1‘-‘\_,;_2’/ 7%2 Q,({awiy 5041'/9».0“[5 oerg we((-uéffu»(

oo o0
> countable additivity: P( E,) = P(E)
i=1

if all E; are pairwise disjoint.
i=1

k k
> therefore: P( ) = P(E) ifall Ej are pairwise disjoint.  (proof: set E; = () Vi > k)
i=1 i=1
. _ _ ey € €2 Z0
> therefore: P(E)+ P(Q\E)=P(Q)=1 VEeX. f\/»ﬁ e
> therefore: P(Ey) < P(Eo) it By C By (beewuse PE) = PLE, v(ENE))=PE) + AENE )
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Examples of Probability Measures

1. Simplified Game of Monopoly: (throw two fair three-sided dice)
> sample space: Q = {1,2,3}2 = {(1,1),(1,2),(1,3),(2,1),(2,2), (2,3),@@,(3,2), (3,3)}

> sigma algebra: ¥ =29 .= {aII subsets of Q (ir*cluding ¢ and Q)} /‘

R
Valve o?c Va(ue, a#
» probability measure P: for all E C ¥, let P(E) = |E|/I = |E|/9 red e blue ofe
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Examples of Probability Measures (cont’d) D Som wodd be »1

2. Departure times of the next three buses from “Sternwarte™, %%&x@
» sample space (in a simple model): Q = R3 O —>
to Iozot 0/0/‘//"#(

;' n
. o 1
> sigma algebra: all “measurable subsets” of R3 Hos Jime o
(think of this as all subsets of R except for extremely pathological exceptions) «ex” by

> probability measure P: complicated function, but we know it satisfies certain relations, e.g.,

P(“next bus departs before 1.15 pm”) = P(“next bus departs before 1.10 pm”)
+ P(“next bus departs between 1.10 and 1.15 pm”).

4 o

> Question: what is the probability that the next bus departs exactly at 1.10 pm?
l.e., whatis P({1.10 pm} x R?)?

» Question: what is the probability that the next bus departs between 1.10 pm and 1.15 pm?
P([1.10 pm,1.15 pm] xR?) = P( (X}, RZ) P({x1} x R?) =0

=7 X1€EL  opdable et X¥EL
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Random Variables
» Often, we we're not interested in the full description of the state w € Q, but only in
certain properties of it.
» Def. random variable: function X : Q — R  (not necessarily injective)

Examples:

1. Simplified Game of Monopoly; Q= {(a,b) where abe {1,2,3}}
> total value: Xeum((a,b)) =a+b < {2.3.4.5 6}
> value of the red die: Xeq((a. b)) = a
> value of the blue die: Xyue((a b)) = b

2. In our bus schedule model from before; O — R?
» Time between the next bus and the one after it: Xgap((X1, X2, X3)) = X2 — X1
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Properties of Individual Random Variables

» “Probability that a random variable X has some given value x”:
P(X =x) = P(X*1(X)) = P({w €Q: Xw) = X}) Fe= IEl/]al =1€1/9
» Example 1 (Simplified Game of Monopoly): P(Xsum = 3) = P({(,2, (2,03 = 33-
> Example 2 (bus schedule): P(Xgap = 20 MINUIES) = O (b sume apamont <5 o stdp §)
» When we write just P(X), then we mean the function that maps x — P(X = x).

» Expectation value of a random variable X under a model P
> discrete case: Ep[X] := P({w}) X(w) = P(X=x)x
we xeX(Q)
examples:  Ep[Xedl =2 ; Ep[Xowel =2 ; Ep[Xeum] = @[X»@/+>&(‘,e—] = @[%J]*m;(
» continuous case: Ep[X] :=  X(w)dP(w) (see nextslide) Zere=d
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Properties of Individual Random Variables (cont’d)

» Cumulative Density Function (CDF): P(X < x) := P({w € Q: X(w)@)
> Example 1 (Simplified Game of Monopoly): P(Xsum < 3) = P((/,2), (1), (|, 1)3) =5 =

w)—

» Example 2 (bus schedule): P(Xgap < 20 minutes) € [0, 1] (can be nonzero)

» Analogous definitions for: PX@ X@) X@ X.

» Probability Density Function (PDF) of a real-valued random variable X:
p(x) == LP(X < x) (if derivative exists)

— expectation value: Ep[X] = X(w)dP(w)= xp(x)dx

(if a density p(x) exists)
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Multiple Random Variables: Joint & Marginal Probability Distributions

» Def. joint probability distribution of two random variables X and Y
PX=x,Y=y)= P({w eQ: Xw)=x N Y(w)= y})
» (notation: “P(X, Y)”: function that maps (x, y) - P(X=x, Y=X))

» If we know P(X, Y), then we can calculate P(X) = P(X,Y=y) (fordiscrete Y)
/T\
(e 3y PLT=p )40
Pcop V?( l P(X’?‘ Y~7) ; P({wéﬂ X(w) x A Y/U) ’/'?) s f;{{/}e or aZl.LI;
uqﬂ/‘vn"e
= P(U7 z 3)

2 Plec)): X(w)=x3) = P(X=x)
> This process is called “marginalization”.
» for continuous random variables: P(X) = P(X,Y=y)dy
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Multiple Random Variables: Statistical Independence

» Def.: X and Y are (statistically) independent if and only if: P(X,Y) = P(X) P(Y)
(e, if P(X=x,Y=y)=P(X=x)P(Y=y) Vx,y)

» Examples (Simplified Game of Monopoly):

> X.eq and Xye are statistically independent.
> Xeq and Xgum are not statistically independent. (proof: Problem 3.1)

» Def.: conditional independence of X and Y given Z: see later
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Conditional Probability Distributions

< |“knowing X reveals something about Y”

Examples: (Simplified Game of Monopoly; P(E) g‘) x=|1/2/3|4|5|6
What are the (marginal) probability distributions P(Xeq) P(Xrea=X)= |2 1% /%/0/0|0
and P(Xsum) of the red die and the sum, respectively? P(Xsum=xX) = |0 % % % % %
Assume that you only accept throws where the red die

comes up with value 1, and you keep rethrowing both dice V]

until this condition is satisfied. What is the probability P(Xsum=X | Xrea=1)= 0| 7 303 0|0
distribution of Xsum in your first accepted throw? We call aﬁ Ao en%@f, Phbloln S, ploe it
this the conditional probability distribution P(Xsum | Xrea=1).  #aw P0¥,) < | s E > .x?iicwys +fZ‘ o
Now you only accept throws where the sum of both dies B B j/ (I T
is 3. What is the conditional probability distribution of X;eq? fl()ff/d ;ZLX?:;(E),) 2|29 0|00
Finally, assume you only accept throws where Xpue = 1. B PN ERERE

What is the conditional probability distribution of X;eq? P(Xea=x[Xowe=1) = |3 |3 3 0|0 |

Robert Bamler - Course “Data Compression With and Without Deep Probabilistic Models” - 5 May 2022 |12

EBERHARD KARLS
UNIVERSITAT
TUBINGEN

Conditional Probability Distributions (cont’d)

» Def. “conditional probability of event E, givenevent E;":  P(E,| E;) =~ (15(1252)

» Thus, P(E;| E;) is a (properly normalized) probability distribution with respect to the first
parameter, i.e., P(Ez | Ey) + P(Q\ Ez | E) = ”<EZ“E1>,+,(P((Q\52>“E1> - gggg =1,

Ey)

» Def. “conditional probability distribution of random variable Y given random
variable X”: P(Y| X) = 256 el P(Y =y | X—x) = P vy

redle @ 71 /’/ b
» Thus, if X and Y are statistically independent (but only thenl): \:7';&: p:('(i,:; i ol bt

P(Y|X) = st)/) = ();)()’:gy) P(Y) (“knowing X reveals no new information about Y”)

> In the general case: “chain rule” of probability theory: (follows directly from above def.)
P(X1, Xo, X3,...) = P(x) POXy 1%,) PCX5 1K ,XZ) P(Xy 1%, %, X}
(N T N A
= P[X. X;)
/ POX, %, X3)
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Warning: Conditionality # Causation

» We’'ll often specify a joint probilty. distribution as, e.g., P(X, Y) = P(X) P(Y | X).

» But just because we write down “P(Y | X)”, this does not necessarily mean that
X is the cause for Y.

» Example: (Simplified Game of Monopoly):

cacse %HL
> Xeq and Xyue Can be considered the cause for Xsym. }) /e
> But, in the examples two slides ago, we were still able to calculate, e.g., P(Xeq | Xsum)-
(i.e., the probability of the cause X.eq given its effect Xsum) Phoot
Pix P(x, ) > e
P(pr/xsw“) - P[’;/ o) _ ,ﬁ _ POt A%oirn /kxp/)
»m) 4=l M ced 7Y ?W) Z P(X,,/ ”’)P[ 9./m )Xfe/ :Q')

— This is called “posterior inference”. (more in Lectures 6 and 7)
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Information Content and Entropy of Random Variables

» Definitions as you’d expect: y A4
: . yaudom var;a0'@ oT wh ) U
» information content of the statement “X = x”: ._,g% P[X>x) e eke Fe expeckin,
> entropy of a random variable X under a model P: Hp(X) == [, ['272 P ]
> joint and conditional information content and entropy: see Problems 4.2 and 4.3.

» Subadditivity of entropies: Vrandomvars X and Y: | H(X) | He(Y) |
Hp((X,Y)) < Hp(X)+ Hp(Y)| (proof: Problem 4.4) | He((X. V) [XE3a)
| Hp(X) L HR(YIX) ]
> equality holds if X and Y are statistically independent

(proof: Problem 2.3 (b))

» Thus, wrongfully assuming independence (to simplify the
model) leads to a compression overhead of Ip(X; Y) bits:

Def. mutual information: |Ip(X; Y) := Hp(X) + Hp(Y) — Hp((X, Y)) > 0| (see Problem 4.4)

Hp(X|Y) | Hp(Y) |
(figure adapted from MacKay book)
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Deep Probabilistic Models: Overview and Taxonomy

» Assume that the message is a sequence of symbols: X = (Xi, Xo, ..., Xk)
k

» Subadditivity of entropies: H(X) < H(X))
i=1

o opodded
UFLMW T;TLZ W@V@L&/ bit rate R we
moofo the S/leu,(g «8 ;c/-#rsth/// ‘allppostee -

(Poot: Problom Set 5)

» Thus: instead of modeling each symbol X; independently, we should model the
message X as a whole (without completely sacrificing computational efficiency).
> autoregressive models (e.g., Problem 3.2)
> latent variable models (planned for Problem Set 6; also: basis for variational autoencoders)
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Probabilistic Models at Scale

» All probabilistic models P over messages X = (X, Xo, .. ., Xi) satisfy chain rule:
P(X) = P(Xq) P(Xo | X1) P(X3 | X1, Xo) P(Xa | X1, X2, X3) - - - P(Xk | X1, Xo, ..., Xk_1)
-~

=P, %) ; —
\_\/_/—,—~’—/J ee o —p|
:P(X,/Xz/ X, ) @

» Assume each symbol is from alphabet X = {1, 2, 3}. //ff/"'

» How many model parameters do we need to specify an arbitrary distribution P(X;)?

» How many parameters for an arbitrary conditional distribution P(Xz | X;)? ~= [%/* -

» How many parameters for an arbitrary conditional distribution P(Xx | X1, X, ..., Xk)?
- (x5~ > expenentn/ oot == uot S loble ¥
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Expressive Yet Efficient Probabilistic Models

» Goal: Find approximation to arbitrary models P(X) that
> captures relevant correlations

0w F Heay 3im,
» but is still computationally efficient: woakor stetampa F Hau > pe
— reasonably compact representation of the model in memory stabishrea '\“’/”/’”'/ vace,
— reasonably efficient evaluation of probabilities P(X = x) P(x 2)= PO PC®

» General Strategy: enforce conditional independence: J
X & Z are conditionally independent given Y <= P(X,Z|Y)=P(X|Y)P(Z|Y)
«— P(X,Y,Z)=PX)P(Y|X)P(Z|Y) (proof: Problem Set 5)
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Four Approximation Schemes

(a) Markov Process: assume symbols X; are generated by a memoryless process

» Each symbol X, is conditioned on the immediately preceding symbol X; but not on any
earlier symbols: P(X) = P(Xi) P(Xo | X1) P(X3| Xo) P(X4 | X3) - - - P(Xk | Xk—1)

( ( ) P(
co0o— ”4" > Z
kx/_vx/ ”H, ] ~>M.{yée ')e/i
> i.e., forall j </, the symbols X, and X; are conditionally independent given X;.
only O(k |X|?) (or even O(|X|?)) model parameters L
simplistic assumption; e.g., in English text, the string “the” is very frequent.
= P(Xi.1="€'| X;="n", X;_1=T) > P(Xj,1="€’| Xi="h’) (i.e., not cond. indep.)
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Four Approximation Schemes (cont’d)
(b) Hidden Markov Model:

» Morkov Process of “hidden” states H; that are only indirectly observed

O part of the message ( “observed”)
% £ @-; é O not part of the message (“latent”)
k
PX)=  P(X.H)dH with P(X.H)=P(H)P(X|Hy) (P(Hi|H JP(X;|H)
i=2
can model long-range correlations (exercise)

overhead: in order to model P(X;| H;), decoder has to decode H;, even
though it’'s not part of the message (solution: “bits-back coding”, Lecture 6)
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Four Approximation Schemes (cont’d) Aodosarshie Pordins

(e 5., neval noheak
(c) Autoregressive Model: 7 ) )

» similar to a hidden Markov model, but the hidden process is deterministic: H;,.1 = f(H;, X;)

i i i i . i O part of the message (“observed”)
: <>deterministic function of its inputs
CIRCINOSR O
k

PX)=P(Xi|Hy) P(Xj|H;) where H;="fixed; Hi.1 = f(H;, Xj)
=2
no compression overhead for reconstructing H (see Problem 3.2)
encoding & decoding are not parallelizable (= slow on modern hardware)
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Four Approximation Schemes (cont’d)

(d) Latent Variable Models: “explain” message X by some unobserved Z

» Intuition: Z captures message at a higher level of abstraction
(e.g., the “topic” of a piece of text, or basic shapes in an image)

O part of the message (“observed")

@ @ @ .! @ O not part of the message (“latent”)

PX)= P(X,2)dZ with P(X,Z)=P(2Z) P(Xi|2Z)
i=1
can model correlations (see Problem Set 6) and is parallelizable
compression overhead for encoding Z (solution: “bits-back coding”, Lecture 6)
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Recap: Four Approximation Schemes

Markov Process Hidden Markov Model
@ @ @ 0 _’® : : : : : part of the message ( “observed" )
@ @ @ @ @ Onoc part of the message ( “latent”)
Autoregressive Model Latent Variable Model
H O"a" of the message (“observed") Opan of the message (“observed")
P Odeterminis(ic function of its inputs
> > D Onol part of the message ( “latent”
avavavans’ & F O B |
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Outlook [ m00 | Hp(Y) |
| Hp((X.Y)) [1p(X: V)]
» Problem Set: | H() [ H(IX) |
[HeXIV)P  He(Y) |

> Next ~4 weeks: lossless compression with deep probabilistic models

— Different model architectures require different compression algorithms.

» Problem Set 3 (discussed tomorrow): compressing English text with a learnt
autoregressive model (using recurrent neural networks)

> Lecture 5 (next week): stream codes with first-in-first out vs. last-in-first-out
» Lecture 6: (net-)optimal lossless compression with latent variable models
> Lectures 7 and 8: deep-learning based latent variable models

> Afterwards: Lossy compression — will e, bild ox fese isformsloes Heochivel concepts,
esfer)qféf o1 mvﬂvq( ;4[9/,.,¢L»y>,
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