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Recap: Huffman Coding

In the last tutorial, we introduced the Huffman coding algorithm. Huffman coding
takes as input a finite alphabet X and a probability distribution p : X → [0, 1] (with∑

x∈X p(x) = 1), and it generates as output the code book CHuff. : X→ {0, 1}∗ of a prefix
free (and thus uniquely decodable) symbol code.

On this problem set, we’ll first gain some intuition for the Huffman coding algorithm
by evaluating it manually for small alphabets (Problem 1.1). We’ll then implement
a working Huffman coder in Python (Problem 1.3). We’ll use this Huffman coder in
Problem Set 4 to implement our first fully functional machine-learning based compression
algorithm.

Problem 1.1: Huffman Coding I: Examples

Algorithm 1 on the next page summarizes the Huffman Coding algorithm in somewhat
informal language. Read the algorithm, then construct (with pen and paper) Huffman
codes for each one of the probabilistic models below. For each resulting Huffman code,
explicitly write out the code book (i.e., a table of CHuff(x) for each x ∈ X) and verify
that it is indeed a prefix code. Then calculate the expected code word length L :=∑

x∈X p(x)`(x), where `(x) is the length (in bits) of the code word CHuff(x).

(a) X = {‘a’, ‘b’, ‘c’, ‘d’} with p(‘a’) = 0.4, p(‘b’) = 0.3, p(‘c’) = 0.2, and p(‘d’) = 0.1;
you should obtain L = 1.9.

(b) X = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’} with p(‘a’) = 0.3, p(‘b’) = 0.28, p(‘c’) = 0.12, p(‘d’) = 0.1,
and p(‘e’) = 0.2; you should obtain L = 2.22.

(c) X = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’} with p(‘a’) = 0.05, p(‘b’) = 0.07, p(‘c’) = 0.12, p(‘d’) = 0.12,
and p(‘e’) = 0.64; here, you should encounter a tie, which you can break in three
different ways. Try out all three ways to break the tie and verify that the length
`(x) of a code word for some x ∈ X depends on how you break the tie (i.e., in case
of a tie, the code word lengths are not uniquely defined by the Huffman algorithm).
Then calculate the expected code word length L for each resulting code book and
verify that it is independent of how you break ties (you should obtain L = 1.72).
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Algorithm 1: An informal formulation of Huffman coding.

Input: finite alphabet X, probability distribution p : X→ [0, 1]
Output: code book CHuff : X→ {0, 1}∗ of an optimal prefix free symbol code

1 Create an undirected graph that contains one node for each symbol in X;
initially, the graph has no edges; each node x has an associated weight, which
is p(x);

2 Keep track of the “frontier”, i.e., the set of nodes that don’t yet have a parent
node; initially, the frontier contains all nodes;

3 while the graph is not yet connected to a single tree do
4 Identify the two nodes y and y′ in the frontier with lowest weights w and w′,

respectively; if there is a tie, break it arbitrarily;
5 Remove nodes y and y′ from the frontier;
6 Introduce a new node γ with weight w + w′ and add it to both the graph

and the frontier;
7 Introduce labeled edges between y and γ (with label “0”) and between y′

and γ (with label “1”).

8 Interpret the resulting tree as a trie of the code book CHuff: the code word
CHuff(x) for any symbol x ∈ X is the sequence of labels that one encounters as
one walks along the unique path from the root node (the last node that was
added) to the leaf node that corresponds to x.

Solution: You should obtain the Huffman trees shown below. You might get different
code words CHuff(x) depending on how you assign the labels “0” and “1” to edges, but
the code word lengths `(x) should be the same as in the following graphics.

�
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Algorithm 2: A formalized formulation of Huffman coding.

Input: finite alphabet X = {0, . . . , |X|−1}, probability distribution p : X→ [0, 1]
Output: code book CHuff : X→ {0, 1}∗ of an optimal prefix free symbol code

1 Initialize a “frontier set” F ← {(p(x), x) : x ∈ X};
2 Initialize a graph (V,E) whose vertices (aka nodes) are initialized as V ← F ,

and whose edge set E is initialized as the empty set: E ← ∅;
3 while |F | > 1 do
4 Let (w, y), (w′, y′) be the two smallest elements of F , by lexicographic order;
5 Remove (w, y) and (w′, y′) from F (but not from V );
6 Add the new element γ := (w + w′, |V |) to both F and V ;
7 Add labeled edges (γ, (w, y), label = 0) and (γ, (w′, y′), label = 1) to E;

8 At this point, the graph (V,E) is a tree, whose root is the only remaining node
in F . Interpret this tree as a trie of the code book CHuff: for all x ∈ X, the
code word CHuff(x) is obtained by identifying the unique leaf node (w, y) ∈ V
with y = x, and then walking along the unique path from the root node to
said leaf node, concatenating the labels along the edges of this path.

Problem 1.2: Binary Heap

Before we implement Huffman coding in Problem 1.3 below, we should refresh our mem-
ory of a useful abstract data type called binary heap (sometimes also called priority
heap, min-heap, or max-heap).

A binary heap is a collection of items from a totally ordered set. Here, totally ordered
means that we can compare any two items by size and we’ll always find that they are
either equal or that one is larger than the other (an example of a totally ordered set is the
set of all real numbers). A binary heap is initially empty and supports two operations
in O(log n) time (where n is the number of items on the heap):

� inserting an arbitrary item; and

� extracting the smallest (in case of a min-heap) item, which removes the smallest
item from the heap and returns it.

In Python, binary heaps are provided by the heapq module.

(a) Read the example code in Section “Problem 2.2 (a)” of the accompanying jupyter
notebook, verify that it runs, and make sure you understand it.

(b) Implement the body of the skeleton function heapsort in Section “Problem 2.2 (b)”
in the jupyter notebook; verify that your implementation is correct by running the
unit tests.

Solution: See accompanying jupyter notebook. �
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Problem 1.3: Huffman Coding II: Implementation

Algorithm 2 reformulates the Huffman coding algorithm from Algorithm 1 in a more for-
mal way. For simplicity, it assumes that the finite alphabet X is the set of integers from 0
to |X|−1, inclusively. This does not lead to any loss in generality since, if X is a different
finite set then we can always map bijectively between X and the set {0, . . . , |X| − 1},
e.g., via a hash map.

(a) Read Algorithm 2 and verify that it is equivalent to the more informal formulation
in Algorithm 1. You may find it instructive to manually execute Algorithm 2 with
pen and paper for one of the examples in Problem 1.1.

(b) The accompanying jupyter notebook guides you through the implementation of
Algorithm 2, using a representation of the Huffman tree that is optimized for
encoding. Read the instructions, fill in the few missing lines in the code, and verify
your implementation by executing the provided unit tests.

(c) The accompanying jupyter notebook also guides you through an implementation
that uses a representation of the Huffman tree that is optimized for decoding.
Complete and test this implementation as well.

Solution: See accompanying jupyter notebook. �
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