
Recap from last lecture: Asymmetric Numeral Systems (ANS)

- stream code that operates as a stack
  (i.e., "last in first out")

- uses "bits-back" trick (see illustration)

Today: generalize bits-back trick to arbitrary latent variable models

- This will not only generalize the main trick that's used in ANS, it will also use ANS internally.

- We'll also see that an important method from probabilistic machine learning, variational inference,
   follows directly from the bits-back coding objective. We'll use variational inference in the next
   lecture to introduce an important class of deep probabilistic models, so-called variational autoencoders.

Lecture 7 (3 June 2022); lecturer: Robert Bamler
more course materials online at https://robamler.github.io/teaching/compress22/

Spoiler: Main Results (see Problem Set 7)

Today, we'll
- (re-)introduce latent variable models
- think about three differnent ways how we could use latent
  variable models for data compression, starting from a very
  simple and naive method and culminating in the so-called
  bits-back coding algorithm.

On the problem set, you will
- focus on a concrete toy example latent variable model;
- implement of all three compression methods with latent
  variable models that we'll discuss today;
- compare the performance of these methods, culminating
  in the plot on the right.

Reminder: Latent Variable Models

Example: Consider the following hypothetical news headlines:

"Parliament Votes on New Labor Bill."

"Labor Union Votes to Extend Strikes."

"Soccer Player Scores First Goal Since Joining New Team."

"Guest Team is Leading by One Goal."

Bits-Back Coding



Observation:

Possible Explanation:
- each headline corresponds to a some "topic"
- depending on the topic, certain words are more frequent 

Latent variable model:

- message (newspaper headline): sequence of words

- latent topic z is shared across these words 

Note: despite its simplicity, this kind of so-called "topic model" is actually very powerful and widely
           used in research and industry for unsupervised categorization of large amounts of texts (e.g.,
           websites, newspaper articles, patents, ...). If you're curious, look up "Latent Dirichlet Allocation"
           (LDA), first introduced by Pritchard et al. (2000) in the context of genetics, and later
           popularized in the natural language ML community by Blei & Ng (2003).

certain words tend to appear together ("labor" and "votes", "goal" and "team")

⇒ words are correlated:

recall: this kind of marginal distribution can indeed capture correlations between
symbols (here: words), as we showed in Problem 5.2 (d). 

Recall: we only want to encode the message x, not the latent variable.
              ⇒ marginal probability distribution of the message:
              

Problem: P(X) is a complicated probability distribution; we can't easily write it in an autoregressive way.
⇒ Not obvious how we can use P(X) for compression.



Data Compression With Latent Variable Models

Problem set (strongly recommended! feel free to work in teams):

implement & compare 3 compression methods for latent
variable models:

- Problem 7.2: naive method: ignore correlations
                          and treat words as independent

- Problem 7.4: bits-back coding

Thus, the bits-back coding algorithm, which we'll discuss below, has the same (net) bit rate as if
we were using the marginal distribution P(X) for compression, even though we won't directly use
this marginal distribution.

MAP Estimate Method

- Problem 7.3: "MAP estimate method": encode some
                           dummy z*, then encode each symbol X
                           using the likelihood P(X | Z=z*)

Idea: - find some dummy z*, then encode each symbol X  using the likelihood P(X | Z=z*);
          - use some (near) optimal stream code, like range coding or ANS. 

Question: which value of z* should we chose



Encoding scheme with MAP-estimate method:

1) find z* as described above
2) encode z* using the prior model P(Z) and each symbol x  using the likelihood model P(X  | Z=z*)

[if using a range coder, encode z* first and then the symbols x  ; if using ANS, encode first the
symbols x  and then z* so that the decoder can decode z* first]

Decoding scheme with MAP-estimate method:

1) decode z* using the prior model P(Z)
2) decode all symbols x  using the likelihood model P(X  | Z=z*)
3) throw away z*

Bit rate overhead of MAP-estimate method:

Understanding the overhead: recall our news headlines:

"Parliament Votes on New Labor Bill."

"Labor Union Votes to Extend Strikes."

"Soccer Player Scores First Goal Since Joining New Team."

"Guest Team is Leading by One Goal."

Now consider the following hypothetical headline:

"Parliament Votes on Aid for Community Sports Teams."

This uncertainty about the latent variable Z even when we know the message x is exactly what
is described by the posterior distribution P(Z | X=x). 



Bits-Back Coding
[Wallace 1990, Hinton & Camp 1993]
practical: BB-ANS [Townsend et al. 2019]
lossy: [Yang, RB, Mandt, 2020] 

Idea: "piggyback" some additional side information into the choice of z*

Typical setup:
- communicate multiple messages (e.g., multiple image pages or multiple frames of a video)
  over a single channel
- side information = any previously encoded data

MAP-estimated method (no bits-back coding): Bits-back coding:

Algorithm (Bits-Back Coding):

subroutine bb_encode(x, existing_compressed, P)

subroutine bb_decode(compressed, P):

Net bit rate of bits-back coding:



Variational Inference (Teaser)

- The above derivation that the net bit rate of bits back coding is the optimal bit rate only works if
   we use the posterior distribution P(Z | X=x) for decoding z in bb_encode.

- Since we cannot outperform the optimal bit rate (in expectation), using any other distribution Q(Z)
   instead of the posterior would lead to a higher bit rate.

- Problem: the true posterior is usually hard to calculate:

Idea: instead of the true posterior, use some parameterized candidate distribution Q (Z),
          and minimize expression      for the net bit rate over the parameters ϕ (where we replace
          the posterior in     by Q (Z)).

➞ This method is called "Variational Inference", and it is an important method in modern
     probabilistic machine learning, far beyond applications for data copmression.

➞ In the next lecture, we'll apply (a generalization of) Variational Inference to deep latent 
     variable models (i.e., latent variable models that are parameterized by deep neural networks).
     This will lead to the popular variational autoencoder (VAE) model architecture.

Note: Recall that we already used the bits-back trick inside the ANS algorithm itself (last lecture).
There, bits-back coding was a bit simpler because the prior was a uniform distribution and
the likelihood was deterministic. Can you identify the steps of the general bits-back algorithm
in the special example of ANS?

Hint: the yellow step in the encoder and decoder were not necessary for ANS. Can you
         explain why? How many bits would encoding x with the likelihood model P(X | Z=z)
         contribute when the likelihood is deterministic?


