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Problem 3.1: Kullback-Leibler Divergence

In the lecture, we introduced two probability distributions, pdata and pmodel. Here,

� pdata is the true distribution of the data source, which we typically don’t know,
but we may have a data set of empirical samples from it (e.g., a data set of
uncompressed images if we’re concerned with image compression); and

� pmodel is an approximation of pdata that we use to construct our lossless compres-
sion code; for now, we assume that we can explicitly evaluate pmodel(x) for any
hypothetical message x.

We showed that, if a lossless compression code C is optimal with respect to pmodel then
its expected bit rate on data from pdata is given by the cross entropy H(pdata, pmodel),

Ex∼pdata

[
RC(x)

]
= H(pdata, pmodel) + ε ≡ −Ex∼pdata

[
log2 pmodel(x)

]
+ ε. (1)

Here, ε is a tiny overhead that is irrelevant for practical purposes (assuming long mes-
sages x), the bit rate RC(x) denotes the total length (in bits) of the compressed represen-
tation of a message x, and the notation Ex∼pdata [RC(x)] :=

∑
x pdata(x)RC(x) denotes the

(formal) expectation value of RC(x) under the probability distribution pdata (in practice,
we can’t evaluate Ex∼pdata [RC(x)] because we don’t know pdata(x), but we can estimate
Ex∼pdata [RC(x)] by averaging RC(x) over samples from a finite training set or test set).
Since we can only use pmodel but not pdata to construct our lossless compression algo-

rithm, any deviation between the two probability distributions will degrade compression
performance, and the expected bit rate will exceed the fundamental lower bound from
Eq. 1. We defined the overhead in expected bit rate due to a mismatch between pmodel

and pdata as the Kullback-Leibler divergence,

DKL(pdata || pmodel) := H(pdata, pmodel)−H(pdata). (2)

(a) Convince yourself that the following two expressions are valid formulations of the
Kullback-Leibler divergence:

DKL(p || q) = Ex∼p

[
log2 p(x)− log2 q(x)

]
= Ex∼p

[
log2

p(x)

q(x)

]
(3)

(This is a fairly trivial exercise but Eqs. 2 and 3 are both important to remember.)
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Figure 1: Illustration of Jensen’s inequality. Left: E[f(ξ)] for some convex function f .
Center: f(E[ξ]) for the same convex function f . Right: E[g(ξ)]) where g is
the affine linear function whose graph (blue) is a tangent to f , touching it
at the point (E[ξ], f(E[ξ])). Since f is convex, the tangent g to it satisfies
g(ξ) ≤ f(ξ) ∀ξ and thus E[g(ξ)] ≤ E[f(ξ)]. Further, since g is affine linear, it
can be pulled out of the expectation: E[g(ξ)] = g(E[ξ]) = f(E[ξ]). Thus, in
total, f(E[ξ]) ≤ E[f(ξ)] for any convex function f .

Solution: Both formulations in Eq. 3 follow directly from the definition of DKL

in Eq. 2; the definitions of the entropy and the cross entropy, the properties of the
logarithm, and the linearity of the expectation value:

DKL(p || q) = H(p, q)−H(p)

= Ex∼p

[
− log2 q(x)

]
− Ex∼p

[
− log2 p(x)

]
= Ex∼p

[
log2 p(x)− log2 q(x)

]
= Ex∼p

[
log2

p(x)

q(x)

]
■

(b) Since DKL measures the overhead in expected bit rate over its fundamental lower
bound we kind of already know that it cannot be negative. But let’s prove this in
a more direct way. The proof uses Jensen’s inequality (see Figure 1), which states
that, for any convex function f and any probability distribution p, we have:

f
(
Eξ∼p[ξ]

)
≤ Eξ∼p

[
f(ξ)

]
(for convex f). (4)

Prove that DKL(p || q) ≥ 0 using Eq. 3, Jensen’s inequality, and the fact that the
function f(ξ) = − log2 ξ is convex.

Note: Jensen’s inequality is often useful to prove bounds in information theory
and in approximate Bayesian inference (scheduled for Lecture 7 or 8).

Solution: Let f : R>0 → R be the convex function with f(ξ) := − log2 ξ (you can
see that f is convex by noting that its second derivative, f ′′(ξ) = 1

ξ2
, is nonnegative

for all ξ in the domain of f). Then start from the last formulation of DKL in Eq. 3
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Figure 2: Autoregressive model for character based text generation. a) Training: at
training time, the model reads in some English text character by character.
After reading character i, it models a probability distribution pmodel,i+1 for
the next character xi+1. The training algorithm minimizes the cross entropy
between the true data distribution (estimated via samples from a training set)
and the modeled probability distribution. b) Sampling, as implemented in the
function generate: out of the box, the model already comes with a function
that generates random text using a trained model. The function draws a
random sample x1 ∼ pmodel,1, which it outputs and then also feeds back into
the model so that it can then calculate pmodel,2, from which it draws the next
character x2, and so on.

and apply Jensen’s inequality:

DKL(p || q) = Ex∼p

[
log2

p(x)

q(x)

]
= Ex∼p

[
− log2

q(x)

p(x)

]
= Ex∼p

[
f

(
q(x)

p(x)

)]

≥ f

(
Ex∼p

[
q(x)

p(x)

])
= f

(∑
x

p(x)
q(x)

p(x)

)
= f

(∑
x

q(x)

)
= f(1) = 0

where, on the second line, we explicitly wrote out the expectation as a weighted
sum and then used the fact that a normalized probability distribution sums to 1.

■

Problem 3.2: Lossless Compression of Natural Language
With Recurrent Neural Networks

This zip-file contains code for a simple character-based autoregressive language model.
It is a fork of the char-rnn.pytorch repository1 on GitHub. We will talk more about
autoregressive models in the next lecture, but Figure 2 should give you enough of an
overview to dive into the code. In this problem, you will first train the model on some
toy training data. You will then use the trained model to implement your own lossless
compression codec for text, which you will evaluate empirically by comparing its bit rate
to theoretical bounds and to existing lossless compression methods.

1https://github.com/spro/char-rnn.pytorch
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Although the compression codec you’ll implement in this problem will already be
quite effective (considering its simplicity), it will still be suboptimal, and it will also be
very slow. We will improve upon it in upcoming problem sets as we learn about better
compression techniques.
The code comes as a git bundle. To extract it, run:

git clone char-rnn-compression.gitbundle char-rnn-compression

You’ll also need the python packages PyTorch, numpy, tqdm, and unidecode. You can
install them, e.g., as follows (or use your favorite package manager instead):

cd char-rnn-compression

python3 -m pip install virtualenv

python3 -m virtualenv -p python3 venv

source venv/bin/activate

python3 -m pip install torch tqdm unidecode numpy

The repository contains some toy data set of (historic) English text2 in the direc-
tory dat. In order to allow us to compare results quantitatively, the directory also
contains a canonical random split into training, validation, and test set.

(a) Train the model on the training set:

python3 train.py dat/shakespeare.txt

Training this small model doesn’t require any fancy hardware; it should only take
about 10 to 20 minutes on a regular consumer PC.

The script will use the training set at dat/shakespeare.train.txt. Before train-
ing and after every tenth training epoch, the script will evaluate the model’s per-
formance on the validation set (dat/shakespeare.val.txt) and it will print out
the cross entropy (to base 2). In regular intervals, the script will also print out
some samples from the model (i.e., random generated text). You should be able
to observe that the cross entropy decreases (because that’s the objective function
that the training procedure minimizes), and the generated text should resemble
more and more the kind of text you can find in the training set. At the end of
training, the cross entropy should oscillate roughly around 2 bits per character.

The trained model will be saved to a file named shakespeare.pt. You can now
evaluate it on the validation or test set:

python3 evaluate.py shakespeare.pt dat/shakespeare.val.txt

python3 evaluate.py shakespeare.pt dat/shakespeare.test.txt

(b) While the model is training, familiarize yourself with the code in evaluate.py

and in generate.py and try to understand what the functions evaluate and
generate do. What does calling torch.multinomial(output dist, 1) in the

2Downloaded from https://raw.githubusercontent.com/karpathy/char-rnn/master/data/

tinyshakespeare/input.txt

4

https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt


method generate achieve? (In particular, you should understand that output dist

is an unnormalized probability distribution here.)

Note: Both function signatures contain an argument with name decoder. The
name of this argument is reminiscent of the naming convention in the original code
repository, which was not implemented with data compression in mind. Despite
its name, this argument is not a decoder in the sense of data compression. It is
just the trained model.

Solution: The function generate takes an initial string of characters prime str,
and it then samples text from the model that starts with prime str. It does so by
unrolling the model as illustrated in Figure 2 (b). Here, the step from the hidden
representation hi) to the generated character (depicted as a circle with question
mark in the figure) deserves special attention. It is the only step in the process
that is stochastic. By contrast, all other steps in the model are deterministic. The
hidden representation hi parameterizes a probability distribution over characters.

In detail, generate first obtains a vector of (unnormalized) probabilities for each
character in the alphabet and assigns it to the variable output dist. Here, “un-
normalized” means that the components of output dist don’t necessarily sum up
to one. But they are still all nonnegative, and the the probability of the ith charac-
ter in the alphabet is implicitly defined as output dist[i]

/∑
j output dist[j].

Calling torch.multinomial(output dist, 1) draws a single sample from this
distribution, taking care of the normalization internally (according to the docu-
mentation3).

The function evaluate estimates the cross entropy H(pdata, pmodel) by performing
an empirical average over − log pmodel(x) on a random sample from the data pro-
vided in the argument text file. It normalizes the cross entropy by the length of
the sample, i.e., it returns the cross entropy per character. The length of the sam-
ple can be controlled by the argument chunk len. By default, chunk len is rather
small so that the evaluation doesn’t take too much time, but this has the effect
that the estimate will be noisy, i.e., the return value of evaluate will fluctuate
quite a bit across function invocations. Such fluctuations are OK for debugging
output, but when you evaluate the model later you should set chunk len to a
larger value so as to reduce the variance.

The estimation of the cross entropy also has to take into account that the model
only outputs unnormalized probabilities. The model parameterizes probabilities by
the logits (i.e., the logarithms of unnormalized probabilities). Thus, the negative
log probability of character i is given as

− ln p(xi) = − ln
exp

(
logit[i]

)∑
j exp

(
logit[j]

) = log

(∑
j

exp
(
logit[j]

))
− logit[i].

3https://pytorch.org/docs/stable/generated/torch.multinomial.html
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Figure 3: Encoding and decoding with a symbol code that is informed by an autore-
gressive model. Both encoding and decoding unroll the autoregressive model,
which produces a sequence of probability distributions over the alphabet of
characters. We use these probability distributions to construct a sequence of
Huffman Codes, one Huffman Code per encoded/decoded character. a) at en-
coding time, we know the entire message, so we can simply unroll the model
on the message and use the resulting Huffman Codes to encode each charac-
ter. b) at decoding time, we start without any knowledge of the message, but
we can unroll the autoregressive model up to its first step as this doesn’t yet
require any input from the message. We can then construct the Huffman Code
for the first character, decode the character, and feed it into the autoregressive
model in order to transition to the second step. We then repeat this process,
consuming a small chunk of the compressed bit string at each step.

Here, a naive evaluation of the first term on the far right-hand-side would be
numerically unstable because the exponential function can easily overflow. The
function evaluate therefore applies the so-called “log-sum-exp trick” to make the
calculation numerically stable. The trick is to subtract maxk logit[k] from all
logits, observing that such a global shift does not change value of the right-hand
side (apart effects due to rounding errors). ■

(c) You should have observed that the function generate generates random text.
This is possible because the trained model parameterizes a probability distribution
pmodel over character sequences, so one can draw random samples from it. However,
in compression, we don’t want to generate random text. We want the receiver to
be able to deterministically decode the exact same text that the sender encoded.
How can you achieve this using the trained probabilistic model. Make a sketch
similar to Figure 2 to illustrate your approaches for encoding and decoding. Where
do you generate/consume code words and what probability distributions do you
use to build the corresponding code books.

Solution: This is precisely the concept of “entropy coding”, of which the symbol
codes that we’ve been discussing so far are an example: entropy coding employs a
probabilistic model but it still admits deterministic generation. In contrast to the
function generate, which uses the probabilistic model to draw random samples,
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we will now use the probabilistic model to construct an optimal symbol code, which
we then use to decode a symbol from a bit string.

You can think of this approach as the probabilistic model making a “fuzzy” predic-
tion for the next character. To turn this fuzzy prediction into a precise prediction,
we have to inject additional information in the form of a few bits from the com-
pressed bit string. The better the fuzzy prediction was to begin with (i.e., the
better the probabilistic model resembles the true data distribution), the less ad-
ditional information in the form of compressed bits you have to inject. Figure 3
illustrates our approach for encoding and decoding. ■

(d) Create a new file compression.py that contains a function encode huffman with
the following (or a similar) signature:

def encode_huffman(model, message, length_only=False):

Here, the argument model is a trained model (this is called decoder in the the
function generate) and the argument message is a string of English text. The
function should return bit string, i.e., the compressed representation of message.
If the boolean switch length only is set to True then the function shouldn’t
really build up the compressed representation. Instead, it should only simulate
the process and return the bit rate, i.e., the length (in bits) of the compressed
representation. This is for your convenience, since in the evaluation you’ll mostly
be interested only in the file size and not in the actual contents of the file.

In order implement encode huffman, you’ll need to copy and paste your imple-
mentation of the Huffman Coding algorithm from Problem Set 1 (if you didn’t
solve Problem Set 1, use the solution provided on the course website4).

Hint 1: start by copying the body of the function evaluate, then adjust it to your
needs. You’ll have to build up a different Huffman tree for every single character in
the message (because the probability distribution is different for every character).

Hint 2: you can apply the Huffman coding algorithm directly to an unnormalized
probability distribution (i.e., to logits.exp()). This works because the overall
scale doesn’t affect how the Huffman tree will get constructed.

Solution: See accompanying code.

� To bring the solutions into your code base, cd into your code base and then
run

git stash

git checkout -b solutions 802c25f

git pull path/to/char-rnn-compression-solutions.gitbundle

� If you never cloned the original code repository from the problem set, then
run instead:

4https://robamler.github.io/teaching/compress22/
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git clone path/to/char-rnn-compression-solutions.gitbundle \

char-rnn-compression

cd char-rnn-compression

python3 -m pip install virtualenv

python3 -m virtualenv -p python3 venv

source venv/bin/activate

python3 -m pip install torch tqdm unidecode numpy

� If you haven’t done so already, train the model with the following command:

source venv/bin/activate

python3 train.py dat/shakespeare.txt

� Then encode some text file (e.g., the validation set, which is included in the
gitbundle at dat/shakespeare.val.txt) by running:

python3 compression.py shakespeare.pt \

dat/shakespeare.val.txt encode

This prints some statistics to the terminal and it writes the compressed bit
string to a file at dat/shakespeare.val.txt.compressed. If you’re only
interested in the statistics and you don’t need the compressed data, then add
the --length only flag to speed up the process:

python3 compression.py shakespeare.pt \

dat/shakespeare.val.txt encode --length_only

■

(e) Evaluate the compression performance of your implementation on some sample
texts. Try it out on different kinds of texts, ranging from the validation set (which
should be very similar to the training set) to more modern English text (e.g., a
Wikipedia page) to text in a different language. Compare your codec’s bit rate to:

� the information content (−
∑k

i=1 log2 pmodel,i(xi) where pmodel,i is the probabil-
ity distribution for the i’th character) of the message x that was provided to
the encode function (calculating the information content will be very similar
to the implementation of the evaluate function);

� the bit rate had you used Shannon coding instead of Huffman Coding (this
is
∑k

i=1⌈− log2 pmodel,i(xi)⌉); and to

� standard lossless compression techniques such as gzip or bzip2 (make sure
you use the --best switch when running these baselines).

Also, write the compressed output to a binary file (pad to full bytes with trailing
zero bits for now) and then compress this file with gzip or bzip2 and record the
resulting bit rates. Discuss your results (which compression method works best?
How much improvement can you expect at most if you’d use a so-called stream
code, i.e., a lossless compression code that is not a symbol code and that can
therefore be more effective than Huffman coding?)
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Solution: I tested the compression method on the validation and test sets, and
on plain-text versions of the Wikipedia articles on Claude Shannon in the English
and German language. The Wikipedia articles were preprocessed to ensure that
they contain only characters in the alphabet (e.g., by replacing German umlauts
with their non-umlaut counterparts). The preprocessed Wikipedia articles are in-
cluded in the gitbundle at dat/wikipedia-{en, de}.txt, and will be referred to as
wikipedia-en and wikipedia-de below, respectively. The following table summarizes
the results:

msg. len bits per character
(chars) Huffman Shannon inf. cont. gzip bzip2 bzip2’

validation set 106,864 2.38 2.72 2.12 3.43 2.82 2.40
test set 219,561 2.38 2.73 2.12 3.33 2.65 2.38

wikipedia-en 24,618 4.99 5.67 5.14 3.22 2.92 5.14
wikipedia-de 8,426 6.77 7.70 7.19 3.96 3.76 7.22

Here, “msg. len” is the length of the uncompressed message x (number of char-
acters), “inf. cont.” is the information content, − log2 pmodel(x), of the message
under our trained autoregressive model, and bizip2’ is the result of compressing
the output of our method (the autoregressive model with Huffman Coding) with
bzip2. Both gzip and bzip2 were always run with the --best switch. We observe
that Huffman coding with the trained model outperforms the standard methods
gzip and bzip2 on messages that are very similar to the training set, but compres-
sion performance degrades the more the message differs in style from the training
data. The validation and test set are both very similar to the training set, and
the model performs essentially equally well on both (which is to be expected since
I never actually used the validation set for hyperparameter tuning). The model
performs worse on the English language Wikipedia article and even worse on the
Germen language Wikipedia article. This can be explained since modern English
language is different from the Shakespeare training text, but still closer to it than
German language text.

We further observe that Huffman Coding performs better than Shannon Coding (as
expected since both are symbol codes but only the Huffman Code is guaranteed to
always be an optimal symbol code). Further, both Huffman Coding and Shannon
Coding have an overhead over the information content when evaluated on the
validation and test set, as expected. Interestingly, however, the bitrate of Huffman
Coding on the Wikipedia articles is actually lower than the information content.
This is an artefact of symbol codes, as the restriction to integer code word lengths
has a regularizing effect: symbol codes have to spend at least one bit for every
symbol, even for very probable symbols whose information content is much smaller
than one bit; but this also means that, in compensation, symbol codes can assign
code words that are considerably shorter than the information content to symbols
of very low probability without violating the Kraft inequality. Thus, the code
word lengths in a symbol code tend to be more level than the true information
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contents, and the (unweighted) average code word length can be shorter than the
(unweighted) average information content.

This regularization effect is typically a poor trade off because slightly longer code
words for frequent symbols outweigh the potential benefits even of considerably
shorter code words for infrequent symbols. But if the model is evaluated on out-
of-distribution data, as we do here, then the probabilities under the model are a
poor prediction of true symbol frequencies, and optimizing the lower (unweighted)
average code word length of symbol codes can actually become beneficial.

Finally, we observe in the last column of the table that further compressing the
already compressed output of our Huffman Coder does not actually reduce the file
size. In contrast, it usually even makes things worse, even on the out-of-distribution
data where our method performs poorly. This is because bzip2 compresses its
input data by detecting repeated sequences that are aligned with byte boundaries.
Since the Huffman Coder produces code words of odd lengths using a different code
book for every symbol, there is no reason why it should produce repeated bit strings
that are aligned with byte boundaries more often than one would expect in a string
of uniformly random distributed bits. As we’ve learned in the lecture, there’s no
silver bullet in compression: you always have to make assumptions about the data
source—typically in the form of a probabilistic model. In the case of bizip2’,
the model that the bzip2 algorithm (implicitly) uses just doesn’t match the true
characteristics of our Huffman Coder. ■

(f) Implement a decoder and verify empirically that decode(encode(message)) ==

message for some sample message.

Note: make sure that message is pure ASCII (thus, e.g., no German text with
umlauts) because this simple toy model does not support any non-ASCII charac-
ters.

Solution: See again accompanying code in the file compression.py. You can
execute the decoder by running:

python3 compression.py shakespeare.pt \

dat/wikipedia-de.txt encode

python3 compression.py shakespeare.pt \

dat/wikipedia-de.txt.compressed \

decode > dat/wikipedia-de.txt.decompressed

sha1sum dat/wikipedia-de.txt dat/wikipedia-de.txt.decompressed

The last command should print the same checksum for both files. ■
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