
Stream Codes: Arithmetic Coding, Range Coding, and
Asymmetric Numeral Systems (ANS)
Robert Bamler · 19 May 2022

This lecture is a part of the Course “Data Compression With and Without Deep Probabilistic Models”
at University of Tübingen.

More course materials (lecture notes, problem sets, solutions, and videos) are available at:

https://robamler.github.io/teaching/compress22/

Science Department

Course “Data Compression With and Without Deep Probabilistic Models” · Department of Computer Science

Stream Codes vs. Symbol Codes

▶ Reminder: Huffman coding [Huffman, 1952] creates an optimal symbol code; but:
▶ Symbol codes are restrictive: each symbol contributes an integer number of bits.
▶ Modern machine-learning based (lossy) compression methods typically use models with

very low entropy per symbol (e.g., HP [Xi] ≈ 0.3 bits).
⇒ Any symbol code has > 200% overhead (since it needs at least 1 bit per symbol).

▶ Naive idea: Block codes (Problem 2.4)
▶ apply Huffman coding to large blocks of symbols rather than to individual symbols
▶ problem: cost scales exponentially in the block size

▶ Better idea: stream codes — amortize efficiently over multiple symbols
▶ Arithmetic Coding and Range Coding [Rissanen and Langdon, 1979; Pasco, 1976]
▶ Asymmetric Numeral Systems (ANS) [Duda et al., 2015]

Robert Bamler · Course “Data Compression With and Without Deep Probabilistic Models” · 5 May 2022 | 1

Amortizing Compressed Bits Over Symbols

▶ Intuitively: “pack” information content as closely as possible

▶ We can no longer associate each bit in the compressed representation with any
specific symbol

Robert Bamler · Course “Data Compression With and Without Deep Probabilistic Models” · 5 May 2022 | 2

[Pasco, 1976;
Rissanen and Langdon, 1979]

Now consider the left- and right-sided cumulative distribution functions:

Consider a probability distribution P(X) over messages

Define some total ordering on the message space, i.e., for X, X' , you have exactly one of

Arithmetic Coding and Range Coding

Idea: Similar to Shannon coding, but applied to the entire message of k symbols rather than to each
 symbol individually

→ challenge: making it computationally efficient

Arithmetic Coding and Range Coding are two very similar algorithms. They are both
- conceptionally simple
- but a bit tricky to fully implement due to a number of edge cases

Question: what is the rate R(x), i.e., how long does the binary representation of have to be if we
 want to have ?

So far, we've more or less reinvented Shannon coding, except that
- we apply it to the whole message rather than a single symbol; and
- we don't care about unique decodability here since we don't expect users to concatenate the
 compressed representations of entire messages without some form of container format or protocol

But: how can we find a suitable without iterating over all possible messages?

Strategy ("Arithmetic Coding"):
- use chain rule of probability theory

- use lexicographic order of messages

- find by iterative refinement

Remarks:
- in practice, Arithmetic coding becomes more complicated because the intervals quickly become too
 small for typical numerical precisions. Thus, every time one emits a bit, one should rescale all intervals
 on both the left side and the right side by a factor of 2. This also works in situations like , but it is a bit
 tedious to work out the details.
- Range coding is similar, but it works with larger bases than 2 (e.g., 2^32 or 2^64) to improve practical
 computational efficiency on real hardware (→ emits compressed data in blocks of, e.g., 32 or 64 bits).
- on next week's problem set, you will use a range coder provided by a library ("constriction") to improve
 our machine-learning based compression method for natural language from Problem Set 3.

