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Motivating Example

S channel encoder−−−−−−−−−−−−−→
P(X |S)

X channel−−−−−−−−−−−−→
P(Y |X)

Y channel decoder−−−−−−−−−−−−−→
P(Ŝ |Y)

Ŝ∈ ∈ ∈ ∈

{0,1}k {0,1}n {0,1}n {0,1}k

▶ S is uniformly random distributed over {0,1}k and n ≥ k .
▶ The channel transmits each bit independently but it introduces random bit flips:

P(Y |X) =
nQ

i=1
P(Yi |Xi) with P(Yi =yi |Xi =xi) =

(
1 − f if yi = xi ;
f if yi ̸= xi .

(0≤ f ≤1)

1. Assume there’s no channel coding (i.e., n = k , P(X |S) = δX,S, P(Ŝ |Y) = δŜ,Y):

▶ How many bits are flipped in expectation? EP
�Pk

i=1(1 − δSi ,Ŝi
)
�
=

▶ What is the probability that no bits are flipped? P(Ŝ=S) =
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Motivating Example

S channel encoder−−−−−−−−−−−−−→
P(X |S)

X channel−−−−−−−−−−−−→
P(Y |X)

Y channel decoder−−−−−−−−−−−−−→
P(Ŝ |Y)

Ŝ∈ ∈ ∈ ∈
{0,1}k {0,1}n {0,1}n {0,1}k

▶ S is uniformly random distributed over {0,1}k and n ≥ k .

▶ P(Y |X) =
nQ

i=1
P(Yi |Xi) with P(Yi =yi |Xi =xi) =

(
1 − f if yi = xi

f if yi ̸= xi
(0≤ f ≤1)

2. Come up with a simple encoding/decoding scheme to transmit S more reliably.
▶ What is the ratio of transmitted bits k per channel invocations: k

n =

▶ What is the expected number of bit errors: EP
�Pk

i=1(1 − δSi ,Ŝi
)
�
=

▶ What is the probability of having no error: P(Ŝ=S) =
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(Noisy) Channel Coding Theorem

Claim: we can do a lot better than replicating each bit three times:

▶ For a memoryless channel P(Y |X) = Qn
i=1 P(Yi |Xi) (where Xi ∈ X and Yi ∈ Y

are not necessarily binary), let the channel capacity C be:

C := max
P(Xi)

IP(Xi ;Yi).

▶ Then: in the limit of long messages (i.e., large n) there exists a channel coding
scheme that satisfies both of the following:

▶ the ratio k
n can be made arbitrarily close to C; and

▶ the error probability P(Ŝ ̸=s |S=s) can be made arbitrarily small for all s ∈ {0,1}k .

▶ More formally: ∀ε > 0 and R < C, there exists an n0 ∈ N such that ∀n ≥ n0:
there exists a code with k ≥ Rn and P(Ŝ ̸=s |S=s) < ε for all s ∈ {0,1}k .
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Intuition: block error correction

▶ We only care whether the entire bit string S gets transmitted without error. Thus:
▶ make it as probable as possible that no bit is transmitted incorrectly;
▶ if one bit Si is transmitted incorrectly then we don’t care if the other bits are also incorrect.

▶ E.g., split S ∈ {0,1}k into blocks of 2 bits:

(S2i ,S2i+1) 3x replication shorter code
(0,0)
(0,1)
(1,0)
(1,1)
k/n

▶ The proof of the channel coding theorem scales up this idea to giant blocks.
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Prerequisits (1 of 2): Chebychev’s Inequality

▶ Let X be a nonnegative (discrete or continuous) scalar random variable with a
finite expectation EP[X ]. Then:

P(X ≥β) ≤ EP[X ]

β
∀β > 0.

▶ Proof:
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Prerequisits (2 of 2): Weak Law of Large Numbers

▶ Let X1, . . . ,Xn be independent random variables, all with the same expectation
value µ := EP[Xi ] and with the same (finite) variance σ2 := EP

�
(Xi − µ)2

�
< ∞.

▶ Denote the empirical mean of all Xi as ⟨Xi⟩i :=
1
n
Pn

i=1 Xi
(thus, ⟨Xi⟩i is itself a random variable).

▶ Then: P
���⟨Xi⟩i − µ

��≥β
�
≤ σ2

n β2 ∀β > 0.

▶ Proof:
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Apply Weak Law of Large Numbers to Information Content

Consider a data source P of messages X ≡ (X1, . . . ,Xn) ∈ Xn where all Xi are i.i.d.

Thus, the information content of a symbol Xi is a random variable: − logP(Xi).

▶ Its expectation is the entropy of a symbol: EP
�
− log2 P(Xi)

�
= HP[Xi ]

▶ Its empirical mean is: ⟨− log2 P(Xi)⟩i = −1
n
Pn

i=1 log2 P(Xi)
(i .i .d .)
= −1

n log2 P(X)

▶ Apply weak law of large numbers: for long messages (i.e., large n), large
deviations β of the empirical mean from the expectation value are improbable:

P
�����

− log2 P(X)
n

− HP[Xi ]

���� ≥ β

�
≤ σ2

n β2 ∀β > 0.

(where σ2 is the variance of − logP(Xi))
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What are “typical” messages?

Last slide: P
�����

− log2 P(X)
n

− HP[Xi ]

���� ≥ β

�
≤ O

�
1

n β2

�
∀β > 0.

▶ Thus, for “most” long random messages, the information content per symbol is
close to the entropy of a symbol.

▶ Define the typical set TP(Xi),n,β as the set of messages of length n whose
information content per symbol deviates from the entropy of a symbol by less
than some given threshold β:

TP(Xi),n,β :=

�
x ∈ Xn that satisfy:

����
− log2 P(X=x)

n
− HP[Xi ]

���� < β

�

▶ Thus: P
�
X ∈ TP(Xi),n,β

�
≥ 1 − σ2

n β2
n→∞−−−−→ 1 ∀β > 0

Robert Bamler · Course “Data Compression With and Without Deep Probabilistic Models” · 7 July 2022 | 9

Examples of Typical Sets

Consider sequences of binary symbols, X ∈ {0,1}n, with

(
P(Xi =1) = α

P(Xi =0) = 1 − α
.

▶ Entropy per symbol: HP[Xi ] = H2(α)

▶ Size of full message space:
��{0,1}n�� = 2n

▶ If α = 1
2 then all messages x ∈ {0,1}n have the same information content, and

thus all messages are typical: TP(Xi),n,β = {0,1}n ∀n, β > 0.
▶ But if α ̸= 1

2 then, for long messages, significantly (exponentially) fewer
messages are typical:

��TP(Xi),n,β
�� ≈ 2nH2(α) ≪ 2n

▶ fraction of typical messages:

��TP(Xi),n,β
��

��{0,1}n�� ≈
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Size of the Typical Set

TP(Xi),n,β :=

�
x ∈ Xn that satisfy:

����
− log2 P(X=x)

n
− HP[Xi ]

���� < β

�

▶ Claim:
��TP(Xi),n,β

�� < 2n(HP [Xi ]+β)

▶ Proof:
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Back to Channel Coding: Transmitting “Typical” Messages

S channel encoder−−−−−−−−−−−−−→
P(X |S)

X channel−−−−−−−−−−−−→
P(Y |X)

Y channel decoder−−−−−−−−−−−−−→
P(Ŝ |Y)

Ŝ∈ ∈ ∈ ∈
{0,1}k Xn Yn {0,1}k

▶ Draw a message x ∈ Xn from some input distribution P(X) =
Qn

i=1 P(Xi).
▶ Transmit x over the channel ⇒ receive y ∼ P(Y |X=x).
▶ Thus:

▶ x ∼ P(X) and therefore P(x ∈ TP(Xi),n,β)
n→∞−−−−→ 1 ∀β > 0

▶ y ∼ P(Y) and therefore P(y ∈ TP(Yi),n,β)
n→∞−−−−→ 1 ∀β > 0

▶ (x,y) ∼ P(X,Y) =
Qn

i=1 P(Xi)P(Yi |Xi) and thus P
�
(x,y) ∈ TP(Xi ,Yi),n,β

� n→∞−−−−→ 1 ∀β > 0

▶ We say that x and y are jointly typical: P
�
(x,y) ∈ JP(Xi ,Yi),n,β

� n→∞−−−−→ 1 ∀β > 0
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Understanding Joint Typicality

Compare the example on the last slide to a situation where x and y are drawn
independently from their respective marginal distributions, i.e.,

▶ x ∼ P(X);and

▶ y ∼ P(Y) where P(Y) =
P

x′∈Xn P(X=x′)P(Y=y |X=x′)

Question: What is the probability that x and y are jointly typical?

Answer: P
�
(x,y) ∈ JP(Xi ,Yi),n,β

�
=
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Insight: Randomly Designed Channel Codes Work Surprisingly Well

S ∈ {0,1}k channel encoder−−−−−−−−−−−→
P(X |S)

X ∈ Xn channel−−−−−−−−→
P(Y |X)

Y ∈ Yn channel decoder−−−−−−−−−−−→
P(Ŝ |Y)

Ŝ ∈ {0,1}k

For given n, k , β, P(Xi) and channel P(Yi |Xi), construct a random channel code C:
▶ For each s ∈ {0,1}k , draw a code word C(s) ∈ Xk from P(X).
▶ Define a channel encoder: P(X=x |S=s, C) := δx,C(s)

▶ Decoder: map y to ŝ if (C(ŝ),y) ∈ JP(Xi ,Yi),n,β for exactly one ŝ. Otherwise, fail.

Claim: In expectation over all random codes C that are constructed in this way, and
over all input strings s ∼ P(S) := Uniform

�
{0,1}k

�
, the error probability for long

messages goes to zero as long as k
n < IP(Xi ,Yi)− 3β:

EP(C)P(S)

�
P(Ŝ ̸=S |S, C)

� n→∞−−−−→ 0 if
k
n
< IP(Xi ,Yi)− 3β.
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Proof of EP(C)P(S)
�
P(Ŝ ̸=S |S, C)

� n→∞−−−−→ 0 if k
n < IP(Xi ,Yi)− 3β

2 possibilities for errors:

▶ (C(s),y) /∈ JP(Xi ,Yi),n,β:

▶ (C(s′),y) ∈ JP(Xi ,Yi),n,β for some s′ ̸= s:

Total error probability:
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Proof of the Noisy Channel Coding Theorem

Theorem (reminder): ∀ε > 0 and R < C, there exists an n0 ∈ N such that ∀n ≥ n0:
there exists a code with k ≥ Rn and P(Ŝ ̸=s |S=s) < ε for all s ∈ {0,1}k .

▶ Set P(Xi) := arg maxP(Xi) IP(Xi ;Yi). Thus, IP(X ;Y ) = C.

▶ Assume k
n < C − 3β. Thus, EP(C)P(S)

�
P(Ŝ ̸=S |S, C)

� n→∞−−−−→ 0.

▶ This means that ∀ε: ∃n0 such that EP(C)P(S)

�
P(Ŝ ̸=S |S, C)

�
< ε

2 ∀n > n0.

⇒ For all n > n0, there exists at least one code C with EP(S)

�
P(Ŝ ̸=S |S, C)

�
< ε

2.
⇒ Since P(S) is a uniform distribution over 2k bit strings, the 2k/2 = 2k−1 bit

strings s with lowest P(Ŝ ̸=s |S=s, C) must all satisfy P(Ŝ ̸=s |S=s) < ε.
⇒ Use their 2k−1 code words C(s) to define a code with ratio k−1

n (≈ k
n for n → ∞).

▶ We can make k
n and therefore R arbitrarily close to capacity C by letting β → 0.
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Summary

S channel encoder−−−−−−−−−−−−−→
P(X |S)

X channel−−−−−−−−−−−−→
P(Y |X)

Y channel decoder−−−−−−−−−−−−−→
P(Ŝ |Y)

Ŝ∈ ∈ ∈ ∈

{0,1}k {0,1}n {0,1}n {0,1}k

▶ Memoryless channel: P(Y|X) = Qn
i=1 P(Yi |Xi)

▶ Channel capacity: C := max
P(Xi)

IP(Xi ;Yi)

▶ Proved so far: error-free communication is possible as long as k
n < C.

▶ Problem 10.3 (e): prove that error-free communication is not possible if k
n > C.

(follows from data processing inequality: IP(S; Ŝ) ≤ IP(X;Y))
▶ But: communication with k

n > C is possible if we accept errors.
▶ How many errors do we have to accept for a given k

n > C?
Robert Bamler · Course “Data Compression With and Without Deep Probabilistic Models” · 7 July 2022 | 17



Poll

S channel encoder−−−−−−−−−−−−−→
P(X |S)

X channel−−−−−−−−−−−−→
P(Y |X)

Y channel decoder−−−−−−−−−−−−−→
P(Ŝ |Y)

Ŝ∈ ∈ ∈ ∈
{0,1}k Xn Yn {0,1}k

Assume you want to transmit k > Cn uniformly
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distributed random bits using n invocations of a channel
with capacity C. How many bit flips should you expect?

(a) about k − Cn;

(b) about (k − Cn)/2;

(c) fewer than (k − Cn)/2.
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Application of Channel Coding Theorem:

Theoretical bound for
lossy compression
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Theoretical Bound for Lossy Compression

Consider a lossy compression code:

message X source encoder−−−−−−−−−−−−→
P(S |X)

S source decoder−−−−−−−−−−−−−−−−→
P(v̂X |S)

reconstruction X̂∈

{0,1}∗

▶ Assume the data distribution P(X) and the mapping from X to its
reconstruction X̂ is given and we want to find a suitable encoder/decoder pair.

▶ Theorem: optimal EP
�
amortized bit rate

�
= IP(X; X̂).

▶ Below: prove that ∃ code with EP
�
amortized bit rate

�
arbitrarily close to IP(X; X̂)

▶ Problem 11.2: prove that ̸ ∃ code with EP
�
amortized bit rate

�
< IP(X; X̂)
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Proof of Theoretical Bound for Lossy Compression

message X source encoder−−−−−−−−−−−−→
P(S |X)

S ∈ {0,1}∗ source decoder−−−−−−−−−−−−−−−−→
P(v̂X |S)

reconstruction X̂

▶ Given: P(X) and P(X̂|X); we seek: source encoder P(S|X) and decoder P(X̂|S).
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Rate/Distortion Theorem

Recap: For given P(X) and P(X̂|X): optimal EP
�
amortized bit rate

�
= IP(X; X̂).

Corollary: (“rate/distortion theorem”)
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▶ consider a distortion metric d(X, X̂) between
messages and their reconstructions, and a
distortion threshold D ≥ 0.

▶ Then: optimal EP
�
amortized bit rate

�
of code

that satisfies EP[d(X, X̂)] ≤ D is:

R(D) := inf
P(X̂|X):EP [d(X,X̂)]≤D

IP(X; X̂).
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Outlook

▶ Problem Set 11:
▶ finish your implementation of a VAE-based compression method
▶ prove Source-channel separation theorem

▶ Next week: overview of recent research in machine-learning based data
compression
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