
Problem Set 2 published: 28 April 2022
discussion: 6 May 2022

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tuebingen

Course materials available at https://robamler.github.io/teaching/compress22/

Problem 2.1: Kraft-McMillan Theorem

In the lecture, we discussed the Kraft-McMillan Theorem:

Theorem 1 (Kraft-McMillan). Let B ≥ 2 be an integer and let X be a finite or countably
infinite set (referred to as “the alphabet”). Then the following two statements are true:

(a) All B-ary uniquely decodable symbol codes C on X satisfy the Kraft inequality,∑
x∈X

1

B`C(x)
≤ 1 (1)

where `C(x) := |C(x)| is the length of the code word C(x).

(b) For all functions ` : X → {0, 1, 2, . . .} that satisfy the Kraft inequality (Eq. 1),
there exists a B-ary prefix-free symbol code (aka, a B-ary prefix code) C with code
word lengths `, i.e., |C(x)| = `(x) ∀x ∈ X.

We proved part (a) of the Kraft-McMillan theorem in the lecture but we left out the
last bit of the proof of part (b). Let’s fill this gap now. Consider Algorithm 1, which we
introduced in the lecture.

(a) Line 4 of Algorithm 1 claims that ξ ∈ [0, 1). Why is this the case every time the
algorithm arrives at this line?

Algorithm 1: Constructive proof of Kraft-McMillan theorem part (b).

Input: Base B ∈ {2, 3, . . .}, finite alphabet X,
function ` : X→ {0, 1, 2, . . .} that satisfies Eq. 1.

Output: Code book C : X→ {0, . . . , B − 1}∗ of a prefix code that
satisfies |C(x)| = `(x) ∀x ∈ X.

1 Initialize ξ ← 1;
2 for x ∈ X in order of nonincreasing `(x) do
3 Update ξ ← ξ −B−`(x);
4 Write out ξ ∈ [0, 1) in its B-ary expansion: ξ = (0.??? . . .)B;
5 Set the code word C(x) to the first `(x) bits following the “0.” in the above

B-ary expansion of ξ (pad with trailing zeros to length `(x) if necessary);

1

https://robamler.github.io/teaching/compress22/

(b) Denote the value of ξ immediately after its update on Line 3 as ξx (where x is
the iteration variable of the for loop). Now consider two symbols x, x′ ∈ X with
x 6= x′ and, without loss of generality, ξx′ > ξx. Argue that ξx′ ≥ ξx +B−`(x). Then
argue that neither can C(x) be a prefix of C(x′) nor can C(x′) be a prefix of C(x).

(c) (Advanced:) Algorithm 1 is limited to a finite alphabet X because the for loop
would not terminate for an infinite X. Why does part (b) of the Kraft-McMillan
Theorem nevertheless hold for countably infinite alphabets too?

(d) More generally, why do we always insist that X must be countably infinite if it is
infinite? Argue why lossless compression on an uncountable alphabet is impossible.
You don’t need to think about Algorithm 1 to answer this question, just think
about what a lossless compression code is from a purely mathematical perspective.

Problem 2.2: Shannon Coding

In Problem 1.1 on Problem Set 1 (formerly known as Problem 2.1 on Problem Set 2), we
constructed Huffman codes CHuff for three different probability distributions. For your
reference, the following table summarizes our results from that problem (you may have
obtained a different Huffman tree in the third example if you broke the tie differently).

x p(x) CHuff(x) CShannon(x) p(x) CHuff(x) CShannon(x) p(x) CHuff(x) CShannon(x)
‘a’ 0.4 ‘0’ 0.3 ‘00’ 0.05 ‘000’
‘b’ 0.3 ‘10’ 0.28 ‘01’ 0.07 ‘001’
‘c’ 0.2 ‘110’ 0.12 ‘100’ 0.12 ‘010’
‘d’ 0.1 ‘111’ 0.1 ‘101’ 0.12 ‘011’
‘e’ – – – 0.2 ‘11’ 0.64 ‘1’

L=1.9 L=2.22 L=1.72

(a) Calculate the entropy H2[p] of each of the three probability distributions p in the
above table. Then verify explicitly for these three examples that

H2[p] ≤ LHuff < H2[p] + 1 (2)

where LHuff is the expected code word length of CHuff, which is given in the last
line of the above table (you already calculated this on the last problem set.

(b) For each of the three probability distributions p, construct the Shannon code
CShannon by applying Algorithm 1 to the code word lengths `(x) = d− log2 p(x)e
∀x ∈ X, where d·e denotes rounding up to the nearest integer (you may want to use
a simple Python one-liner to calculate all `(x) in one go). Calculate the expected
code word length LShannon for each example and verify that

H2[p] ≤ LHuff ≤ LShannon < H2[p] + 1. (3)

(c) Come up with some probability distribution p with p(x) > 0 ∀x ∈ X with |X| = 5
for which H2[p] = LHuff = LShannon. What property does p have to satisfy?

2

Problem 2.3: Entropy and Information Content

In the lecture, we defined the information content to base B of a symbol x under a
probabilistic model p as

information content := − logB p(x). (4)

Further, we defined the entropy HB[p] as the expected information content,

HB[p] := Ep[− logB p(x)] = −
∑
x∈X

p(x) logB p(x) (5)

(a) In the literature, the subscript B is often dropped. Depending on context, infor-
mation contents and entropies are understood to be either to base 2 (mostly in
the compression literature) or to the natural base e (in mathematics, statistics, or
machine learning literature, and also often when you implement stuff in real code).
How do entropies and information contents to base B = 2 and to base B = e relate
to each other?

(b) (Additivity of information contents and entropies of statistically independent ran-
dom variables:) Consider two symbols x1 ∈ X1 and x2 ∈ X2 from alphabets X1

and X2, respectively. Assume that x1 and x2 are statistically independent, i.e., that
the probability distribution p̃ : (X1×X2)→ [0, 1] of the tuple (x1, x2) is a product
of two probability distributions,

p̃
(
(x1, x2)

)
= p1(x1) p2(x2) ∀x1 ∈ X1, x2 ∈ X2 (6)

where p1 : X1 → [0, 1] and p2 : X2 → [0, 1] are probability distributions on X1

and X2, respectively (more on statistical independence in the next lecture). Show
that, in this case, information contents and entropies are additive, i.e., in particu-
lar,

HB[p̃] = HB[p1] +HB[p2] ∀B > 0. (7)

3

Problem 2.4: Block Codes and Source Coding Theorem

In the lecture, we showed that the expected code word length LC of a uniquely decodable
symbol code C is lower bounded by the entropy HB[p] of the symbols. We further showed
that this lower bound is nontrivial: for any probability distribution p of symbols, there
exists a symbol code (the so-called Shannon Code CShannon) that is prefix-free (and
therefore uniquely decodable) and for which LCShannon

comes within less than one bit
of overhead (per symbol) of this lower bound. Thus, the optimal uniquely decodable
symbol code Copt (i.e., the one with lowest expected code word length) satisfies

HB[p] ≤ Lopt < HB[p] + 1. (8)

So far, Eq. 8 is limited to symbol codes, i.e., to codes for which the encoding C∗(x)
of a sequence x = (xi)

k
i=1 of symbols xi is given by simple concatenation of individual

code words C(xi). In this problem, you will analyze how Eq. 8 changes if we generalize
it beyond symbol codes.

We introduce the concept of a block code: Let m ∈ {2, 3, . . .} and assume, for sim-
plicity, that you only care about messages x ∈ Xk whose length k, is a multiple of m,
i.e., k = nm for some integer n. You can then group the symbols in x into n blocks of
m consecutive symbols each, and you can construct a symbol code for these blocks.

For example, a message x = (x1, x2, x3, x4, x5, x6) of length k = 6 can be reinterpreted
as a message of n = 2 blocks of size m = 3 each: x̃ =

(
(x1, x2, x3), (x4, x5, x6)

)
. Each

block is an element of the product alphabet Xm. One can now construct a code book
for blocks, C̃(m) : Xm → {0, . . . , B − 1}∗. In particular, we will consider an optimal

(uniquely decodable) code C̃
(m)
opt : Xm → {0, . . . , B − 1}∗ on the product alphabet Xm

with respect to the product probability distribution p̃
(
(x1, . . . , xm)

)
:=
∏m

i=1 p(xi).

(a) Use Eqs. 7-8 to derive a lower and an upper bound for the expected length of the

encoding per original symbol (from X) for C̃
(m)
opt . You should find that the lower

bound does not change compared to Eq. 8, but the upper bound shrinks, i.e., the
range of possible values narrows.

(b) When we set m = k then the entire message is considered as a single block, and

C̃
(m)
opt is really the optimal code in general (not just the optimal block code) on the

message space Xk. What can you say about C̃
(m)
opt with m = k in the (in practice

highly relevant) limit of large k? Think about

(i) its overhead over the theoretical lower bound HB[p] for the expected number
of bits per original symbol xi ∈ X; and

(ii) the run-time complexity as a function of m for the process of constructing

C
(m)
opt , e.g., by Huffman coding.

4

	Kraft-McMillan Theorem
	Shannon Coding
	Entropy and Information Content
	Block Codes and Source Coding Theorem

