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Motivating Example

S channel encoder−−−−−−−−−−−−−→
P(X |S)

X channel−−−−−−−−−−−−→
P(Y |X)

Y channel decoder−−−−−−−−−−−−−→
P(Ŝ |Y)

Ŝ∈ ∈ ∈ ∈

{0,1}k {0,1}n {0,1}n {0,1}k

▶ S is uniformly random distributed over {0,1}k and n ≥ k .
▶ The channel transmits each bit independently but it introduces random bit flips:

P(Y |X) =
nQ

i=1
P(Yi |Xi) with P(Yi =yi |Xi =xi) =

(
1 − f if yi = xi ;
f if yi ̸= xi .

(0≤ f ≤1)

1. Assume there’s no channel coding (i.e., n = k , P(X |S) = δX,S, P(Ŝ |Y) = δŜ,Y):

▶ How many bits are flipped in expectation? EP
�Pk

i=1(1 − δSi ,Ŝi
)
�
=

▶ What is the probability that no bits are flipped? P(Ŝ=S) =
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Motivating Example

S channel encoder−−−−−−−−−−−−−→
P(X |S)

X channel−−−−−−−−−−−−→
P(Y |X)

Y channel decoder−−−−−−−−−−−−−→
P(Ŝ |Y)

Ŝ∈ ∈ ∈ ∈
{0,1}k {0,1}n {0,1}n {0,1}k

▶ S is uniformly random distributed over {0,1}k and n ≥ k .

▶ P(Y |X) =
nQ

i=1
P(Yi |Xi) with P(Yi =yi |Xi =xi) =

(
1 − f if yi = xi

f if yi ̸= xi
(0≤ f ≤1)

2. Come up with a simple encoding/decoding scheme to transmit S more reliably.
▶ What is the ratio of transmitted bits k per channel invocations: k

n =

▶ What is the expected number of bit errors: EP
�Pk

i=1(1 − δSi ,Ŝi
)
�
=

▶ What is the probability of having no error: P(Ŝ=S) =
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(Noisy) Channel Coding Theorem

Claim: we can do a lot better than replicating each bit three times:

▶ For a memoryless channel P(Y |X) = Qn
i=1 P(Yi |Xi) (where Xi ∈ X and Yi ∈ Y

are not necessarily binary), let the channel capacity C be:

C := max
P(Xi)

IP(Xi ;Yi).

▶ Then: in the limit of long messages (i.e., large n) there exists a channel coding
scheme that satisfies both of the following:

▶ the ratio k
n can be made arbitrarily close to C; and

▶ the error probability P(Ŝ ̸=s |S=s) can be made arbitrarily small for all s ∈ {0,1}k .

▶ More formally: ∀ε > 0 and R < C, there exists an n0 ∈ N such that ∀n ≥ n0:
there exists a code with k ≥ Rn and P(Ŝ ̸=s |S=s) < ε for all s ∈ {0,1}k .
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Intuition: block error correction

▶ We only care whether the entire bit string S gets transmitted without error. Thus:
▶ make it as probable as possible that no bit is transmitted incorrectly;
▶ if one bit Si is transmitted incorrectly then we don’t care if the other bits are also incorrect.

▶ E.g., split S ∈ {0,1}k into blocks of 2 bits:

(S2i ,S2i+1) 3x replication shorter code
(0,0)
(0,1)
(1,0)
(1,1)
k/n

▶ The proof of the channel coding theorem scales up this idea to giant blocks.
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Prerequisits (1 of 2): Chebychev’s Inequality

▶ Let X be a nonnegative (discrete or continuous) scalar random variable with a
finite expectation EP[X ]. Then:

P(X ≥β) ≤ EP[X ]

β
∀β > 0.

▶ Proof:
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Prerequisits (2 of 2): Weak Law of Large Numbers

▶ Let X1, . . . ,Xn be independent random variables, all with the same expectation
value µ := EP[Xi ] and with the same (finite) variance σ2 := EP

�
(Xi − µ)2

�
< ∞.

▶ Denote the empirical mean of all Xi as ⟨Xi⟩i :=
1
n
Pn

i=1 Xi
(thus, ⟨Xi⟩i is itself a random variable).

▶ Then: P
���⟨Xi⟩i − µ

��≥β
�
≤ σ2

n β2 ∀β > 0.

▶ Proof:
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Apply Weak Law of Large Numbers to Information Content

Consider a data source P of messages X ≡ (X1, . . . ,Xn) ∈ Xn where all Xi are i.i.d.

Thus, the information content of a symbol Xi is a random variable: − logP(Xi).

▶ Its expectation is the entropy of a symbol: EP
�
− log2 P(Xi)

�
= HP[Xi ]

▶ Its empirical mean is: ⟨− log2 P(Xi)⟩i = −1
n
Pn

i=1 log2 P(Xi)
(i .i .d .)
= −1

n log2 P(X)

▶ Apply weak law of large numbers: for long messages (i.e., large n), large
deviations β of the empirical mean from the expectation value are improbable:

P
�����

− log2 P(X)
n

− HP[Xi ]

���� ≥ β

�
≤ σ2

n β2 ∀β > 0.

(where σ2 is the variance of − logP(Xi))
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What are “typical” messages?

Last slide: P
�����

− log2 P(X)
n

− HP[Xi ]

���� ≥ β

�
≤ O

�
1

n β2

�
∀β > 0.

▶ Thus, for “most” long random messages, the information content per symbol is
close to the entropy of a symbol.

▶ Define the typical set TP(Xi),n,β as the set of messages of length n whose
information content per symbol deviates from the entropy of a symbol by less
than some given threshold β:

TP(Xi),n,β :=

�
x ∈ Xn that satisfy:

����
− log2 P(X=x)

n
− HP[Xi ]

���� < β

�

▶ Thus: P
�
X ∈ TP(Xi),n,β

�
≥ 1 − σ2

n β2
n→∞−−−−→ 1 ∀β > 0
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Examples of Typical Sets

Consider sequences of binary symbols, X ∈ {0,1}n, with

(
P(Xi =1) = α

P(Xi =0) = 1 − α
.

▶ Entropy per symbol: HP[Xi ] = H2(α)

▶ Size of full message space:
��{0,1}n�� = 2n

▶ If α = 1
2 then all messages x ∈ {0,1}n have the same information content, and

thus all messages are typical: TP(Xi),n,β = {0,1}n ∀n, β > 0.
▶ But if α ̸= 1

2 then, for long messages, significantly (exponentially) fewer
messages are typical:

��TP(Xi),n,β
�� ≈ 2nH2(α) ≪ 2n

▶ fraction of typical messages:

��TP(Xi),n,β
��

��{0,1}n�� ≈
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Size of the Typical Set

TP(Xi),n,β :=

�
x ∈ Xn that satisfy:

����
− log2 P(X=x)

n
− HP[Xi ]

���� < β

�

▶ Claim:
��TP(Xi),n,β

�� < 2n(HP [Xi ]+β)

▶ Proof:
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