
Lecture 8 (23 June 2022); lecturer: Robert Bamler
more course materials online at https://robamler.github.io/teaching/compress22/

Recap from last lecture: Bits-Back Coding With Latent Variable Model

Model: Bits-Back Algorithm (encoder):

Net Bit Rate:

Today: Variational Inference

Spoiler: Variational Autoencoders

→ popular class of so-called "deep generative models" (use deep neural networks to generate data)
→ idea: rather than building a probabilistic model over a complicated message space (e.g., the space
     of all HD images), design a mapping between the message space and a more abstract semantic
     representation space and build a probabilistic model over the semantic representation space.

→ comes from a completely different field of research, unrelated to data compression;

but:
→ crucial method in modern machine-learning based data compression;
→ the precise formalism of VI can be motivated most naturally by minimizing the net bit 
    rate of bits-back coding.

Variational Inference



Back to bits-back coding:

Problem: obtaining the true posterior is computationally impossible in all but very special models:

Idea 1: what if we simply don't use the posterior P(Z | X=x), but instead some other distribution Q(Z | X=x)?

Recall: if Q(Z | X=x) = P(Z | X=x), then the net bit rate is independent of z and optimal.

Idea 2: optimize the expected net bit rate over various Q(Z | X=x)



Question: what is the distribution of z in our modified bits-back algorithm?

For historic reasons, one typically talks about maximizing the negative expected net bit rate instead.
This is called the Evidence Lower BOund (ELBO):

Problem 8.1 (b):

Thus, the following three are equivalent:



1) Choosing a Variational Family

How Can We Maximize The ELBO?

This is called the "mean field approximation" due to an analogy to physics.

2) Performing the Maximization

Three methods:

→ "coordinate ascent variational inference (CAVI)": fastest optimization algorithm, but only
     possible in special models (mostly so-called "conditional conjugate" models; see references)

→ "reparameterization gradients": very simple in practice and relatively widely applicable, but
     not possible for all variational distributions Q (in particular, not for discrete Q)

→ "score function gradients" = "REINFORCE method": works also in some cases where
     reparameterization gradients don't work, but typically slower in practice unless additional tricks
     are used.


