Probability Theory, Mutual Information, and Taxonomy of Probabilistic models

Robert Bamler • 12 May 2022

This lecture is a part of the Course "Data Compression With and Without Deep Probabilistic Models" at University of Tübingen.

More course materials (lecture notes, problem sets, solutions, and videos) are available at:
https://robamler.github.io/teaching/compress22/

UNIVERSITAT
 TUBINGEN

 \pm

 \pm}
Recap From Last Week (1 of 3): Two probability distributions

- $p_{\text {data }}:$ true probability distribution of the data generative process
- typically unknown, i.e., we can't evaluate the true probability $p_{\text {data }}(\mathbf{x})$ of a given message \mathbf{x};
- but we may have access to a data set \mathcal{D} of empirical samples from $p_{\text {data }}$. \Rightarrow then we can estimate expectations under $p_{\text {data }}$ as follows:

$$
\mathbb{E}_{\mathbf{x} \sim D_{\text {data }}}[f(\mathbf{x})]=\lim _{|\mathcal{D}| \rightarrow \infty} \frac{1}{|\mathcal{D}|} \quad f(\mathbf{x}) \quad \text { (assuming i.i.d. samples and expectation exists) }
$$

- $p_{\text {model }}$: probabilistic model of the data source
- approximates $p_{\text {data }}$;
- let's assume, for now, that we can evaluate $p_{\text {data }}(\mathbf{x}) \in[0,1]$ for any given message \mathbf{x}.

Recap From Last Week (2 of 3): Entropy vs. Cross Entropy

Consider the expected bitrate $\mathbb{E}_{\mathbf{x} \sim p_{\text {data }}}\left[R_{C}(\mathbf{x})\right]$ of a lossless compression code C :

- fundamental lower bound: true entropy of the data source:

Entropy: $H\left[p_{\text {data }}\right]=\mathbb{E}_{\mathbf{x} \sim p_{\text {data }}}\left[-\log _{2} p_{\text {data }}(\mathbf{x})\right]$
Intrinsic property of the data source (i.e., independent of our model).
We can't reach this bound because we can't optimize C for $p_{\text {data }}$.
We can't even calculate $H\left[p_{\text {data }}\right]$ because we can't evaluate $p_{\text {data }}(\mathbf{x})$.
practically achievable expected bit rate: cross entropy between $p_{\text {data }} \& p_{\text {model }}$:

$$
\text { Cross entropy: } H\left(p_{\text {data }}, p_{\text {model }}\right)=\mathbb{E}_{\mathbf{x} \sim p_{\text {data }}}\left[-\log _{2} p_{\text {model }}(\mathbf{x})\right]
$$

Assumes that the code C is optimal for $p_{\text {model }}$, which is more realistic.
We can estimate $H\left(p_{\text {data }}, p_{\text {model }}\right)$ (assuming that we can evaluate $\left.p_{\text {model }}(\mathbf{x})\right)$.

Recap From Last Week (3 of 3): Kullback-Leibler (KL) Divergence

We need accurate probabilistic models to achieve good compression performance.

- Modeling error: How many additional bits do we need to transmit (in expectation) due to an inaccurate model?
- Problem 3.1: explicit proof that $D_{K L}(p, q) \geq 0$ for any p and q ("Gibb's theorem")
- Problem 3.2: fit $p_{\text {model }}$ to a data set by minimizing $D_{\mathrm{KL}}\left(p_{\text {data }}, p_{\text {model }}\right)$ numerically
- To reach low $D_{\text {KL }}\left(p_{\text {data }}, p_{\text {model }}\right)$, we need an expressive model architecture.

Interlude: Probability Theory \& Random Variables

What makes up a probabilistic model:

- sample space Ω (abstract space of "all states of the world")
- event $E \subset \Omega$: "event E occurs" := "the world is in some state $\omega \in E$ ".
- probability measure: a function $P: \Sigma \rightarrow[0,1]$ where
- Σ is a so-called σ-algebra on Ω. (a set of all "expressible" events $E \subset \Omega$)
- $P(\emptyset)=0$ and $P(\Omega)=1$. i.e, the following statemonts are well - defined
- countable additivity: $P\left({ }_{i=1}^{\infty} E_{i}\right)={ }_{i=1}^{\infty} P\left(E_{i}\right) \quad$ if all E_{i} are pairwise disjoint.
- therefore: $P\binom{k}{i=1}={ }_{i=1}^{k} P\left(E_{i}\right) \quad$ if all E_{i} are pairwise disjoint. (proof: set $E_{i}=\emptyset \forall i>k$)
- therefore: $P(E)+P(\Omega \backslash E)=P(\Omega)=1 \quad \forall E \in \Sigma$. $\quad \in \mathcal{I} i E_{1}, \xi_{2} \in \Sigma$
- therefore: $P\left(E_{1}\right) \leq P\left(E_{2}\right)$ if $E_{1} \subseteq E_{2} \quad$ (because $P\left(E_{2}\right)=P\left(E_{1} \cup\left(E_{2} \sim E_{1}\right)\right)=P\left(E_{1}\right)+\widetilde{P\left(E_{2} \backslash E_{1}\right)}$)

Robert Bamler • Course "Data Compression With and Without Deep Probabilistic Models" • 5 May 2022

(wamp kis

UNIVERSTITA
TUBINGEN

Examples of Probability Measures

1. Simplified Game of Monopoly: (throw two fair three-sided dice)

- sample space: $\Omega=\{1,2,3\}^{2}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3),(1),(3,2),(3,3)\}$
- sigma algebra: $\Sigma=2^{\Omega}:=\{$ all subsets of Ω (including \emptyset and $\left.\Omega)\right\} \quad{ }_{\text {value }}{ }_{\text {of }}{ }^{\uparrow}$ value of
- probability measure P : for all $E \subset \Sigma$, let $P(E):=|E| /|\Omega|=|E| / 9$ red die blue die

Examples of Probability Measures (cont'd)

2. Departure times of the next three buses from "Sternwarte":

- sample space (in a simple model): $\Omega=\mathbb{R}^{3}$
- sigma algebra: all "measurable subsets" of \mathbb{R}^{3}
(think of this as all subsets of \mathbb{R}^{3} except for extremely pathological exceptions)

- probability measure P : complicated function, but we know it satisfies certain relations, e.g., P ("next bus departs before 1.15 pm ") $=P$ ("next bus departs before 1.10 pm ")
$+P$ ("next bus departs between 1.10 and $1.15 \mathrm{pm} ")$.
- Question: what is the probability that the next bus departs exactly at 1.10 pm ? I.e., what is $P\left(\{1.10 \mathrm{pm}\} \times \mathbb{R}^{2}\right)$?
- Question: what is the probability that the next bus departs between 1.10 pm and 1.15 pm ?

Robert Bamler • Course "Data Compression With and Without Deep Probabilistic Models" • 5 May 2022

Enerhard karls

TUBINGEN

Random Variables

- Often, we we're not interested in the full description of the state $\omega \in \Omega$, but only in certain properties of it.
- Def. random variable: function $X: \Omega \rightarrow \mathbb{R} \quad$ (not necessarily injective)

Examples:

1. Simplified Game of Monopoly; $\Omega=\{(a, b)$ where $a, b \in\{1,2,3\}\}$

- total value: $X_{\text {sum }}((a, b))=a+b \in\{2,3,4,5,6\}$
- value of the red die: $X_{\text {red }}((a, b))=a$
- value of the blue die: $X_{\text {blue }}((a, b))=b$

2. In our bus schedule model from before; $\Omega=\mathbb{R}^{3}$

- Time between the next bus and the one after it: $X_{\text {gap }}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{2}-x_{1}$

Properties of Individual Random Variables

- "Probability that a random variable X has some given value x ":

$$
P(X=x):=P\left(X^{-1}(x)\right)=P(\{\omega \in \Omega: X(\omega)=x\}) \quad P(E)=|E| /|\Omega|=|E| / g
$$

- Example 1 (Simplified Game of Monopoly): $P\left(X_{\text {sum }}=3\right)=P(\{(1,2),(2,1)\})=\frac{2}{9}$
- Example 2 (bus schedule): $P\left(X_{\text {gap }}=20\right.$ minutes) $=0$ (by some aggmant as on sl:de 6)
- When we write just $P(X)$, then we mean the function that maps $x \rightarrow P(X=x)$.
- Expectation value of a random variable X under a model P
- discrete case: $\mathbb{E}_{P}[X]:=\underset{\omega \in \Omega}{ } P(\{\omega\}) X(\omega)=\underset{x \in X(\Omega)}{ } P(X=x) x$ examples: $\left.\quad \mathbb{E}_{P}\left[X_{\text {red }}\right]=2 ; \quad \mathbb{E}_{P}\left[X_{\text {blue }}\right]=2 ; \quad \mathbb{E}_{P}\left[X_{\text {sum }}\right]=\mathbb{E}_{p}\left[X_{\text {nd }}+X_{\text {blue }}\right]=\mathbb{E}_{p}\left[X_{\text {a }}\right]+\mathbb{E}_{\beta}^{[} f_{\text {be }}\right]$
- continuous case: $\mathbb{E}_{P}[X]:={ }_{\Omega} X(\omega) d P(\omega) \quad$ (see next slide)

Properties of Individual Random Variables (cont'd)

- Cumulative Density Function (CDF): $P(X \leq x):=P(\{\omega \in \Omega: X(\omega) \leq X)\}$
- Example 1 (Simplified Game of Monopoly): $P\left(X_{\text {sum }} \leq 3\right)=P(\{(1,2),(2,1),(1,1)\})=\frac{3}{9}=\frac{1}{3}$
- Example 2 (bus schedule): $P\left(X_{\text {gap }} \leq 20\right.$ minutes) $\in[0,1]$ (can be nonzero)
- Analogous definitions for: $P(X<X), P(X \geq X), P(X \geq x), P(X \in$ some sel $), \ldots$
- Probability Density Function (PDF) of a real-valued random variable X :
$p(x):=\frac{d}{d x} P(X \leq x)$ (if derivative exists)
\rightarrow expectation value: $\mathbb{E}_{P}[X]=X(\omega) d P(\omega)={ }_{-\infty}^{\infty} x p(x) d x$ (if a density $p(x)$ exists)

Multiple Random Variables: Joint \& Marginal Probability Distributions

- Def. joint probability distribution of two random variables X and Y :
$P(X=x, Y=y)=P(\{\omega \in \Omega: X(\omega)=x \wedge Y(\omega)=y\})$
- (notation: " $P(X, Y)$ ": function that maps $(x, y) \rightarrow P(X=x, Y=x)$)
- If we know $P(X, Y)$, then we can calculate $P(X)=\quad P(X, Y=y)$ (for discrete Y)

Poof: $\forall x: \sum_{y} P(X=x, Y=y)=\sum_{Y} P(\{\omega \in \Omega: X(\omega)=x \wedge Y(v)=y \xi)$

$$
\begin{align*}
& P\left(U_{Y}^{Y} \quad\right. \text { " } \\
= & \}) \\
=P(\{w \in \Omega & x(w)=x\})=P(X=x)
\end{align*}
$$

$$
=P(\approx \omega \in \Omega: X(\omega)=x\})=P(X=x)
$$

T

- This process is called "marginalization".
- for continuous random variables: $P(X)=P(X, Y=y) d y$

Multiple Random Variables: Statistical Independence

- Def.: X and Y are (statistically) independent if and only if: $P(X, Y)=P(X) P(Y)$ (i.e., if $P(X=x, Y=y)=P(X=x) P(Y=y) \forall x, y)$
- Examples (Simplified Game of Monopoly):
- $X_{\text {red }}$ and $X_{\text {blue }}$ are statistically independent.
- $X_{\text {red }}$ and $X_{\text {sum }}$ are not statistically independent. (proof: Problem 3.1)

Def.: conditional independence of X and Y given Z : see later

Conditional Probability Distributions

" $X \& Y$ are not statistically independent" \Leftrightarrow "knowing X reveals something about Y "
Examples: (Simplified Game of Monopoly; $\left.\left.P(E)=\frac{|E|}{9}\right) \quad x=|1| \begin{array}{ll|l|l|l|}\hline\end{array}\right)$
What are the (marginal) probability distributions $P\left(X_{\text {red }}\right)$ and $P\left(X_{\text {sum }}\right)$ of the red die and the sum, respectively?
Assume that you only accept throws where the red die comes up with value 1 , and you keep rethrowing both dice until this condition is satisfied. What is the probability distribution of $X_{\text {sum }}$ in your first accepted throw? We call this the conditional probability distribution $P\left(X_{\text {sum }} \mid X_{\text {red }}=1\right)$.
Now you only accept throws where the sum of both dies is 3 . What is the conditional probability distribution of $X_{\text {red }}$?
Finally, assume you only accept throws where $X_{\text {blue }}=1$.
What is the conditional probability distribution of $X_{\text {red }}$?

TUBINGEN

\pm

Conditional Probability Distributions (cont'd)

- Def. "conditional probability of event E_{2} given event E_{1} ": $\quad P\left(E_{2} \mid E_{1}\right):=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{1}\right)}$
- Thus, $P\left(E_{2} \mid E_{1}\right)$ is a (properly normalized) probability distribution with respect to the first parameter, i.e., $P\left(E_{2} \mid E_{1}\right)+P\left(\Omega \backslash E_{2} \mid E_{1}\right)=\frac{P\left(E_{2} \cap E_{1}\right)+P\left(\left(\Omega \backslash E_{2}\right) \cap E_{1}\right)}{P\left(E_{1}\right)}=\frac{P\left(E_{1}\right)}{P\left(E_{1}\right)}=1$.
- Def. "conditional probability distribution of random variable Y given random variable X ": $P(Y \mid X):=\frac{P(X, Y)}{P(X)}$
- Thus, if X and Y are statistically independent (but only then!): ゝereecse: redo last slide by $P(Y \mid X)=\frac{P(X, Y)}{P(X)}=\frac{P(X) P(Y)}{P(X)}=P(Y) \quad$ ("knowing X reveals no new information about Y ")
- In the general case: "chain rule" of probability theory: (follows directly from above def.)

$$
\qquad P\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\underbrace{P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right)}_{=P\left(x_{1}, x_{2}\right)} \underbrace{P P\left(x_{1}, x_{2}, x_{3}\right)}_{\left(x_{3} \mid x_{1}, x_{2}\right)} P P\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \cdots
$$

TUBINGEN

Warning: Conditionality \neq Causation

- We'll often specify a joint problty. distribution as, e.g., $P(X, Y)=P(X) P(Y \mid X)$.
- But just because we write down " $P(Y \mid X)$ ", this does not necessarily mean that X is the cause for Y.
- Example: (Simplified Game of Monopoly):
- $X_{\text {red }}$ and $X_{\text {blue }}$ can be considered the cause for $X_{\text {sum }}$.
- But, in the examples two slides ago, we were still able to calculate, e.g., $P\left(X_{\text {red }} \mid X_{\text {sum }}\right)$.

$$
\text { (i.e., the probability of the cause } X_{\text {red }} \text { given its effect } X_{\text {sum }} \text {) }
$$

$$
P\left(x_{\text {red }} \mid x_{\text {sum }}\right)=\frac{P\left(x_{\text {red }}, x_{\text {sum }}\right)}{P\left(x_{\text {sum }}\right)}=\frac{P\left(x_{\text {red }}, x_{\text {som }}\right)}{\sum_{q=1}^{3} P\left(x_{\text {red }}=q, x_{\text {sum }}\right)}=\frac{P\left(x_{\text {red }}\right) P\left(x_{\text {sum }}^{*} \mid x_{\text {ed }}\right)}{\sum_{\alpha=1}^{3} P\left(x_{\text {red }}=a\right) P\left(x_{\text {sum }} \mid x_{\text {red }}=q\right)}
$$

\rightarrow This is called "posterior inference". (more in Lectures 6 and 7)

Next Step:

tying it back to information theory

Information Content and Entropy of Random Variables

- Definitions as you'd expect:
- information content of the statement " $X=x$ ": $-\log _{2} P(X=x) \overbrace{\text { random variable of uhich we wation }}^{\text {tate the expectation }}$
- entropy of a random variable X under a model $P: H_{P}(X):=\mathbb{E}_{p}\left[-\log _{2} P(X)\right]$
- joint and conditional information content and entropy: see Problems 4.2 and 4.3.
- Subadditivity of entropies: \forall random vars X and Y :

$$
H_{P}((X, Y)) \leq H_{P}(X)+H_{P}(Y) \quad \text { (proof: Problem 4.4) }
$$

- equality holds if X and Y are statistically independent (proof: Problem 2.3 (b))
- Thus, wrongfully assuming independence (to simplify the
 model) leads to a compression overhead of $I_{P}(X ; Y)$ bits:
Def. mutual information: $I_{P}(X ; Y):=H_{P}(X)+H_{P}(Y)-H_{P}((X, Y)) \geq 0$
(see Problem 4.4)

Deep Probabilistic Models: Overview and Taxonomy

- Assume that the message is a sequence of symbols: $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$
- Subadditivity of entropies: $H(\mathbf{X}) \leq{ }^{k} H\left(X_{i}\right)$

$\underbrace{i=1}_{\text {optrimal expected bit rate if we }}$
model the symbols as statistically independent
(Proot: Problom Set 5)
- Thus: instead of modeling each symbol X_{i} independently, we should model the message \mathbf{X} as a whole (without completely sacrificing computational efficiency).
- autoregressive models (e.g., Problem 3.2)
- latent variable models (planned for Problem Set 6; also: basis for variational autoencoders)

Probabilistic Models at Scale

－All probabilistic models P over messages $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ satisfy chain rule：

$$
P(\mathbf{X})=\underbrace{\underbrace{P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right)}_{=P\left(x_{1}, x_{2}\right)} P\left(X_{3} \mid X_{1}, X_{2}\right)}_{=P\left(x_{1}, x_{2}, x_{3}\right)} P\left(X_{4} \mid X_{1}, x_{2}, x_{3}\right) \cdots P\left(X_{k} \mid X_{1}, X_{2}, \ldots, X_{k-1}\right)
$$

－Assume each symbol is from alphabet $\mathfrak{X}=\{1,2,3\}$ ．
－How many model parameters do we need to specify an arbitrary distribution $P\left(X_{1}\right)$ ？
－How many parameters for an arbitrary conditional distribution $P\left(X_{2} \mid X_{1}\right) ? \rightarrow|\nexists|^{2}-1$
－How many parameters for an arbitrary conditional distribution $P\left(X_{k} \mid X_{1}, X_{2}, \ldots, X_{k}\right)$ ？

$$
\rightarrow|*|^{k}-1 \rightarrow \text { exponential grouth } \rightarrow \text { not scalable! }
$$

TUBINGEN

里

Expressive Yet Efficient Probabilistic Models

－Goal：Find approximation to arbitrary models $P(\mathbf{X})$ that
－captures relevant correlations
－but is still computationally efficient：
\rightarrow reasonably compact representation of the model in memory
\rightarrow reasonably efficient evaluation of probabilities $P(\mathbf{X}=\mathbf{x})$
weaber statement than simple
statistiral indeppendence：
$P(x, z)=P(x) P(z)$
\downarrow
－General Strategy：enforce conditional independence： $X \& Z$ are conditionally independent given $Y: \Longleftrightarrow P(X, Z \mid Y)=P(X \mid Y) P(Z \mid Y)$ $\Longleftrightarrow P(X, Y, Z)=P(X) P(Y \mid X) P(Z \mid Y) \quad$（proof：Problem Set 5）

tubingen

䵢

Four Approximation Schemes

（a）Markov Process：assume symbols X_{i} are generated by a memoryless process
－Each symbol X_{i+1} is conditioned on the immediately preceding symbol X_{i} but not on any earlier symbols：$P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right) \cdots P\left(X_{k} \mid X_{k-1}\right)$

$$
\begin{aligned}
& \text { next character: } \\
& \text { "h" } \rightarrow \\
& \text { "th" } \rightarrow \text { marke " } e^{"}
\end{aligned}
$$

－i．e．，for all $j<i$ ，the symbols X_{i+1} and X_{j} are conditionally independent given X_{i} ． only $O\left(k|\mathfrak{X}|^{2}\right)$（or even $O\left(|\mathfrak{X}|^{2}\right)$ ）model parameters
simplistic assumption；e．g．，in English text，the string＂the＂is very frequent．
$\Rightarrow P\left(X_{i+1}=\right.$＇ e ＇ $\mid X_{i}=$＇ h ＇，$X_{i-1}=$＇t＇）$>P\left(X_{i+1}=\right.$＇e＇ $\mid X_{i}=$＇ h ＇）（i．e．，not cond．indep．）

Four Approximation Schemes (cont'd)

(b) Hidden Markov Model:

- Morkov Process of "hidden" states H_{i} that are only indirectly observed

can model long-range correlations (exercise)
overhead: in order to model $P\left(X_{i} \mid H_{i}\right)$, decoder has to decode H_{i}, even though it's not part of the message (solution: "bits-back coding", Lecture 6)

TUBINGEN

\pm

Four Approximation Schemes (cont'd)
(c) Autoregressive Model:
deteminustre Fundion
(e.g., nevia (netuork)

\downarrow

- similar to a hidden Markov model, but the hidden process is deterministic: $H_{i+1}=f\left(H_{i}, X_{i}\right)$

 deterministic function of its inputs
$P(\mathbf{X})=P\left(X_{1} \mid H_{1}\right) \quad P\left(X_{i=2} \mid H_{i}\right) \quad$ where $\quad H_{1}=$ fixed; $H_{i+1}=f\left(H_{i}, X_{i}\right)$
no compression overhead for reconstructing \mathbf{H} (see Problem 3.2) encoding \& decoding are not parallelizable (\Rightarrow slow on modern hardware)

TUBINGEN
.

Four Approximation Schemes (cont'd)

(d) Latent Variable Models: "explain" message \mathbf{X} by some unobserved \mathbf{Z}

- Intuition: \mathbf{Z} captures message at a higher level of abstraction
(e.g., the "topic" of a piece of text, or basic shapes in an image)

part of the message ("observed")
〇not part of the message ("latent")
$P(\mathbf{X})=P(\mathbf{X}, \mathbf{Z}) d \mathbf{Z} \quad$ with $\quad P(\mathbf{X}, \mathbf{Z})=P(\mathbf{Z}) \quad P\left(X_{i} \mid \mathbf{Z}\right)$
can model correlations (see Problem Set 6) and is parallelizable compression overhead for encoding \mathbf{Z} (solution: "bits-back coding", Lecture 6)

Recap: Four Approximation Schemes

Markov Process

Outlook

- Problem Set:

$H_{P}(X)$	$H_{P}(Y)$
$H_{P}((X, Y))$	$I_{P}(X ; Y)$
$H_{P}(X)$	$H_{P}(Y \mid X)$
$I_{P}(X ; Y)$	
$H_{P}(X \mid Y)$	$H_{P}(Y)$

- Next ~4 weeks: lossless compression with deep probabilistic models
\rightarrow Different model architectures require different compression algorithms.
- Problem Set 3 (discussed tomorrow): compressing English text with a learnt autoregressive model (using recurrent neural networks)
- Lecture 5 (next week): stream codes with first-in-first out vs. last-in-first-out
- Lecture 6: (net-)optimal lossless compression with latent variable models
- Lectures 7 and 8: deep-learning based latent variable models

Afterwards: Lossy compression \rightarrow will also build on these information theorchical concepts,

