
Solutions to Problem Set 2 discussed:
6 May 2022

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tuebingen

Course materials available at https://robamler.github.io/teaching/compress22/

Problem 2.1: Kraft-McMillan Theorem

In the lecture, we discussed the Kraft-McMillan Theorem:

Theorem 1 (Kraft-McMillan). Let B ≥ 2 be an integer and let X be a finite or countably
infinite set (referred to as “the alphabet”). Then the following two statements are true:

(a) All B-ary uniquely decodable symbol codes C on X satisfy the Kraft inequality,∑
x∈X

1

B`C(x)
≤ 1 (1)

where `C(x) := |C(x)| is the length of the code word C(x).

(b) For all functions ` : X → {0, 1, 2, . . .} that satisfy the Kraft inequality (Eq. 1),
there exists a B-ary prefix-free symbol code (aka, a B-ary prefix code) C with code
word lengths `, i.e., |C(x)| = `(x) ∀x ∈ X.

We proved part (a) of the Kraft-McMillan theorem in the lecture but we left out the
last bit of the proof of part (b). Let’s fill this gap now. Consider Algorithm 1, which we
introduced in the lecture.

(a) Line 4 of Algorithm 1 claims that ξ ∈ [0, 1). Why is this the case every time the
algorithm arrives at this line?

Algorithm 1: Constructive proof of Kraft-McMillan theorem part (b).

Input: Base B ∈ {2, 3, . . .}, finite alphabet X,
function ` : X→ {0, 1, 2, . . .} that satisfies Eq. 1.

Output: Code book C : X→ {0, . . . , B − 1}∗ of a prefix code that
satisfies |C(x)| = `(x) ∀x ∈ X.

1 Initialize ξ ← 1;
2 for x ∈ X in order of nonincreasing `(x) do
3 Update ξ ← ξ −B−`(x);
4 Write out ξ ∈ [0, 1) in its B-ary expansion: ξ = (0.??? . . .)B;
5 Set the code word C(x) to the first `(x) bits following the “0.” in the above

B-ary expansion of ξ (pad with trailing zeros to length `(x) if necessary);

1

https://robamler.github.io/teaching/compress22/

Solution: The variable ξ is initialized as ξ ← 1 and then never increased during
the execution of the algorithm. When we come to line 4, ξ has been decreased by
a strictly positive amount (since B−`(x) > 0) at least once, thus ξ is strictly smaller
than 1. Further, since ` satisfies Eq. 1, the entire for loop decreases ξ by a total
of at most 1, and thus ξ never drops below zero. �

(b) Denote the value of ξ immediately after its update on Line 3 as ξx (where x is
the iteration variable of the for loop). Now consider two symbols x, x′ ∈ X with
x 6= x′ and, without loss of generality, ξx′ > ξx. Argue that ξx′ ≥ ξx + B−`(x).
Then argue that neither can C(x) be a prefix of C(x′) nor can C(x′) be a prefix
of C(x).

Solution: Since each step of the for-loop makes ξ smaller and since ξx′ > ξx,
the symbol x′ must come before the symbol x. Since the for loop iterates in order
of nonincreasing `(x), this means that `(x′) ≥ `(x). Therefore, the only way how
C(x′) could be a prefix of C(x) is if `(x) = `(x′) and C(x) = C(x′), in which case
C(x) is also a prefix of C(x′). Thus, we only have to prove that C(x) is not a
prefix of C(x′).

Each step of the algorithm reduces ξ by B−`(x). Thus, at the beginning of the
iteration for symbol x, the variable ξ had value ξx+B−`(x), and all ξx′ for symbols x′

that come before symbol x satisfy ξx′ ≥ ξx +B−`(x).

Now assume that C(x) (which has length `(x)) is a prefix of C(x′). This means
that the fractional parts of the B-ary expansions of ξx and of ξx′ agree on the first
`(x) digits. Thus, they are both in the interval

[
(0.C(x))B, (0.C(x))B + B−`(x)

)
and thus they differ by strictly less than B−`(x), which is a contradiction. �

(c) (Advanced:) Algorithm 1 is limited to a finite alphabet X because the for loop
would not terminate for an infinite X. Why does part (b) of the Kraft-McMillan
Theorem nevertheless hold for countably infinite alphabets too?

Solution: Prooving part (b) of the Kraft-McMillan Theorem doesn’t require
executing Algorithm 1 for the entire alphabet X. We only have to show that there
exists a prefix code C with the requested code word lengths, |C(x)| = `(x) for all
x ∈ X. Such a prefix code is well defined: for each x ∈ X, the code word C(x) is
given by executing Algorithm 1 but terminating it once we’ve found C(x). This
takes finite time for any given x ∈ X, so it is well defined. �

(d) More generally, why do we always insist that X must be countably infinite if it is
infinite? Argue why lossless compression on an uncountable alphabet is impossible.
You don’t need to think about Algorithm 1 to answer this question, just think
about what a lossless compression code is from a purely mathematical perspective.

Solution: A lossy compresion code (such as a uniquely decodable symbol code)
is an injective mapping from the message space to the space of finite-length bit
strings. The space of finite-length bit strings is clearly countable, i.e., there exists

2

an injective mapping from the finite length bit strings to the set of the natural
numbers (e.g., just prepend the bit string with a “1” bit and then interpret the
resulting sequence of symbols as a number in the positional numeral system of
base B). Thus, by chaining together the lossless compression code (which maps
injectively from the message space to the space of finite-length bit strings) with
the injective mapping from finite-length bit strings to natural numbers, we obtain
an injective mapping from the message space to the natural numbers. Existence
of such an injective mapping means that the message space is countable.

This argument may seem trivial but it has important consequences: while, strictly
speaking, non-countable message spaces don’t really exist in digital computing
anyway, a lot of data that we might want to compress (e.g, scientific measure-
ments, neural network weights, . . .) is really meant approximate real-valued data,
typically via floating point numbers. In such situations, theorems for lossless
compression—while technically still valid—aren’t typically very useful, and it is
more important to think about bounds on lossy compression, which we’ll discuss
later in this course. �

Problem 2.2: Shannon Coding

In Problem 1.1 on Problem Set 1 (formerly known as Problem 2.1 on Problem Set 2), we
constructed Huffman codes CHuff for three different probability distributions. For your
reference, the following table summarizes our results from that problem (you may have
obtained a different Huffman tree in the third example if you broke the tie differently).

x p(x) CHuff(x) CShannon(x) p(x) CHuff(x) CShannon(x) p(x) CHuff(x) CShannon(x)
‘a’ 0.4 ‘0’ ‘01’ 0.3 ‘00’ ‘10’ 0.05 ‘000’ ‘11111’
‘b’ 0.3 ‘10’ ‘10’ 0.28 ‘01’ ‘01’ 0.07 ‘001’ ‘1110’
‘c’ 0.2 ‘110’ ‘110’ 0.12 ‘100’ ‘1111’ 0.12 ‘010’ ‘1101’
‘d’ 0.1 ‘111’ ‘1111’ 0.1 ‘101’ ‘1110’ 0.12 ‘011’ ‘1100’
‘e’ – – – 0.2 ‘11’ ‘110’ 0.64 ‘1’ ‘0’

1.85 L=1.9 L=2.4 2.20 L=2.22 L=2.64 1.63 L=1.72 2.13

(a) Calculate the entropy H2[p] of each of the three probability distributions p in the
above table. Then verify explicitly for these three examples that

H2[p] ≤ LHuff < H2[p] + 1 (2)

where LHuff is the expected code word length of CHuff, which is given in the last
line of the above table (you already calculated this on the last problem set.

Solution: See last entries in the three columns labeled p(x) in the above table.
�

3

(b) For each of the three probability distributions p, construct the Shannon code
CShannon by applying Algorithm 1 to the code word lengths `(x) = d− log2 p(x)e
∀x ∈ X, where d·e denotes rounding up to the nearest integer (you may want to use
a simple Python one-liner to calculate all `(x) in one go). Calculate the expected
code word length LShannon for each example and verify that

H2[p] ≤ LHuff ≤ LShannon < H2[p] + 1. (3)

Solution: See filled-in entries in above table. Note that you might obtain slightly
different Shannon codes depending on the order in which you iterate over symbols
of equal code word lengths. But your Shannon codes should all be prefix free and
you should get the same code word lengths. �

(c) Come up with some probability distribution p with p(x) > 0 ∀x ∈ X with |X| = 5
for which H2[p] = LHuff = LShannon. What property does p have to satisfy?

Solution: To solve this problem, we don’t have to think about Huffman coding
at all. It suffices to find a probability distribution p where LShannon = H2[p]. Since
we know that H2[p] ≤ LHuff ≤ LShannon for all probability distributions p, having
LShannon = H2[p] implies also LHuff = H2[p].

The Shannon code for a probability distribution p has code words with lengths
`Shannon(x) = d− logB p(x)e. Thus, LShannon = H2[p] means Ep

[
d− logB p(x)e

]
=

Ep[− logB p(x)]. Since d− logB p(x)e ≥ − logB p(x) for all x, the two expectations
are equal if and only if the information content, − logB p(x), of every symbol x is an
integer (so that rounding it up is a no-op). In other words, all symbol probabilities
p(x) must be negative integer powers of B.

For example, we can start from the code word lengths of CHuff in the second
example above (`(‘a’) = 2, `(‘b’) = 2, `(‘c’) = 3, `(‘d’) = 3, and `(‘e’) = 2). Then,
we set p(x) = 2−`(x) for all x, i.e., p(‘a’) = 1

4
, p(‘b’) = 1

4
, p(‘c’) = 1

8
, p(‘d’) = 1

8
,

and p(‘e’) = 1
4
. These probabilities do indeed add up to one, as they should for

a properly normalized probability distribution, and we have (by construction),
d− log p(x)e = − log p(x) for all x, and thus LShannon = H2[p]. �

Problem 2.3: Entropy and Information Content

In the lecture, we defined the information content to base B of a symbol x under a
probabilistic model p as

information content := − logB p(x). (4)

Further, we defined the entropy HB[p] as the expected information content,

HB[p] := Ep[− logB p(x)] = −
∑
x∈X

p(x) logB p(x) (5)

4

(a) In the literature, the subscript B is often dropped. Depending on context, infor-
mation contents and entropies are understood to be either to base 2 (mostly in
the compression literature) or to the natural base e (in mathematics, statistics, or
machine learning literature, and also often when you implement stuff in real code).
How do entropies and information contents to base B = 2 and to base B = e relate
to each other?

Solution: Since logB α = lnα
lnB

for all B,α > 0 (where ln denotes the natural
logarithm to base e), we have

− log2 p(x) =
− ln p(x)

ln 2
; and H2[p] =

He[p]

ln 2
(6)

where ln 2 ≈ 0.69 (or 1
ln 2
≈ 1.44). �

(b) (Additivity of information contents and entropies of statistically independent ran-
dom variables:) Consider two symbols x1 ∈ X1 and x2 ∈ X2 from alphabets X1

and X2, respectively. Assume that x1 and x2 are statistically independent, i.e., that
the probability distribution p̃ : (X1×X2)→ [0, 1] of the tuple (x1, x2) is a product
of two probability distributions,

p̃
(
(x1, x2)

)
= p1(x1) p2(x2) ∀x1 ∈ X1, x2 ∈ X2 (7)

where p1 : X1 → [0, 1] and p2 : X2 → [0, 1] are probability distributions on X1

and X2, respectively (more on statistical independence in the next lecture). Show
that, in this case, information contents and entropies are additive, i.e., in particu-
lar,

HB[p̃] = HB[p1] +HB[p2] ∀B > 0. (8)

Solution: Additivity of information contents follows directly from Eq. 7 and the
property of the logarithm, logB(αβ) = logB α + logB β. For the entropy, we find:

HB[p̃] = −
∑

(x1,x2)∈X2

p̃
(
(x1, x2)

)
logB p̃

(
(x1, x2)

)
= −

∑
x1∈X

∑
x2∈X

p1(x1) p2(x2)
[
logB p1(x1) + logB p2(x2)

]
= −

(∑
x2∈X

p2(x2)
)∑
x1∈X

p1(x1) logB p1(x1)

−
(∑
x1∈X

p1(x1)
)∑
x2∈X

p2(x2) logB p2(x2)

= −
∑
x1∈X

p1(x1) logB p1(x1)−
∑
x2∈X

p2(x2) logB p2(x2)

= HB[p1] +HB[p2]

�

5

Problem 2.4: Block Codes and Source Coding Theorem

In the lecture, we showed that the expected code word length LC of a uniquely decodable
symbol code C is lower bounded by the entropy HB[p] of the symbols. We further showed
that this lower bound is nontrivial: for any probability distribution p of symbols, there
exists a symbol code (the so-called Shannon Code CShannon) that is prefix-free (and
therefore uniquely decodable) and for which LCShannon

comes within less than one bit
of overhead (per symbol) of this lower bound. Thus, the optimal uniquely decodable
symbol code Copt (i.e., the one with lowest expected code word length) satisfies

HB[p] ≤ Lopt < HB[p] + 1. (9)

So far, Eq. 9 is limited to symbol codes, i.e., to codes for which the encoding C∗(x)
of a sequence x = (xi)

k
i=1 of symbols xi is given by simple concatenation of individual

code words C(xi). In this problem, you will analyze how Eq. 9 changes if we generalize
it beyond symbol codes.

We introduce the concept of a block code: Let m ∈ {2, 3, . . .} and assume, for sim-
plicity, that you only care about messages x ∈ Xk whose length k, is a multiple of m,
i.e., k = nm for some integer n. You can then group the symbols in x into n blocks of
m consecutive symbols each, and you can construct a symbol code for these blocks.

For example, a message x = (x1, x2, x3, x4, x5, x6) of length k = 6 can be reinterpreted
as a message of n = 2 blocks of size m = 3 each: x̃ =

(
(x1, x2, x3), (x4, x5, x6)

)
. Each

block is an element of the product alphabet Xm. One can now construct a code book
for blocks, C̃(m) : Xm → {0, . . . , B − 1}∗. In particular, we will consider an optimal

(uniquely decodable) code C̃
(m)
opt : Xm → {0, . . . , B − 1}∗ on the product alphabet Xm

with respect to the product probability distribution p̃
(
(x1, . . . , xm)

)
:=
∏m

i=1 p(xi).

(a) Use Eqs. 8-9 to derive a lower and an upper bound for the expected length of the

encoding per original symbol (from X) for C̃
(m)
opt . You should find that the lower

bound does not change compared to Eq. 9, but the upper bound shrinks, i.e., the
range of possible values narrows.

Solution: Let L
(m)
opt be the expected code word length of C̃

(m)
opt . Since C̃

(m)
opt is an

optimal code on the product alphabet Xm with probability distribution p̃, Eq. 9
applies and we have:

HB[p̃] ≤ L
(m)
opt < HB[p̃] + 1. (10)

Using Eq. 8 for the factorized probability distribution p̃, we further find HB[p̃] =
mHB[p] (where p is the probability distribution for each individual symbol from X).

Thus, the expected number of bits per original symbol from X of the code C̃
(m)
opt ,

i.e., Lopt

m
, satisfies:

HB[p] ≤ Lopt

m
< HB[p] +

1

m
. (11)

6

Thus, the fundamental lower bound does not change compared to Eq. 9, but the
upper bound on the overhead shrinks from one bit per symbol to 1

m
bits per symbol.

�

(b) When we set m = k then the entire message is considered as a single block, and

C̃
(m)
opt is really the optimal code in general (not just the optimal block code) on the

message space Xk. What can you say about C̃
(m)
opt with m = k in the (in practice

highly relevant) limit of large k? Think about

(i) its overhead over the theoretical lower bound HB[p] for the expected number
of bits per original symbol xi ∈ X; and

(ii) the run-time complexity as a function of m for the process of constructing

C
(m)
opt , e.g., by Huffman coding.

Solution: For long messages, m = k � 1, the upper bound of 1
k

bits per
symbol on the compression overhead becomes negligibly small. Thus, for long
messages, (i) there exists a lossless compression code whose expected bit rate per
(original) symbol is essentially the entropy HB[p] (up to a very small overhead).
However, (ii) constructing this optimal code with, e.g., Huffman coding would
require exponential runtime O(|Xk|) = O(|X|k), which is completely infeasible for
even moderately large message lengths k. This exponential run time is necessary
because the Huffman algorithm constructs a tree with O(|Xk|) nodes, and there’s
no obvious way how to obtain the Huffman code for only a single message x ∈ Xk

of interest without constructing the entire tree for all possible messages in Xk.

If we used Shannon coding instead of Huffman coding, then the Shannon code
C

(k)
Shannon on blocks of size m = k would strictly speaking no longer be an optimal

code, but its overhead per symbol would still be negligible (i.e., less than 1
k
).

The advantage of the Shannon algorithm is that one doesn’t have to construct
the whole code book for C

(k)
Shannon explicitly; instead, when encoding a message

x ∈ Xk, it suffices to construct only the encoding C
(k)
Shannon(x) of this particular

message x. A variant of Shannon coding, called Arithmetic Coding, can encode a
single message in linear time O(k). We will discuss Arithmetic Coding (as well as
other so-called stream codes) later in the course. �

7

	Kraft-McMillan Theorem
	Shannon Coding
	Entropy and Information Content
	Block Codes and Source Coding Theorem

