Stream Codes II: Asymmetric Numeral Systems (ANS)

Lecture 6 (2 June 2022); lecturer: Robert Bamler
[Dada et al., 2015]
more course materials online at https://robamler.github.io/teaching/compress22/

Recap from last lecture

- two stream codes: arithmetic coding and range coding

(\approx computationally efficient variant of Shannon coding for sequences of symbols) iterate over symbols in message; each symbol refines an a subinterval of $[0,1)$.

- Range coding is similar to arithmetic coding but it uses a larger base (e.g., $2^{\wedge} 32$ instead of 2) on the left side of the above illustration. This makes range coding more computationally efficient in practice since operations with single bits typically require manipulating larger registers anyway on standard computing hardware.
- Arithmetic coding and range coding are conceptionally relatively simple, but a complete implementation is somewhat involved because of a number of edge cases (like 图 above).
- You'll use a range coder from a library in Problem 6.3.
- Today, we'll discuss and live-implement a different stream code that is conceptionally a bit more involved, but that turns out to be very easy to implement.

Asymmetric Numeral Systems

Exercise

Consider a data source that generates a random message $\mathbf{X} \equiv\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ of length k, where each symbol $X_{i}, i \in\{1, \ldots, k\}$ is drawn independently from all other symbols from a uniform probability distribution over the alphabet $\mathfrak{X}=\{0,1,2, \ldots, 9\}$.
(a) What is the entropy per symbol? $\frac{1}{k} H_{P}[\mathbf{X}]=H_{P}\left[X_{i}\right]=\mathbb{E}_{p}\left[-\log _{2} \frac{1}{10}\right]=\log _{2} 10 \approx 3.32$ bit
(b) What is the expected code word length of an optimal symbol code for this data source? $L:=\mathbb{E}_{p}\left[\ell_{\text {Huff }}\left(X_{i}\right)\right]=3.4$ bit $>H_{p}\left[x_{i}\right]$

(c) Can you do better than an optimal symbol code? Describe your approach first in words, then implement it in Python or in pseudo code. (about 4 lines of code for
encoding and 4 lines of code for decoding; no library function calls necessary.)

$$
\begin{array}{r}
\rightarrow \text { interpret the sequence of symbols as a number in the } \\
\text { decimal system and convert to binary. See code. }
\end{array}
$$

(d) What is the expected bit rate per symbol of your method from part (c) in the limit of long messages? $\lim _{k \rightarrow \infty} \frac{1}{k} \mathbb{E}_{P}\left[R_{C}(\mathbf{X})\right]=$

$$
\text { largest possible number made up of } k \text { decimals: } \underbrace{999 \ldots g}_{k+i m e s}=10^{k}-1
$$

\Rightarrow length of binary representation:

$R_{c}((9,9,9, \ldots, 9))=\log _{2}\left(10^{k}-1\right)+\frac{k}{\varepsilon} \leqslant \log _{2}\left(10^{k}\right)+\varepsilon=k \log _{2} 10+\varepsilon$


```
def encode_uniform(message, base):
    compressed = 0
    for symbol in reversed(message):
        compressed = compressed * base + symbol
    return compressed
def decode_uniform(compressed, base, message_length):
    message = []
    for _ in range(message_length):
        message.append(compressed % base)
        compressed //= base
    return message
```

```
compressed = encode_uniform([3, 5, 6], 10)
print(f'compressed: {compressed:b}')
reconstruction = decode_uniform(compressed, 10, 3)
print(f'reconstruction: {reconstruction}')
```


Observations from our implementation of positional numeral systems:

- encoding and decoding (or "parsing and generating") operates as a stack \rightarrow ie., "last in first out"
- conversion from, e.g., decimal to binary system amortizes the bit rate over several symbols (i.e., each bit in the compresse representation may correspond to more than just a single symbol). This differentiates stream codes from symbol codes.

```
print(f'[3, 5, 7] ==> {encode_uniform([3, 5, 7], 10):b}')
print(f'[3, 5, 6] ==> {encode_uniform([3, 5, 6], 10):b}')
print(f'[3, 4, 6] ==> {encode_uniform([3, 4, 6], 10):b}')
```

```
\([3,5,7]\) ==> 1011110001
[3, 5, 6] ==> 1010001101
[3, 4, 6] ==> 1010000011
\(\left\{\begin{array}{l}\text { dinge only last symbol } \\ \text { change only second symbol }\end{array}\right\} \begin{aligned} & \text { red underlined bits change } \\ & \text { in both cases (this is unlike symbol codes) }\end{aligned}\)
```

- positional numeral systems are an optimal compression method for sequences of symbols if the symbols satisfy the following three requirements: ie. amortized bit rate per
(i) all symbols are from the same (finite) alphabet;
(ii) all symbols are uniformly distributed over this alphabet; and
(iii) all symbols are statistically independent.
symbol is $\log _{2}|*|$ (entropy
of a uniformly distributed random variable)

Idea: generalize the concept of positional numeral systems by lifting all three of these limitations (i)-(iii).

Limitation (i): positional numeral systems with a different base for each symbol

$$
\rightarrow \text { Observation: it just walks (see code) }
$$

```
class UniformCoder:
    def __init__(self, compressed=0):
        self.compressed = compressed
    def push(self, symbol, base): # encodes one symbol
        self.compressed = self.compressed * base + symbol
    def pop(self, base): # decodes one symbol
        symbol = self.compressed % base
        self.compressed //= base
        return symbol
```

coder $=$ UniformCoder ()
coder.push(3, base=10) \# uses alphabet \{0, 1, ..., 9\}
coder. push(6, base=10) \# uses alphabet \{0, 1, ..., 9\} ~
coder.push(12, base=15) \# uses alphabet \{0, 1, ..., 14\}
coder. push(5, base=15) \# uses alphabet \{0, 1, ..., 14\} ~
print (f'compressed: \{coder.compressed:b\}')
print(f"decoded: \{coder.pop(base=15)\}")
print (f"decoded: \{coder.pop(base=15)\}")
print(f"decoded: \{coder.pop(base=10)\}")
print(f"decoded: \{coder.pop(base=10)\}")

Limitation (ii): non-uniformly distributed symbols

- consider a single symbol $x_{i} \in \mathcal{F}_{i}^{\leftarrow \text { some finite alphabet }}$
- assume some (fixed) probabilistic made ($P\left(X_{i}\right)$

Step 1: approximate the probabilistic model P with fixed-point precision.
Probabilistic model $Q\left(x_{i}\right)$ with

$$
Q\left(x_{i}=x_{i}\right)=\frac{m\left(x_{i}\right)}{n} \quad \forall x_{i} \in \mathcal{H}_{i}
$$

Example: $\mathcal{X}_{:}=\{0,1,2\}$;
Assume 5 bit precision (toy example), i.e., $n=2^{5}=32$

x_{i}	0	1	2
$P\left(x_{i}=x_{i}\right)$	0.2	0.45	0.35
$Q\left(x_{i}=x_{i}\right)$ forovimitime approximation	$\frac{6}{32}=0.1875$	$\frac{15}{32}=0.46875$	$\frac{(115}{32}=0.34375$

(approximation imposes for increasing precision)

Step 2: interpret Q as a latent variable model
\rightarrow Observation: since $\sum_{x_{i} \in z_{i}} m_{i}\left(x_{i}\right)=n$, the $m_{i}\left(x_{i}\right)$ values define a partitioning of the range $\{0,1, \ldots, n-1\}$ into pairwise disjoint subranges $\mathbb{Z}, \subset\{0, \ldots, n-1\}$

Def. subrange : $\mathbb{Z}_{i}\left(x_{i}\right):=\left\{\sum_{x_{i}^{\prime}<x_{i}} m\left(x_{i}^{\prime}\right), \ldots,\left(\sum_{x_{i}^{\prime} \leqslant x_{i}} m\left(x_{i}^{\prime}\right)\right)-1\right\}$

Question: How would you draw a random sample x_{i} from the distribution $Q\left(x_{i}\right)$?
\rightarrow idea: - draw a uniformly distributed random number $z_{i} \in\{0, \ldots, n-1\}$

- then identify the unique $x_{i} \in \mathbb{Z}$; s.t. $z \in \mathbb{Z}_{i}\left(x_{i}\right)$
\rightarrow joint probability of $z_{i} \& x_{i}: Q\left(Z_{i}, X_{i}\right)=Q\left(Z_{i}\right) Q\left(X_{i} \mid Z_{i}\right)$

$$
\begin{aligned}
& \text { with } \cdot Q\left(z_{i}=z_{i}\right)=\frac{1}{n} \quad \forall z_{i} \in\{0, \ldots, n-1\} \\
& \cdot Q\left(x_{i}=x_{i} \mid z_{i}=z_{i}\right)= \begin{cases}1 & \text { if } z_{i} \in Z_{i}\left(\lambda_{i}\right) \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

\rightarrow thus, the marginal distribution of $X_{;}$is:

$$
Q\left(x_{i}=x_{i}\right)=\sum_{z_{i}=0}^{n-1} Q\left(z_{i}=z_{i}, x_{i}=x_{i}\right)=\frac{m\left(x_{i}\right)}{n} \quad \rightarrow \text { recovers } \circledast
$$

Step 3: since the latent z_{i} uniquely identify the symbols x_{i}, we can encode the sequence of z_{i} 's instead of the sequence of x;'s
encoder

$$
\text { message } x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

\forall i: pick some
(arbitrary) $z_{i} \in Z_{i}\left(x_{i}\right)$
decoder
decode with Uniform Coder: $z_{1}, z_{2}, \ldots, z_{k}$ then identify \forall i the unique x_{i} st. $z_{i} \in \mathbb{Z}\left(x_{i}\right)$

Problem: - resulting bitrate per symbol: $\log _{2} n$

- compare to information content symbol i (under approximate model Q):

$$
\begin{gathered}
-\log _{2} Q\left(x_{i}=x_{i}\right)=-\log _{2} \frac{m\left(x_{i}\right)}{n}=\log _{2} n-\log _{2} m\left(x_{i}\right) \\
\Rightarrow \text { overhead: }\left(\log _{2} n\right)-\left(\log _{2} n-\log _{2} m\left(x_{i}\right)\right)=\log _{2} m\left(x_{i}\right)=\underbrace{\log _{2}\left|z_{i}\left(x_{i}\right)\right|}_{\pi}
\end{gathered}
$$

information that's "hidden" in our arbitrary choice of $z_{i} \in Z_{i}\left(x_{i}\right)$

Idea: rather than choosing z_{i} arbitrarily from $Z_{i}\left(x_{i}\right)$, encode some "side information" into our choice of z_{i}

$$
\begin{aligned}
& \text { Consume some part of the } \\
& \text { already compressed data } \\
& \text { by decoding from it with } \\
& \text { our Uniform Coder \& alphabet } Z_{i}\left(x_{i}\right)
\end{aligned}
$$


```
precision = 4 # thus, n = 2^4 = 16
m1 = [7, 3, 6] # implies alphabet {0, 1, 2}
m2 = [4, 2, 3, 7] # implies alphabet {0, 1, 2, 3}
```

encoder $=$ SlowAnsCoder(precision)
encoder. push (2, mi)
encoder.push(1, m2)
encoder.push(0, mi)
encoder. push (2, mi)
compressed = encoder.get_compressed()
print (f'compressed: \{compressed:b\}')
decoder = SlowAnsCoder(precision, compressed)
print (f'decoded: \{decoder.pop(m1)\}')
print (f'decoded: \{decoder.pop(m1) \}')
print (f'decoded: \{decoder.pop(m2) \}')
print(f'decoded: \{decoder.pop(m1) \}')

Recap: what have we achieved so far?

Our goal is still to lift the three limitations of positional numeral systems:

- positional numeral systems are an optimal compression method for sequences of symbols if the symbols satisfy the following three requirements:
\checkmark (i) all symbols are from the same (finite) alphabet;
(ii) all symbols are uniformly distributed over this alphabet; and
(iii) all symbols are (therefore) statistically independent.

Limitation (iii): modeling correlations between symbols

(a) use an autoregressive model (as we did in Problem 3.2 with Huffman Coding)
\rightarrow worlds in principle but the "stack" semantics make it difficu (t in practree \rightarrow for actoregressine models, use range coding instead (Problem 6.3)
(b) use a latent variable model and generalize the Bits-Back trick
\rightarrow next lecture (tomorrow!) \& Problem Set 7

Computational efficiency of the algorithm we have so far:

```
class SlowAnsCoder:
    def __init__(self, precision, compressed=0):
        self.n = 2**precision
        self.compressed = compressed
    def push(self, symbol, m): # Encodes one symbol.
        z = self.compressed % m[symbol] + sum(m[0:symbol])
        self.compressed //= m[symbol]
        self.compressed = self.compressed * self.n + z
    def pop(self,m): # Decodes one symbol.
        z = self.compressed % self.n
        self.compressed //= self.n
        # Identify symbol and subtract sum(m[0:symbol]) from z:
        for symbol, m_symbol in enumerate(m):
            if z >= m_symbol:
                    z -= m_symbol
            else:
                    break # We found the symbol that satisfies z & 3i(symbol).
        self.compressed = self.compressed * m_symbol + z
        return symbol
    def get_compressed(self):
        return self.compressed
```

Note: these orange parts are just for demonstration purpose. In a production setup, you should do something more efficient here (e.g., a binary search or a lookup table); the "constriction" library that we'll use on the problem sets provides several efficient alternatives for these parts depending on the nature of your model.

Improving Computational Efficiency: Streaming ANS

Consider the task of multiplying a*b where a is a very large number (similar for division and modulo):
\longrightarrow general case: expensive
\rightarrow exception: if b is a power of 2, e.g., $b=n=2^{\text {precision }}$ then we just need to append "precision" zees \rightarrow can be done in $O(1)$ (anotred) time if we store " α "in a dipanic array (ala "vector")
\Rightarrow Strategy: allow arithmetic operations like $a * b, a / b$, or a mod b only if:

$$
\begin{aligned}
& \rightarrow \text { either } b \text { is a pau e er of } 2 \\
& \rightarrow \text { or if } a(\text { and } b) \text { is small }
\end{aligned}
$$

We'll split the (so far) compressed data into a "bulk" and a "head" part

Streaming ANS algorithm:

- Most encoding/decoding operations involve only on the "head" (\Rightarrow fast since head size is bounded).
- Only if "head" overflows (during encoding) or underflows (during decoding) do we transfer some bits between "bulk" and "head". Here, we always transfer an integer number of bits, so this is also fast.
- The encoder and the decoder must agree on the exact point in time where they transfer data between "bulk" and "head". To ensure this, a common approach is to keep the number of valid bits on "head" always between precision and 2^{*} precision. More formally, we uphold the following two invariants:
(i) head $<2^{2 \times p e c i s i o n ~} \quad$ (always)
(ii) head $\geqslant 22^{\text {precision }}$ unless bulk is empty

A violation of invariant (i) triggers a data transfer from "head" to "bulk" that restores both invariants. A violation of invariant (ii) triggers a data transfer from "bulk" to "head" that restores both invariants.

Complete implementation of streaming ANS in python:
(usage example on next page)

```
class AnsCoder:
    def __init__(self, precision, compressed=[]):
        self.precision = precision
        self.mask = (1 << precision) - 1 # (a string of precision one-bits)
        self.bulk = compressed.copy() # (We will mutate bulk below.)
        self.head = 0
        # Establish invariant (ii):
        while len(self.bulk) != 0 and (self.head >> precision) == 0:
            self.head = (self.head << precision) | self.bulk.pop()
    def push(self, symbol, m):
        # Check if encoding directly onto head would violate invariant (i):
        if (self.head >> self.precision) >= m[symbol]:
            # Transfer one word of compressed data from head to bulk:
            self.bulk.append(self.head & self.mask)
            self.head >>= self.precision
            # At this point, invariant (ii) is definitely violated,
            # but the operations below will restore it.
        z = self.head % m[symbol] + sum(m[0:symbol])
        self.head //= m[symbol]
        self.head = (self.head << self.precision) | z # (This is
        # equivalent to " self.head * n + z", just slightly faster.)
    def pop(self, m):
        z = self.head & self.mask
        self.head >>= self.precision
        for symbol, m_symbol in enumerate(m):
            if z >= m_symbol:
            z -= m_symbol
            else:
                break
    self.head = self.head * m_symbol + z
    # Restore invariant (ii) if it is violated:
    if (self.head >> self.precision) == 0 and len(self.bulk) != 0:
                # Transfer data back from bulk to head (" |" is bitwise or):
            self.head = (self.head << self.precision) | self.bulk.pop()
    return symbol
    def get_compressed(self):
        compressed = self.bulk.copy() # (We will mutate compressed below.)
        head = self.head
        # Chop head into precision-sized words and append to compressed:
        while head != 0:
            compressed.append(head & self.mask)
            head >>= self.precision
        return compressed
```


Usage example:

```
precision = 4
m1 = [7, 3, 6]
m2 = [4, 2, 3, 7]
encoder = AnsCoder(precision)
encoder.push(1, m1)
encoder.push(1, m2)
encoder.push(0, m1)
encoder push(2, m1)
compressed = encoder.get_compressed()
print(f'compressed: {[bin(word) for word in compressed]}')
decoder = AnsCoder(precision, compressed)
print(f"decoded: {decoder.pop(m1)}")
print(f"decoded: {decoder.pop(m1)}")
print(f"decoded: {decoder.pop(m2)}")
print(f"decoded: {decoder.pop(m1)}")
```

compressed: ['Ob100', 'Ob1011', 'Ob1']
decoded: 2
decoded: 0
decoded: 1
decoded: 1

Empirical Performance And Efficiency

- comparison of ANS, Range Coding, And Arithmetic Coding - results for ANS and Range Coding were obtained with a library called "constriction", with which you'll experiment in Problem Sets 6 and 7

Compression Performance:

[plots taken from Bamler, 2022 (arXiv:2201.01741)]

Runtime:

(Take these results with a grain of salt because the runtime depends on implementation details.)

precision / word_size / head_capacity:

+ 24/32 / 64 ("default" preset)
〔 $32 / 32 / 64$
$\times 16 / 16 / 32$
Ү $12 / 16 / 32$ ("small" preset)

Arithmetic Coding
(AC; using arcode crate)

Decoding with tabulated entropy models:
$\times 16 / 16 / 32$
〕 $12 / 16 / 32$ ("small" preset)

