The (Noisy) Channel Coding Theorem

Robert Bamler • 7 July 2022

This lecture constitutes part 10 of the Course "Data Compression With and Without Deep Probabilistic Models" at University of Tübingen.
 More course materials (lecture notes, problem sets, solutions, and videos) are available at:
 https://robamler.github.io/teaching/compress22/

UNIVERSITAT
 TUBINGEN

Recall from very first lecture:

- so far: focus on source coding (blue)
- (only) today: channel coding (following closely MacKay, "Information Theory, Inference, and Learning Algorithms")
- next week: use "inverse channel coding" to derive theory of lossy compression

Robert Bamler • Course "Data Compression With and Without Deep Probabilistic Models" • 7 July 2022

UNIVERSITAT
 TUBINGEN

Motivating Example

- S is uniformly random distributed over $\{0,1\}^{k}$ and $n \geq k$.
- The channel transmits each bit independently but it introduces random bit flips: $P(\mathbf{Y} \mid \mathbf{X})=\prod_{i=1}^{n} P\left(Y_{i} \mid X_{i}\right) \quad$ with $\quad P\left(Y_{i}=y_{i} \mid X_{i}=x_{i}\right)=\left\{\begin{array}{ll}1-f & \text { if } y_{i}=x_{i} ; \\ f & \text { if } y_{i} \neq x_{i} .\end{array} \quad(0 \leq f \leq 1)\right.$

1. Assume there's no channel coding (i.e., $n=k, P(\mathbf{X} \mid \mathbf{S})=\delta_{\mathbf{X}, \mathbf{S}}, P(\hat{\mathbf{S}} \mid \mathbf{Y})=\delta_{\hat{\mathbf{S}}, \mathbf{Y}}$):

- How many bits are flipped in expectation? $\mathbb{E}_{P}\left[\sum_{i=1}^{k}\left(1-\delta_{S_{i}, \hat{S}_{i}}\right)\right]=k \mathbb{E}_{p}\left[1-\delta_{s_{i}, s_{j}}\right]=k f$

What is the probability that no bits are flipped? $P(\hat{\mathbf{S}}=\mathbf{S})=\mathbb{T}_{p}\left[\prod_{i=1}^{k} \delta_{S_{i}}, \hat{S}_{i}\right]=(1-f)^{k} \quad\left(\right.$ example: $\begin{array}{l}f=0.01 \\ k=10 \mathrm{k} \text { bit }\end{array}$

Motivating Example

$\underset{\pi}{\mathbf{S}} \xrightarrow[P(\mathbf{X} \mid \mathbf{S})]{\text { channel encoder }} \underset{\pi}{\mathbf{X}} \xrightarrow[P(\mathbf{Y} \mid \mathbf{X})]{\text { channel }} \underset{\pi}{\mathbf{Y}} \xrightarrow[P(\hat{\mathbf{S}} \mid \mathbf{Y})]{\text { channel decoder }} \hat{\pi}$
$\{0,1\}^{k}$
$\{0,1\}^{n}$
$\{0,1\}^{n}$
$\{0,1\}^{k}$

- S is uniformly random distributed over $\{0,1\}^{k}$ and $n \geq k$.
- $P(\mathbf{Y} \mid \mathbf{X})=\prod_{i=1}^{n} P\left(Y_{i} \mid X_{i}\right)$ with $\quad P\left(Y_{i}=y_{i} \mid X_{i}=x_{i}\right)=\left\{\begin{array}{ll}1-f & \text { if } y_{i}=x_{i} \\ f & \text { if } y_{i} \neq x_{i}\end{array} \quad(0 \leq f \leq 1)\right.$

Trousmint 3 aries
of ouch b. .,
receiver takes majority vote.
2. Come up with a simple encoding/decoding scheme to transmit \mathbf{S} more reliably.

- What is the ratio of transmitted bits k per channel invocations: $\frac{k}{n}=\frac{1}{3}$
- What is the expected number of bit errors: $\mathbb{E}_{P}\left[\sum_{i=1}^{k}\left(1-\delta_{S_{i} \hat{S}_{i}}\right)\right]=k\left(3(1-f) f^{2}+f^{3}\right) \approx k\left(3 f^{2}+\theta\left(f^{3}\right)\right)$
- What is the probability of having no error: $P(\hat{\mathbf{S}}=\mathbf{S}) \approx\left(1-3 f^{2}\right)^{k} \quad$ (same example as on last slide:

Robert Bamler • Course "Data Compression With and Without Deep Probabilistic Models" . 7 July 2022
univeritita
TUBINGEN
$f=0.01 ; k=10 \mathrm{~kb}, \mathrm{t}_{13}$
$\Rightarrow\left(1-3 f^{2}\right)^{k} \approx 0.05$ still really bud despit $3 x$ reduction in tronster rate)

(Noisy) Channel Coding Theorem

Claim: we can do a lot better than replicating each bit three times:

- For a memoryless channel $P(\mathbf{Y} \mid \mathbf{X})=\prod_{i=1}^{n} P\left(Y_{i} \mid X_{i}\right)$ (where $X_{i} \in \mathbb{X}$ and $Y_{i} \in \mathbb{Y}$ are not necessarily binary), let the channel capacity C be:

$$
C:=\max _{P\left(X_{i}\right)} I_{P}\left(X_{i} ; Y_{i}\right) . \quad \rightarrow \text { examples on problem set }
$$

- Then: in the limit of long messages (ie., large n) there exists a channel coding scheme that satisfies both of the following:
- the ratio $\frac{k}{n}$ can be made arbitrarily close to C; and
- the error probability $P(\hat{\mathbf{S}} \neq \mathbf{s} \mid \mathbf{S}=\mathbf{s})$ can be made arbitrarily small for all $\mathbf{s} \in\{0,1\}^{k}$.
- More formally: $\forall \varepsilon>0$ and $R<C$, there exists an $n_{0} \in \mathbb{N}$ such that $\forall n \geq n_{0}$: there exists a code with $k \geq R n$ and $P(\hat{\mathbf{S}} \neq \mathbf{s} \mid \mathbf{S}=\mathbf{s})<\varepsilon$ for all $\mathbf{s} \in\{0,1\}^{k}$.

Intuition: block error correction

- We only care whether the entire bit string \mathbf{S} gets transmitted without error. Thus:
- make it as probable as possible that no bit is transmitted incorrectly;
- if one bit S_{i} is transmitted incorrectly then we don't care if the other bits are also incorrect.
- E.g., split $\mathbf{S} \in\{0,1\}^{k}$ into blocks of 2 bits:

$\left(S_{2 i}, S_{2 i+1}\right)$	$3 x$ replication	shorter code
$(0,0)$	000000	00000
$(0,1)$	000111	00111
$(1,0)$	111000	11100
$(1,1)$	111111	11011
k / n	$1 / 3=2 / 6$	$2 / 5>2 / 6$

$$
\begin{aligned}
& \text { In both coles, day two cade words } \\
& \text { dither in at least } 3 \text { bits. } \\
& \Rightarrow \text { both coles can correct errors as long as } \\
& \text { at most one bit per block is courrpod. } \\
& \text { But the shouter cole achieves this property } \\
& \text { at higher ratio } \frac{k}{n}
\end{aligned}
$$

The proof of the channel coding theorem scales up this idea to giant blocks.

Prerequisits (1 of 2): Chebychev's Inequality

- Let X be a nonnegative (discrete or continuous) scalar random variable with a finite expectation $\mathbb{E}_{P}[X]$. Then:

$$
P(X \geq \beta) \leq \frac{\mathbb{E}_{P}[X]}{\beta} \quad \forall \beta>0
$$

- Proof:

$$
\begin{aligned}
& P(X \geqslant \beta)=\mathbb{E}_{p}\left[\mathbb{1}_{x \geqslant \beta}^{\ll}\right] \leqslant \mathbb{E}_{p}\left[\frac{x}{\beta} \mathbb{1}_{x \geqslant \beta}\right]=\frac{1}{\beta} \mathbb{E}_{p}[X \underbrace{x}_{x \geqslant \beta}] \leqslant \frac{1}{\beta} \mathbb{E}_{p}[X] \\
& \geqslant 1 \text { moral } \leqslant 1 \\
& \text { contributing times }
\end{aligned}
$$

Prerequisits (2 of 2): Weak Law of Large Numbers

- Let X_{1}, \ldots, X_{n} be independent random variables, all with the same expectation value $\mu:=\mathbb{E}_{P}\left[X_{i}\right]$ and with the same (finite) variance $\sigma^{2}:=\mathbb{E}_{P}\left[\left(X_{i}-\mu\right)^{2}\right]<\infty$.
- Denote the empirical mean of all X_{i} as $\left\langle X_{i}\right\rangle_{i}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ (thus, $\left\langle X_{i}\right\rangle_{i}$ is itself a random variable).
- Then: $P\left(\left|\left\langle X_{i}\right\rangle_{i}-\mu\right| \geq \beta\right) \leq \frac{\sigma^{2}}{n \beta^{2}} \quad \forall \beta>0$.
- Proof: $P\left(\left|\left\langle x_{i}\right\rangle_{i}-\mu\right| \geqslant \beta\right)=P\left(\left(\left\langle x_{i}\right\rangle-\mu\right)^{2} \geqslant \beta^{2}\right) \leqslant \frac{\mathbb{E}_{p}\left[\left(\left\langle x_{i}\right\rangle-\mu\right)^{2}\right]}{\beta} \stackrel{(*)}{=} \frac{\sigma^{2}}{n \beta}$ where $(k): \mathbb{E}_{p}\left[\left(\left\langle x_{i}\right\rangle_{i}-\mu\right)^{2}\right]=\mathbb{E}_{p}\left[\left(\frac{1}{n} \sum_{i=1}^{n} x_{i}-\mu\right)^{2}\right]=\frac{1}{n^{2}} \mathbb{E}_{p}\left[\left(\sum_{i=1}^{n}\left(x_{i}-\mu\right)\right)^{2}\right]$

Apply Weak Law of Large Numbers to Information Content

Consider a data source P of messages $\mathbf{X} \equiv\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{X}^{n}$ where all X_{i} are i.i.d.
Thus, the information content of a symbol X_{i} is a random variable: $-\log P\left(X_{i}\right)$.

- Its expectation is the entropy of a symbol: $\mathbb{E}_{P}\left[-\log _{2} P\left(X_{i}\right)\right]=H_{P}\left[X_{i}\right]$
- Its empirical mean is: $\left\langle-\log _{2} P\left(X_{i}\right)\right\rangle_{i}=-\frac{1}{n} \sum_{i=1}^{n} \log _{2} P\left(X_{i}\right) \stackrel{(\text { (i.i.d. })}{=}-\frac{1}{n} \log _{2} P(\mathbf{X})$
- Apply weak law of large numbers: for long messages (i.e., large n), large deviations β of the empirical mean from the expectation value are improbable:

$$
P\left(\left|\frac{-\log _{2} P(\mathbf{X})}{n}-H_{P}\left[X_{i}\right]\right| \geq \beta\right) \leq \frac{\sigma^{2}}{n \beta^{2}} \quad \forall \beta>0
$$

(where σ^{2} is the variance of $\left.-\log P\left(X_{i}\right)\right) \leftarrow$ (assume $\sigma^{2}<\infty$ as, egg., for

What are "typical" messages?

Last slide: $P\left(\left|\frac{-\log _{2} P(\mathbf{X})}{n}-H_{P}\left[X_{i}\right]\right| \geq \beta\right) \leq O\left(\frac{1}{n \beta^{2}}\right) \quad \forall \beta>0$.

- Thus, for "most" long random messages, the information content per symbol is close to the entropy of a symbol.
- Define the typical set $T_{P\left(X_{i}\right), n, \beta}$ as the set of messages of length n whose information content per symbol deviates from the entropy of a symbol by less than some given threshold β :

$$
T_{P\left(X_{i}\right), n, \beta}:=\left\{\mathbf{x} \in \mathbb{X}^{n} \quad \text { that satisfy: } \quad\left|\frac{-\log _{2} P(\mathbf{X}=\mathbf{x})}{n}-H_{P}\left[X_{i}\right]\right|<\beta\right\}
$$

- Thus: $P\left(\mathbf{X} \in T_{P\left(X_{i}\right), n, \beta}\right) \geq 1-\frac{\sigma^{2}}{n \beta^{2}} \xrightarrow{n \rightarrow \infty} 1 \quad \forall \beta>0$

unverifit
 TUBINGEN

Examples of Typical Sets

Consider sequences of binary symbols, $\mathbf{X} \in\{0,1\}^{n}$, with $\left\{\begin{array}{l}P\left(X_{i}=1\right)=\alpha \\ P\left(X_{i}=0\right)=1-\alpha\end{array} . \quad(0 \leqslant \alpha \leqslant 1)\right.$

- Entropy per symbol: $H_{P}\left[X_{i}\right]=H_{2}(\alpha)=-\alpha \log _{2} \alpha-(1-\alpha) \log _{2}(1-\alpha) \in[0,1]$
- Size of full message space: $\left|\{0,1\}^{n}\right|=2^{n}$
- If $\alpha=\frac{1}{2}$ then all messages $\mathbf{x} \in\{0,1\}^{n}$ have the same information content, and thus all messages are typical: $T_{P\left(X_{i}\right), n, \beta}=\{0,1\}^{n} \forall n, \beta>0$.
- But if $\alpha \neq \frac{1}{2}$ then, for long messages, significantly (exponentially) fewer messages are typical: $\left|T_{P\left(X_{i}, n, \beta\right.}\right| \approx 2^{n H_{2}(\alpha)} \ll 2^{n} \leftarrow$ (see next slide)
- fraction of typical messages: $\frac{\left|T_{P\left(x_{i}, n, n\right.}\right|}{\left|\{0,1\}^{n}\right|} \approx 2^{-n\left(1-H_{2}(\alpha)\right)} \xrightarrow{n \rightarrow \infty} 0 \quad$ (exponentially foist)

UNIVERSITAT
 TUBINGEN

Size of the Typical Set

$$
T_{P\left(X_{i}\right), n, \beta}:=\left\{\mathbf{x} \in \mathbb{X}^{n} \quad \text { that satisfy: } \quad\left|\frac{-\log _{2} P(\mathbf{X}=\mathbf{x})}{n}-H_{P}\left[X_{i}\right]\right|<\beta\right\}
$$

Claim: $\left|T_{P\left(X_{i}\right), n, \beta}\right|<2^{n\left(H_{P}\left[X_{i j}+\beta\right)\right.}$

- Proof:

$$
\begin{aligned}
\forall \underline{x} \in T_{P\left(x_{i}\right), n, \beta}:- & \frac{1}{n} \log _{2} P(\underline{X}=\underline{x})-H_{p}\left[x_{i}\right]<\beta \\
\Rightarrow & P(\underline{X}=\underline{x})>2^{-n}\left(H_{p}\left[x_{i}\right]+\beta\right) \\
\Rightarrow & \text { There can be at mos }+\frac{1}{2^{-n\left(H_{p}\left[x_{i}\right]+\beta\right)}=2^{n\left(H_{p}\left[x_{i}\right]+\beta\right)}} \\
& \quad \text { elements in } T_{P\left(x_{1}\right), n}, \beta .
\end{aligned}
$$

