blished: 5 May 2022
Problem Set 3 dig;s;fos: 13 Mii 2022

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tuebingen

Course materials available at https://robamler.github.io/teaching/compress22/

Problem 3.1: Kullback-Leibler Divergence

In the lecture, we introduced two probability distributions, pgqata and pmeder- Here,

® Daata 1s the true distribution of the data source, which we typically don’t know,
but we may have a data set of empirical samples from it (e.g., a data set of
uncompressed images if we're concerned with image compression); and

® Duodel 1S an approximation of pg.t, that we use to construct our lossless compres-
sion code; for now, we assume that we can explicitly evaluate pmoqer(x) for any
hypothetical message x.

We showed that, if a lossless compression algorithm is optimal with respect to pumodel
then its expected bit rate on data from pqae, is given by the cross entropy H (Paata; Pmodel),

Eprdata [R(X)} = H(pdataypmodel) +e= _Exr\«pdata [10g Pmodel (X)} +éE. (1)

Here, ¢ is a tiny overhead that is irrelevant for practical purposes (assuming long mes-
sages X), the bit rate R(x) denotes the total length (in bits) of the compressed represen-
tation of a message x, and the notation Ex.,, .. [R(X)] :== D Pdata(X)R(x) denotes the
(formal) expectation value of R(x) under the probability distribution pgat. (in practice,
we can’t evaluate Ex.p,...[R(x)] because we don’t know pgata(x), but we can estimate
Expy... [R(x)] by averaging R(x) over samples from a finite training set or test set).

Since we can only use Ppogel DUt N0t Paata to construct our lossless compression algo-
rithm, any deviation between the two probability distributions will degrade compression
performance, and the expected bit rate will exceed the fundamental lower bound from
Eq. 1. We defined the overhead in expected bit rate due to a mismatch between podel
and pgata as the Kullback-Leibler divergence,

DKL (pdata || pmodel) = H(pdata; pmode1> - H(pdata)- (2)

(a) Convince yourself that the following two expressions are valid formulations of the
Kullback-Leibler divergence:

SRR) B

(This is a fairly trivial exercise but Eqgs. 2 and 3 are both important to remember.)

https://robamler.github.io/teaching/compress22/

tangent g to convex
function f (note thht
/)\

g(&) = £(§) y¢

convex function f= convex function f<m

E
F(ELE)) [g(&)]

[IRITININ Illlillll [IRNTININ
samples & E[¢] samples &

Figure 1: Hllustration of Jensen’s inequality. Left: E[f(£)] for some convex function f.
Center: f(E[£]) for the same convex function f. Right: E[g(§)]) where g is
the affine linear function whose graph (blue) is a tangent to f, touching it
at the point (E[¢], f(E[{])). Since f is convex, the tangent g to it satisfies
g(&) < f(&) V€ and thus E[g(§)] < E[f(§)]. Further, since g is affine linear, it
can be pulled out of the expectation: E[g(§)] = g(E[¢]) = f(E[£]). Thus, in
total, f(E[¢]) < E[f(£)] for any convex function f.

(b) Since Dgp, measures the overhead in expected bit rate over its fundamental lower
bound we kind of already know that it cannot be negative. But let’s prove this in
a more direct way. The proof uses Jensen’s inequality (see Figure 1), which states
that, for any conver function f and any probability distribution p, we have:

f(Eenpl€]) < Eewp[f(§)] (for convex f). (4)
Prove that Dkr(p||q) > 0 using Eq. 3, Jensen’s inequality, and the fact that the
function f(§) = —log¢ is convex.

Note: Jensen’s inequality is often useful to prove bounds in information theory
and in approximate Bayesian inference (scheduled for Lecture 7 or 8).

Problem 3.2: Lossless Compression of Natural Language
With Recurrent Neural Networks

This zip-file contains code for a simple character-based autoregressive language model.
It is a fork of the char-rnn.pytorch-repository! on GitHub. We will talk more about
autoregressive models in the next lecture, but Figure 2 should give you enough of an
overview to dive into the code. In this problem, you will first train the model on some
toy training data. You will then use the trained model to implement your own lossless
compression codec for text, which you will evaluate empirically by comparing its bit rate
to theoretical bounds and to existing lossless compression methods.

Although the compression codec you’ll implement in this problem will already be
quite effective (considering its simplicity), it will still be suboptimal, and it will also be
very slow. We will improve upon it in upcoming problem sets as we learn about better
compression techniques.

https://github.com/spro/char-rnn.pytorch

https://github.com/spro/char-rnn.pytorch

a) training:

generated
output:

hidden
representation:

text sample
from training set:

Figure 2:

b) sampling ("generating")

OJOXOXOXO. st
»»»w
OO ®®

sesrs?igel sesrs?igel

Autoregressive model for character based text generation. a) Training: at
training time, the model reads in some English text character by character.
After reading character ¢, it models a probability distribution pmedeli+1 for
the next character x;,;. The training algorithm minimizes the cross entropy
between the true data distribution (estimated via samples from a training set)
and the modeled probability distribution. b) Sampling, as implemented in the
function generate: out of the box, the model already comes with a function
that generates random text using a trained model. The function draws a
random sample 21 ~ Pmodel,1, Which it outputs and then also feeds back into
the model so that it can then calculate ppoder2, from which it draws the next
character x5, and so on.

The code comes as a git bundle. To extract it, run:

git

clone char-rnn-compression.gitbundle char-rnn-compression

You'll also need the python packages PyTorch, numpy, tqdm, and unidecode. You can
install them, e.g., as follows (or use your favorite package manager instead):

cd char-rnn-compression

python3 -m pip install virtualenv

python3 -m virtualenv -p python3 venv

source venv/bin/activate

python3 -m pip install torch tqdm unidecode numpy

The repository contains some toy data set of (historic) English text? in the direc-

tory dat.

In order to allow us to compare results quantitatively, the directory also

contains a canonical random split into training, validation, and test set.

(a) Train the model on the training set:

python3 train.py dat/shakespeare.txt

Training this small model doesn’t require any fancy hardware, it should only take
about 10 to 20 minutes on a regular consumer PC.

The script will use the training set at dat/shakespeare.train.txt. Before train-

ing

and after every tenth training epoch, the script will evaluate the model’s per-

formance on the validation set (dat/shakespeare.val.txt) and it will print out

Downloaded from https://raw.githubusercontent.com/karpathy/char-rnn/master/data/
tinyshakespeare/input.txt

https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt

the cross entropy (to base 2). In regular intervals, the script will also print out
some samples from the model (i.e., random generated text). You should be able
to observe that the cross entropy decreases (because that’s the objective function
that the training procedure minimizes), and the generated text should resemble
more and more the kind of text you can find in the training set. At the end of
training, the cross entropy should oscillate roughly around 2 bits per character.

The trained model will be saved to a file named shakespeare.pt. You can now
evaluate it on the validation or test set:

python3 evaluate.py shakespeare.pt dat/shakespeare.val.txt
python3 evaluate.py shakespeare.pt dat/shakespeare.test.txt

While the model is training, familiarize yourself with the code in evaluate.py
and in generate.py and try to understand what the functions evaluate and
generate do. What does calling torch.multinomial (output_dist, 1) in the
method generate achieve? (In particular, you should understand that output_dist
is an unnormalized probability distribution here.)

Note: Both function signatures contain an argument with name decoder. The
name of this argument is reminiscent of the naming convention in the original code
repository, which was not implemented with data compression in mind. Despite
its name, this argument is not a decoder in the sense of data compression. It is
just the trained model.

You should have observed that the function generate generates random text.
This is possible because the trained model parameterizes a probability distribution
Pmodel OVer character sequences, so one can draw random samples from it. However,
in compression, we don’t want to generate random text. We want the receiver to
be able to deterministically decode the exact same text that the sender encoded.
How can you achieve this using the trained probabilistic model. Make a sketch
similar to Figure 2 to illustrate your approaches for encoding and decoding. Where
do you generate/consume code words and what probability distributions do you
use to build the corresponding code books.

Create a new file compression.py that contains a function encode_huffman with
the following (or a similar) signature:

def encode_huffman(model, message, length_only=False):

Here, the argument model is a trained model (this is called decoder in the the
function generate) and the argument message is a string of English text. The
function should return bit string, i.e., the compressed representation of message.
If the boolean switch length only is set to True then the function shouldn’t
really build up the compressed representation. Instead, it should only simulate
the process and return the bit rate, i.e., the length (in bits) of the compressed
representation. This is for your convenience, since in the evaluation you’ll mostly
be interested only in the file size and not in the actual contents of the file.

In order implement encode_huffman, you’ll need to copy and paste your imple-
mentation of the Huffman Coding algorithm from Problem Set 1 (if you didn’t
solve Problem Set 1, use the solution provided on the course website?).

Hint 1: start by copying the body of the function evaluate, then adjust it to your
needs. You’ll have to build up a different Huffman tree for every single character in
the message (because the probability distribution is different for every character).

Hint 2: you can apply the Huffman coding algorithm directly to an unnormalized
probability distribution (i.e., to logits.exp()). This works because the overall
scale doesn’t affect how the Huffman tree will get constructed.

(e) Evaluate the compression performance of your implementation on some sample
texts. Try it out on different kinds of texts, ranging from the validation set (which
should be very similar to the training set) to more modern English text (e.g., a
Wikipedia page) to text in a different language. Compare your codec’s bit rate to:

e the information content (— Zle 1025 Pmodeli (i) Where pmoder; is the probabil-
ity distribution for the i’th character) of the message x that was provided to
the encode function (calculating the information content will be very similar
to the implementation of the evaluate function);

e the bit rate had you used Shannon coding instead of Huffman Coding (this
. k
18 Zi:l [_ 10g2 Pmodel,i ('rl)—l)7 and to

e standard lossless compression techniques such as gzip or bzip2 (make sure
you use the —-best switch when running these baselines).

Also, write the compressed output to a binary file (pad to full bytes with trailing
zero bits for now) and then compress this file with gzip or bzip2 and record the
resulting bit rates. Discuss your results (which compression method works best?
How much improvement can you expect at most if you’d use a so-called stream
code, i.e., a lossless compression code that is not a symbol code and that can
therefore be more effective than Huffman coding?)

(f) Implement a decoder and verify empirically that decode (encode (message)) ==
message for some sample message.

Note: make sure that message is pure ASCII (thus, e.g., no German text with
umlauts) because this simple toy model does not support any non-ASCII charac-
ters.

3https://robamler.github.io/teaching/compress22/

https://robamler.github.io/teaching/compress22/

	Kullback-Leibler Divergence
	Lossless Compression of Natural Language With Recurrent Neural Networks

