
Lecture 6 (2 June 2022); lecturer: Robert Bamler
more course materials online at https://robamler.github.io/teaching/compress22/

[Duda et al., 2015]

Stream Codes II: Asymmetric Numeral Systems (ANS)

Recap from last lecture

- symbol codes vs. stream codes:

- two stream codes: arithmetic coding and range coding
 (≈ computationally efficient variant of Shannon coding for sequences of symbols)
 iterate over symbols in message; each symbol refines an a subinterval of [0, 1).

edge case: not even the
first bit is known yet at
this point; the number ξ
could either start
with
or with

- Range coding is similar to arithmetic coding but it uses a larger base (e.g., 2^32 instead of 2)
 on the left side of the above illustration. This makes range coding more computationally efficient
 in practice since operations with single bits typically require manipulating larger registers anyway
 on standard computing hardware.

- Arithmetic coding and range coding are conceptionally relatively simple, but a complete
 implementation is somewhat involved because of a number of edge cases (like above).

- You'll use a range coder from a library in Problem 6.3.

- Today, we'll discuss and live-implement a different stream code that is conceptionally a bit more
 involved, but that turns out to be very easy to implement.

Asymmetric Numeral Systems [Duda et al., 2015]

Observations from our implementation of positional numeral systems:

- encoding and decoding (or "parsing and generating") operates as a stack

- conversion from, e.g., decimal to binary system amortizes the bit rate over several symbols
 (i.e., each bit in the compresse representation may correspond to more than just a single symbol).
 This differentiates stream codes from symbol codes.

- positional numeral systems are an optimal compression method for sequences of symbols if
 the symbols satisfy the following three requirements:
 (i) all symbols are from the same (finite) alphabet;
 (ii) all symbols are uniformly distributed over this alphabet; and
 (iii) all symbols are statistically independent.

Idea: generalize the concept of positional numeral systems by lifting all three of these
 limitations (i)-(iii).

Limitation (i): positional numeral systems with a different base for each symbol

Limitation (ii): non-uniformly distributed symbols

Step 1: approximate the probabilistic model P with fixed-point precision.

Example:

Step 2: interpret Q as a latent variable model

Question: How would you draw a random sample from the distribution

Step 3: since the latents z uniquely identify the symbols x , we can encode the sequence of z 's
 instead of the sequence of x 's

Problem: - resulting bitrate per symbol:
 - compare to information content symbol i (under approximate model Q):

Step 4: The Bits-Back Trick

Idea: rather than choosing z arbitrarily from , encode some "side information" into our choice of z

- positional numeral systems are an optimal compression method for sequences of symbols if
 the symbols satisfy the following three requirements:
 (i) all symbols are from the same (finite) alphabet;
 (ii) all symbols are uniformly distributed over this alphabet; and
 (iii) all symbols are (therefore) statistically independent.

Our goal is still to lift the three limitations of positional numeral systems:

Limitation (iii): modeling correlations between symbols

(a) use an autoregressive model (as we did in Problem 3.2 with Huffman Coding)

Recap: what have we achieved so far?

(b) use a latent variable model and generalize the Bits-Back trick

Computational efficiency of the algorithm we have so far:

Note: these orange parts are just for demonstration purpose. In a production setup,
you should do something more efficient here (e.g., a binary search or a lookup table);
the "constriction" library that we'll use on the problem sets provides several efficient
alternatives for these parts depending on the nature of your model.

Improving Computational Efficiency: Streaming ANS

Consider the task of multiplying a*b where a is a very large number (similar for division and modulo):

⇒ Strategy: allow arithmetic operations like a*b, a/b, or a mod b only if:

We'll split the (so far) compressed data into a "bulk" and a "head" part

Streaming ANS algorithm:

- Most encoding/decoding operations involve only on the "head" (⇒ fast since head size is bounded).

- Only if "head" overflows (during encoding) or underflows (during decoding) do we transfer some bits
 between "bulk" and "head". Here, we always transfer an integer number of bits, so this is also fast.

- The encoder and the decoder must agree on the exact point in time where they transfer data
 between "bulk" and "head". To ensure this, a common approach is to keep the number of valid
 bits on "head" always between precision and 2*precision. More formally, we uphold the following
 two invariants:

A violation of invariant (i) triggers a data transfer from "head" to "bulk" that restores both invariants.
A violation of invariant (ii) triggers a data transfer from "bulk" to "head" that restores both invariants.

Complete implementation of streaming ANS in python:
(usage example on next page)

Empirical Performance And Efficiency [plots taken from Bamler, 2022
(arXiv:2201.01741)]

- comparison of ANS, Range Coding, And Arithmetic Coding
- results for ANS and Range Coding were obtained with a
 library called "constriction", with which you'll experiment
 in Problem Sets 6 and 7

Compression Performance:

Runtime:

(Take these results with a grain of salt because the runtime depends on implementation details.)

Usage example:

