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Recap From Last Week (1 of 3): Two probability distributions

▶ pdata: true probability distribution of the data generative process
▶ typically unknown, i.e., we can’t evaluate the true probability pdata(x) of a given message x;

▶ but we may have access to a data set D of empirical samples from pdata.

⇒ then we can estimate expectations under pdata as follows:

Ex∼pdata

�
f (x)

�
= lim

|D|→∞
1

|D|
X

x∈D
f (x) (assuming i.i.d. samples and expectation exists)

▶ pmodel: probabilistic model of the data source
▶ approximates pdata;
▶ let’s assume, for now, that we can evaluate pdata(x) ∈ [0, 1] for any given message x.
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Recap From Last Week (2 of 3): Entropy vs. Cross Entropy

Consider the expected bitrate Ex∼pdata[RC(x)] of a lossless compression code C:
▶ fundamental lower bound: true entropy of the data source:

Entropy: H[pdata] = Ex∼pdata[− log2 pdata(x)]

, Intrinsic property of the data source (i.e., independent of our model).
/ We can’t reach this bound because we can’t optimize C for pdata.
/ We can’t even calculate H[pdata] because we can’t evaluate pdata(x).

▶ practically achievable expected bit rate: cross entropy between pdata & pmodel:
Cross entropy: H(pdata, pmodel) = Ex∼pdata[− log2 pmodel(x)]

, Assumes that the code C is optimal for pmodel, which is more realistic.
, We can estimate H(pdata, pmodel) (assuming that we can evaluate pmodel(x)).
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Recap From Last Week (3 of 3): Kullback-Leibler (KL) Divergence

We need accurate probabilistic models to achieve good compression performance.
▶ Modeling error: How many additional bits do we need to transmit (in

expectation) due to an inaccurate model?

Kullback-Leibler Divergence:
DKL(pdata || pmodel) := H(pdata, pmodel) − H[pdata]

▶ Problem 3.1: explicit proof that DKL(p, q) ≥ 0 for any p and q (“Gibb’s theorem”)
▶ Problem 3.2: fit pmodel to a data set by minimizing DKL(pdata, pmodel) numerically

▶ To reach low DKL(pdata, pmodel), we need an expressive model architecture.
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Interlude: Probability Theory & Random Variables

What makes up a probabilistic model:
▶ sample space Ω (abstract space of “all states of the world”)

▶ event E ⊂ Ω: “event E occurs” := “the world is in some state ω ∈ E”.

▶ probability measure: a function P : Σ → [0, 1] where
▶ Σ is a so-called σ-algebra on Ω. (a set of all “expressible” events E ⊂ Ω)
▶ P(∅) = 0 and P(Ω) = 1.

▶ countable additivity: P
� ∞S

i=1
Ei

�
=

∞P
i=1

P(Ei) if all Ei are pairwise disjoint.

▶ therefore: P
�

kS
i=1

�
=

kP
i=1

P(Ei) if all Ei are pairwise disjoint. (proof: set Ei = ∅ ∀i > k )

▶ therefore: P(E) + P(Ω \ E) = P(Ω) = 1 ∀E ∈ Σ.
▶ therefore: P(E1) ≤ P(E2) if E1 ⊆ E2
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Examples of Probability Measures

1. Simplified Game of Monopoly: (throw two fair three-sided dice)

▶ sample space: Ω = {1, 2, 3}2 =
�
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)

	

▶ sigma algebra: Σ = 2Ω :=
�

all subsets of Ω (including ∅ and Ω)
	

▶ probability measure P: for all E ⊂ Σ, let P(E) := |E |/|Ω| = |E |/9

Robert Bamler · Course “Data Compression With and Without Deep Probabilistic Models” · 5 May 2022 | 5



Examples of Probability Measures (cont’d)

2. Departure times of the next three buses from “Sternwarte”:
▶ sample space (in a simple model): Ω = R3

▶ sigma algebra: all “measurable subsets” of R3

(think of this as all subsets of R3 except for extremely pathological exceptions)
▶ probability measure P: complicated function, but we know it satisfies certain relations, e.g.,

P(“next bus departs before 1.15 pm”) = P(“next bus departs before 1.10 pm”)
+ P(“next bus departs between 1.10 and 1.15 pm”).

▶ Question: what is the probability that the next bus departs exactly at 1.10 pm?
I.e., what is P


{1.10 pm} × R2

�
?

▶ Question: what is the probability that the next bus departs between 1.10 pm and 1.15 pm?

P

[1.10 pm, 1.15 pm]| {z }

=:I

×R2� = P
� [

x1∈I
{x1} × R2

�
?
=

X

x1∈I
P

{x1} × R2� = 0
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Random Variables

▶ Often, we we’re not interested in the full description of the state ω ∈ Ω, but only in
certain properties of it.

▶ Def. random variable: function X : Ω → R (not necessarily injective)

Examples:

1. Simplified Game of Monopoly; Ω =
�
(a, b) where a, b ∈ {1, 2, 3}	

▶ total value: Xsum

(a, b)

�
= a + b ∈ {2, 3, 4, 5, 6}

▶ value of the red die: Xred

(a, b)

�
= a

▶ value of the blue die: Xblue

(a, b)

�
= b

2. In our bus schedule model from before; Ω = R3

▶ Time between the next bus and the one after it: Xgap

(x1, x2, x3)

�
= x2 − x1
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Properties of Individual Random Variables

▶ “Probability that a random variable X has some given value x”:
P(X = x) := P


X−1(x)

�
= P


{ω ∈ Ω : X (ω) = x}

�

▶ Example 1 (Simplified Game of Monopoly): P(Xsum = 3) =

▶ Example 2 (bus schedule): P(Xgap = 20 minutes) =

▶ When we write just P(X ), then we mean the function that maps x 7→ P(X = x).

▶ Expectation value of a random variable X under a model P
▶ discrete case: EP [X ] :=

P
ω∈Ω

P({ω}) X (ω) =
P

x∈X (Ω)

P(X =x) x

examples: EP [Xred] = ; EP [Xblue] = ; EP [Xsum] =

▶ continuous case: EP [X ] :=
R
Ω X (ω) dP(ω) (see next slide)
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Properties of Individual Random Variables (cont’d)

▶ Cumulative Density Function (CDF): P(X ≤ x) := P

{ω ∈ Ω : X (ω) ≤ x}

�

▶ Example 1 (Simplified Game of Monopoly): P(Xsum ≤ 3) =

▶ Example 2 (bus schedule): P(Xgap ≤ 20 minutes) ∈ [0, 1] (can be nonzero)

▶ Analogous definitions for: P(X < x), P(X ≥ x), P(X > x), P(X ∈ some set), . . .

▶ Probability Density Function (PDF) of a real-valued random variable X :

p(x) := d
dx P(X ≤ x) (if derivative exists)

→ expectation value: EP[X ] =
R

X (ω) dP(ω) =
∞R

−∞
x p(x) dx

(if a density p(x) exists)
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Multiple Random Variables: Joint & Marginal Probability Distributions

▶ Def. joint probability distribution of two random variables X and Y :
P(X =x , Y =y) = P


{ω ∈ Ω : X (ω) = x ∧ Y (ω) = y}

�

▶ (notation: “P(X , Y )”: function that maps (x , y) 7→ P(X =x , Y =x))

▶ If we know P(X , Y ), then we can calculate P(X ) =
X

y

P(X , Y =y) (for discrete Y )

▶ This process is called “marginalization”.
▶ for continuous random variables: P(X ) =

R
P(X , Y =y) dy
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Multiple Random Variables: Statistical Independence

▶ Def.: X and Y are (statistically) independent if and only if: P(X , Y ) = P(X ) P(Y )

(i.e., if P(X =x , Y =y) = P(X =x) P(Y =y) ∀x , y )

▶ Examples (Simplified Game of Monopoly):
▶ Xred and Xblue are statistically independent.
▶ Xred and Xsum are not statistically independent. (proof: Problem 3.1)

▶ Def.: conditional independence of X and Y given Z : see later
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Conditional Probability Distributions

“X & Y are not statistically independent” ⇔ “knowing X reveals something about Y ”

Examples: (Simplified Game of Monopoly; P(E) = |E |
9 ) x = 1 2 3 4 5 6

What are the (marginal) probability distributions P(Xred)

and P(Xsum) of the red die and the sum, respectively?
P(Xred =x) = 1

3
1
3

1
3 0 0 0

P(Xsum =x) = 0 1
9

2
9

1
3

2
9

1
9

Assume that you only accept throws where the red die
comes up with value 1, and you keep rethrowing both dice
until this condition is satisfied. What is the probability
distribution of Xsum in your first accepted throw? We call
this the conditional probability distribution P(Xsum | Xred =1).

P(Xsum =x | Xred =1) =

Now you only accept throws where the sum of both dies
is 3. What is the conditional probability distribution of Xred?

P(Xred =x | Xsum =3) =

Finally, assume you only accept throws where Xblue = 1.
What is the conditional probability distribution of Xred?

P(Xred =x | Xblue =1) =
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Conditional Probability Distributions (cont’d)

▶ Def. “conditional probability of event E2 given event E1”: P(E2 | E1) := P(E1∩E2)
P(E1)

▶ Thus, P(E2 | E1) is a (properly normalized) probability distribution with respect to the first
parameter, i.e., P(E2 | E1) + P(Ω \ E2 | E1) = P(E2∩E1) + P((Ω\E2)∩E1)

P(E1)
= P(E1)

P(E1)
= 1.

▶ Def. “conditional probability distribution of random variable Y given random
variable X ”: P(Y | X ) := P(X ,Y )

P(X ) i.e., P(Y =y | X =x) := P(X=x ,Y=y)

P(X=x)
∀x , y

▶ Thus, if X and Y are statistically independent (but only then!):

P(Y | X ) = P(X ,Y )
P(X ) = P(X ) P(Y )

P(X ) = P(Y ) (“knowing X reveals no new information about Y ”)

▶ In the general case: “chain rule” of probability theory: (follows directly from above def.)

P(X1, X2, X3, . . .) =
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Warning: Conditionality ̸= Causation

▶ We’ll often specify a joint problty. distribution as, e.g., P(X , Y ) = P(X ) P(Y | X ).
▶ But just because we write down “P(Y | X )”, this does not necessarily mean that

X is the cause for Y .
▶ Example: (Simplified Game of Monopoly):

▶ Xred and Xblue can be considered the cause for Xsum.
▶ But, in the examples two slides ago, we were still able to calculate, e.g., P(Xred | Xsum).

(i.e., the probability of the cause Xred given its effect Xsum)

→ This is called “posterior inference”. (more in Lectures 6 and 7)
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Next Step:
tying it back to

information theory
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Information Content and Entropy of Random Variables

▶ Definitions as you’d expect:
▶ information content of the statement “X = x”:
▶ entropy of a random variable X under a model P: HP(X ) :=

▶ joint and conditional information content and entropy: see Problems 4.2 and 4.3.

▶ Subadditivity of entropies: ∀ random vars X and Y :

HP

(X , Y )

�
≤ HP(X ) + HP(Y ) (proof: Problem 4.4)

▶ equality holds if X and Y are statistically independent
(proof: Problem 2.3 (b))

▶ Thus, wrongfully assuming independence (to simplify the
model) leads to a compression overhead of IP(X ; Y ) bits:

Def. mutual information: IP(X ; Y ) := HP(X ) + HP(Y ) − HP

(X , Y )

�
≥ 0 (see Problem 4.4)

(figure adapted from MacKay book)
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Deep Probabilistic Models: Overview and Taxonomy

▶ Assume that the message is a sequence of symbols: X = (X1, X2, . . . , Xk)

▶ Subadditivity of entropies: H(X) ≤
kX

i=1

H(Xi)

▶ Thus: instead of modeling each symbol Xi independently, we should model the
message X as a whole (without completely sacrificing computational efficiency).

▶ autoregressive models (e.g., Problem 3.2)
▶ latent variable models (planned for Problem Set 6; also: basis for variational autoencoders)
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Probabilistic Models at Scale

▶ All probabilistic models P over messages X = (X1, X2, . . . , Xk) satisfy chain rule:

P(X) = P(X1) P(X2 | X1) P(X3 | X1, X2) P(X4 | X1, X2, X3) · · · P(Xk | X1, X2, . . . , Xk−1)

▶ Assume each symbol is from alphabet X = {1, 2, 3}.
▶ How many model parameters do we need to specify an arbitrary distribution P(X1)?
▶ How many parameters for an arbitrary conditional distribution P(X2 | X1)?
▶ How many parameters for an arbitrary conditional distribution P(Xk | X1, X2, . . . , Xk)?
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Expressive Yet Efficient Probabilistic Models

▶ Goal: Find approximation to arbitrary models P(X) that
▶ captures relevant correlations
▶ but is still computationally efficient:

→ reasonably compact representation of the model in memory
→ reasonably efficient evaluation of probabilities P(X = x)

▶ General Strategy: enforce conditional independence:
X & Z are conditionally independent given Y :⇐⇒ P(X , Z | Y ) = P(X | Y ) P(Z | Y )

⇐⇒ P(X , Y , Z ) = P(X ) P(Y | X ) P(Z | Y ) (proof: Problem Set 5)
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Four Approximation Schemes

(a) Markov Process: assume symbols Xi are generated by a memoryless process
▶ Each symbol Xi+1 is conditioned on the immediately preceding symbol Xi but not on any

earlier symbols: P(X) = P(X1) P(X2 | X1) P(X3 | X2) P(X4 | X3) · · · P(Xk | Xk−1)

▶ i.e., for all j < i , the symbols Xi+1 and Xj are conditionally independent given Xi .

, only O(k |X|2) (or even O(|X|2)) model parameters
/ simplistic assumption; e.g., in English text, the string “the” is very frequent.

⇒ P(Xi+1 = ‘e’ | Xi = ‘h’, Xi−1 = ‘t’) > P(Xi+1 = ‘e’ | Xi = ‘h’) (i.e., not cond. indep.)
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Four Approximation Schemes (cont’d)

(b) Hidden Markov Model:
▶ Morkov Process of “hidden” states Hi that are only indirectly observed

P(X) =

Z
P(X, H) dH with P(X, H) = P(H1) P(X1 | H1)

kY

i=2

P(Hi | Hi−1) P(Xi | Hi)

, can model long-range correlations (exercise)
/ overhead: in order to model P(Xi | Hi), decoder has to decode Hi , even

though it’s not part of the message (solution: “bits-back coding”, Lecture 6)
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Four Approximation Schemes (cont’d)

(c) Autoregressive Model:
▶ similar to a hidden Markov model, but the hidden process is deterministic: Hi+1 = f (Hi , Xi)

P(X) = P(X1 | H1)

kY

i=2

P(Xi | Hi) where H1 = fixed; Hi+1 = f (Hi , Xi)

, no compression overhead for reconstructing H (see Problem 3.2)
/ encoding & decoding are not parallelizable (⇒ slow on modern hardware)
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Four Approximation Schemes (cont’d)

(d) Latent Variable Models: “explain” message X by some unobserved Z
▶ Intuition: Z captures message at a higher level of abstraction

(e.g., the “topic” of a piece of text, or basic shapes in an image)

P(X) =

Z
P(X, Z) dZ with P(X, Z) = P(Z)

kY

i=1

P(Xi | Z)

, can model correlations (see Problem Set 6) and is parallelizable
/ compression overhead for encoding Z (solution: “bits-back coding”, Lecture 6)
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Recap: Four Approximation Schemes

Markov Process Hidden Markov Model

Autoregressive Model Latent Variable Model

Robert Bamler · Course “Data Compression With and Without Deep Probabilistic Models” · 5 May 2022 | 24

Outlook

▶ Problem Set:

▶ Next ∼4 weeks: lossless compression with deep probabilistic models
→ Different model architectures require different compression algorithms.

▶ Problem Set 3 (discussed tomorrow): compressing English text with a learnt
autoregressive model (using recurrent neural networks)

▶ Lecture 5 (next week): stream codes with first-in-first out vs. last-in-first-out
▶ Lecture 6: (net-)optimal lossless compression with latent variable models
▶ Lectures 7 and 8: deep-learning based latent variable models

▶ Afterwards: Lossy compression
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