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Recall: Noisy Channel Coding Theorem

S channel encoder−−−−−−−−−−−−−→
P(X |S)

X channel−−−−−−−−−−−−→
P(Y |X)

Y channel decoder−−−−−−−−−−−−−→
P(Ŝ |Y)

Ŝ∈ ∈ ∈ ∈

{0,1}k {0,1}n {0,1}n {0,1}k

▶ Memoryless channel: P(Y|X) = Qn
i=1 P(Yi |Xi)

▶ Channel capacity: C := max
P(Xi)

IP(Xi ;Yi)

▶ Proved so far: error-free communication is possible as long as k
n < C.

▶ Problem 10.3 (e): prove that error-free communication is not possible if k
n > C.

(follows from data processing inequality: IP(S; Ŝ) ≤ IP(X;Y))
▶ But: communication with k

n > C is possible if we accept errors.
▶ How many errors do we have to accept for a given k

n > C?
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Poll

S channel encoder−−−−−−−−−−−−−→
P(X |S)

X channel−−−−−−−−−−−−→
P(Y |X)

Y channel decoder−−−−−−−−−−−−−→
P(Ŝ |Y)

Ŝ∈ ∈ ∈ ∈

{0,1}k Xn Yn {0,1}k

Assume you want to transmit k > Cn uniformly
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distributed random bits using n invocations of a channel
with capacity C. How many bit flips should you expect?

(a) about k − Cn;

(b) about (k − Cn)/2;

(c) fewer than (k − Cn)/2.
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Application of Channel Coding Theorem:

Theoretical bound for
lossy compression
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Theoretical Bound for Lossy Compression

Consider a lossy compression code:

message X source encoder−−−−−−−−−−−−→
P(S |X)

S source decoder−−−−−−−−−−−−−−−−→
P(v̂X |S)

reconstruction X̂∈

{0,1}∗

▶ Assume the data distribution P(X) and the mapping from X to its
reconstruction X̂ is given and we want to find a suitable encoder/decoder pair.

▶ Theorem: optimal EP
�
amortized bit rate

�
= IP(X; X̂).

▶ Below: prove that ∃ code with EP
�
amortized bit rate

�
arbitrarily close to IP(X; X̂)

▶ Problem 11.2: prove that ̸ ∃ code with EP
�
amortized bit rate

�
< IP(X; X̂)
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Proof of Theoretical Bound for Lossy Compression

message X source encoder−−−−−−−−−−−−→
P(S |X)

S ∈ {0,1}∗ source decoder−−−−−−−−−−−−−−−−→
P(X̂ |S)

reconstruction X̂

▶ Given: P(X) and P(X̂|X); we seek: source encoder P(S|X) and decoder P(X̂|S).
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Rate/Distortion Theorem

Recap: For given P(X) and P(X̂|X): optimal EP
�
amortized bit rate

�
= IP(X; X̂).

Corollary: (“rate/distortion theorem”)
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▶ consider a distortion metric d(X, X̂) between
messages and their reconstructions, and a
distortion threshold D ≥ 0.

▶ Then: optimal EP
�
amortized bit rate

�
of code

that satisfies EP[d(X, X̂)] ≤ D is:

R(D) := inf
P(X̂|X):EP [d(X,X̂)]≤D

IP(X; X̂).
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Example: Lossy Compression of Analog Messages

▶ Message X ∈ Rk , from normal-distributed data source: P(X) = N (0, σ2I)

▶ Distortion metric: mean squared error d(X, X̂) = 1
k ||X − X̂||22 = 1

k

kP
i=1

(Xi − X̂i)
2

▶ Goal: find (lower bound on) optimal rate R(D) = inf
P(X̂|X):EP [d(X,X̂)]≤D

IP(X; X̂)
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Source-Channel Separation Theorem

Practical communication pipelines include both source and channel coding:

X source encoder−−−−−−−−−→
P(S|X)

S channel encoder−−−−−−−−−−→
P(X|S)

X (memoryless) channel−−−−−−−−−−−−−−→
P(Y|X )=

Qn
i=1 P(Yi |Xi)

Y channel decoder−−−−−−−−−−→
P(Ŝ|Y)

Ŝ source decoder−−−−−−−−−→
P(X̂|Ŝ)

X̂

▶ Source coder: compress X to R(D) bits (in expectation)
▶ Channel coder: transmit these R(D) bits in nmin := R(D)/C channel invocations.

Question: can we get away with fewer than nmin channel invocations if we don’t
separate source coding from channel coding?

X encoder−−−−−−−−→
P(X|X)

X (memoryless) channel−−−−−−−−−−−−−−−−→
P(Y|X )=

Qn
i=1 P(Yi |Xi)

Y decoder−−−−−−−−→
P(X̂|Y)

X̂

▶ This is not possible (source-channel separation theorem); Proof: Problem 11.4
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Outlook:
Recent advances in machine-learning

based data compression
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Overview: Research in ML-based Data Compressoin

▶ Main focus of community so far: improve rate/distortion performance for images
and videos above classical codecs.

▶ Some work on medical data
▶ less focus on:

▶ computational efficiency
▶ real-time applications
▶ other data types
▶ strengths of ML-based methods (e.g., deliberate overfitting to specific kinds of videos, etc.)
▶ dangers (especially due to semantically meaningful distortions)
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Overview: Open Research Questions

▶ Connection between data compression & inference methods

▶ Quantization methods (e.g., learn good quantization grid, perform inference
directly over discrete representation space)

▶ Models that don’t require quantization (e.g., integer discrete flows)

▶ Dealing with distortions that change semantics of the data in Ml-based lossy
compression (crucial for applications in medical and security relevant areas)

▶ Effective model architectures for data compression (e.g., for video data)
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