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How to Use This Problem Set

This problem set discusses several important information theoretical concepts: condi-
tional information content, conditional, joint, and marginal entropies, and mutual infor-
mation. While the definition of each individual concept may seem simple, some of their
properties that you will prove on this problem set are surprisingly subtle.
You should use this problem set now as an opportunity to recap and expand on the

content of the lecture; later, you’ll be able to refer back to this problem set as a self-
contained reference sheet of important information theoretical relations.
All Problems on this Problem set are designed so that each question can be an-

swered with either a one-sentence argument or a single line of calculations.
The only exceptions are the two questions marked with an asterisk (“*”), which each
require you to come up with a simple example probability distribution.

Problem 4.1: Statistical Independence

In the lecture, we formalized a probabilistic model of our Simplified Game of Monopoly
(which consists of throwing two fair three-sided dice—one red die and one blue die—and
then recording their sum). For completeness, here’s the model:

� sample space: Ω =
{
(a, b) where a, b ∈ {1, 2, 3}

}
� sigma algebra: Σ = 2Ω :=

{
all subsets of Ω (including ∅ and Ω)

}
� probability measure P : for all E ∈ Σ, let P (E) := |E|/|Ω| = |E|/9

We further defined three random variables, i.e., functions from Ω to R:

� total value: Xsum

(
(a, b)

)
= a+ b

� value of the red die: Xred

(
(a, b)

)
= a

� value of the blue die: Xblue

(
(a, b)

)
= b

Now, verify the following claims from the lecture:
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(a) Convince yourself that P is a valid probability measure (i.e., P (Ω) = 1, P (∅) = 0,
and P satisfies countable additivity).

Solution: P (Ω) = |Ω|/|Ω| = 1 and P (∅) = |∅|/|Ω| = 0 follow trivially from the
definition of P . For countable additivity, at most |Ω| = 9 of the events Ei can be
nonempty because otherwise the Ei’s couldn’t be pairwise disjoint. Thus,

P

(
∞⋃
i=1

Ei

)
= P

( ⋃
i:Ei ̸=∅

Ei

)
=

| ∪i:Ei ̸=∅ Ei|
|Ω|

(∗)
=

∑
i:Ei ̸=∅ |Ei|
|Ω|

=
∑

i:Ei ̸=∅

P (Ei)
(▲)
=

∞∑
i=1

P (Ei)

where the equality marked “(∗)” holds because the number of elements in a union
of a finite number of finite and pairwise disjoint sets is the sum of the number of
elements in each set; and the equality marked “(▲)” holds because P (∅) = 0. ■

(b) Show that Xred and Xblue are statistically independent.

Solution: We have:

P (Xred = a) =
1

3
∀a ∈ {1, 2, 3};

P (Xblue = b) =
1

3
∀b ∈ {1, 2, 3};

and P (Xred = a,Xblue = b) =
1

9
∀a, b ∈ {1, 2, 3}.

Thus, P (Xred = a,Xblue = b) = P (Xred = a)P (Xblue = b) ∀a, b ∈ {1, 2, 3}. ■

(c) Show that Xred and Xsum are not statistically independent.

Solution: To disprove statistical independence, it suffices to find a single case
(a, s) for which P (Xred = a,Xsum = s) ̸= P (Xred = a)P (Xsum = s). This is the
case, e.g., for a = 1, s = 3:

P (Xred = 1) =
1

3
; and P (Xsum = 3) =

∣∣{(1, 2), (2, 1)}∣∣
9

=
2

9
;

but

P (Xred = 1, Xsum = 3) =

∣∣{(1, 2)}∣∣
9

=
1

9
̸= 1

3
× 2

9
.

■
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Problem 4.2: Joint and Conditional Information Content

In the lecture, we identified the quantity “− log2 P (X=x)” as the information content
of the statement “X = x” (meaning “the random variable X has value x”) under a
probabilistic model P . As you’ve shown in Problem 2.4 on the last problem set, the
information content of a long message essentially measures (up to tiny corrections) the
total bit rate of the message assuming that one uses a lossless code that is optimal
for the model P . In this problem, you’ll see in which sense precisely the information
content of an individual symbol can or cannot be interpreted as the individual symbol’s
contribution to this total bitrate.
For this problem, we’ll just look at two random variables X and Y . The generalization

to more than two random variables is analogous. We further assume that X and Y are
both discrete random variables since we didn’t define information content for continuous
random variables.

(a) Joint Information Content: The joint information content of the statement
“X = x and Y = y” or, equivalently, the information content of the statement
“(X, Y ) = (x, y)”, is

− log2 P
(
(X, Y ) = (x, y)

)
= − log2 P (X=x, Y =y)

= − log2 P
(
{ω ∈ Ω : X(ω) = x ∧ Y (ω) = y}

)
. (1)

Argue why the joint information content of “(X, Y ) = (x, y)” is not smaller than
the information content of “X = x” alone and not smaller than the information
content of “Y =y” alone (hint: use the fact that the information content of “X=x”
is − log2 P (X=x) = − log2 P

(
{ω ∈ Ω : X(ω) = x}

)
and identify a superset-subset

relationship).

Solution: We showed in the lecture that P (E1) ≤ P (E2) for events E1, E2 with
E1 ⊆ E2. Thus, for E1 := {ω ∈ Ω : X(ω) = x ∧ Y (ω) = y} and E2 := {ω ∈ Ω :
X(ω) = x}, we have P (X=x, Y =y) = P (E1) ≤ P (E2) = P (X=x) and therefore,
for the information contents: − log2 P (X=x, Y =y) ≥ − log2 P (X=x). ■

(b) Marginal and Conditional Information Content: The information content
of “X = x” alone, − log2 P (X = x), is also called marginal information content.
We further define the conditional information content of “Y = y” given X =x as
− log2 P (Y = y |X = x). Using the definition of conditional probability from the
lecture, P (Y = y |X = x) := P (X = x, Y = y)/P (X = x), derive the chain rule of
information content, which states that:

The joint information content of “(X, Y ) = (x, y)” is the sum of
the marginal information content of “X = x” and the conditional
information content of “Y =y” given X=x.

Interpret this finding in words: if you want to compress the two symbols x and y
in an optimal way, and you want to encode one after the other, what probabilistic
model should you use for encoding x and for encoding y, respectively.
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Solution: The claim follows directly from the definition of the information
content as the negative log probability and the definition of conditional probability
given above:

− log2 P (X=x, Y =y) = − log2
[
P (X=x)P (Y =y |X=x)

]
= − log2 P (X=x)− log2 P (Y =y |X=x).

Thus if one wants to encode the tuple (x, y), one could encode x using a code
that is optimized for the model P (X) and then encode y using a code that is
optimized for the model P (Y |X=x), as we did with our autoregressive model in
Problem 3.2. ■

(c∗) Nonadditivity of Marginal Information Content: In Problem 2.3 (b) of
the last problem set, you showed (although using different notation) that the joint
information content of “(X, Y ) = (x, y)” is the sum of the two marginal information
contents of “X=x” and “Y =y” if X and Y are statistically independent. However,
this statement is not necessarily true if X and Y are not statistically independent.

Provide examples of simple probabilistic models

(i) where the sum of the two marginal information contents of “X = x” and
“Y = y” for some x and y is larger than the joint information content of
“(X, Y ) = (x, y)”; and

(ii) where the sum of the two marginal information contents of “X = x” and
“Y = y” for some x and y is smaller than the joint information content of
“(X, Y ) = (x, y)”.

Using your result from part (b), relate the marginal information content of “Y =y”
and the conditional information content of “Y = y” given X = x to each other
for both cases (i) and (ii). Does conditioning on X = x increase or reduce the
information content in each of the two cases?

Note: You will show below that one of these cases (i) or (ii) can be regarded as
the “typical” case whereas the other one is somewhat of an exception. Using your
intuition about information content, can you guess which case is the typical one?

Solution: Consider two binary random variables X and Y whose probability
distribution is given in the following table (the center 2 × 2 block of the table
shows the joint probabilities P (X=x, Y =y) while the last row and column show
the marginal probabilities P (X=x) and P (Y =y), respectively):

P (X=x, Y =y) ↓ x=0 ↓ ↓ x=1 ↓ ↓ P (Y =y) ↓
y=0 → 0.49 0.01 0.5

y=0 → 0.01 0.49 0.5

P (X=x) → 0.5 0.5
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The marginal information content of both X = x and Y = y is one bit for all
x, y ∈ {0, 1} because all marginal probabilities are P (X=x) = P (Y =y) = 1

2
.

Thus, the sum of the two marginal information contents is always

− log2 P (X=x)− log2 P (Y =y) = 2 bit ∀x, y ∈ {0, 1}.

However, the joint information content can be both lower and higher than 2 bit.
For x = y, the joint probability P (X = x, Y = y) = 0.49 is just slightly below 1

2
,

and thus the joint information content is just slightly above one bit (− log2 0.49 ≈
1.03 bit < 2 bit). By contrast, for x ̸= y, the joint probability P (X =x, Y = y) =
0.01 is very low, and thus the joint information content is much higher than 2 bit
(− log2 0.01 ≈ 6.64 bit > 2 bit). ■

Problem 4.3: Joint and Conditional Entropy

In the lecture, we defined the entropy HP (X) of a random variable X as its expected
information content, i.e., HP (X) = EP [− log2 P (X)]. Similar to Problem 4.2, let’s now
understand how entropies of two random variables X and Y interact. We will again
assume that X and Y are discrete random variables since entropy is not defined for
continuous random variables (only a so-called differential entropy is defined for these).

(a) Joint Entropy: The joint entropy of X and Y is simply the entropy of the tuple
(X, Y ) (interpreted as a random variable that maps ω 7→

(
X(ω), Y (ω)

)
). We will

explicitly denote the joint entroy as HP

(
(X, Y )

)
(with double braces) to highlight

the distinction from the cross entropy.1 Argue, by applying what you’ve shown in
Problem 3.3 (a), that HP

(
(X, Y )

)
≥ HP (X) and that HP

(
(X, Y )

)
≥ HP (Y ).

Solution: The entropy is the expected information content, and the act of taking
an expectation (i.e., calculating a weighted average) preserves semi-inequalities like
“≥”. Thus, since the joint information content is not smaller than either one of
the marginal information contents, the joint entropy is not smaller than either of
the marginal entropies. ■

Marginal and Conditional Entropy: The entropy of X alone, HP (X), is also called
the marginal entropy. We further define two kinds of conditional entropies:

(b∗) HP (Y |X = x) denotes the conditional entropy of Y if we know that X takes a
specific value x. In other words, HP (Y |X =x) is the entropy of the distribution
P (Y |X=x), interpreted as a distribution over values of Y . It is thus given by

HP (Y |X=x) = EP (Y |X=x)

[
− log2 P (Y |X=x)

]
(2)

= −
∑
y

P (Y =y |X=x) log2 P (Y =y |X=x).

1This is not really standard notation. In the literature, you may find the notation “H(X,Y )” used
for either the cross entropy or the joint entropy, depending on context.
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Figure 1: Interplay between marginal entropies (HP (X) and HP (Y )), joint entropy

HP

(
(X;Y )

)
, conditional entropies (HP (X |Y ) and HP (Y |X)), and mutual

information IP (X;Y ) of two arbitrary (discrete) random variables X and Y .
Figure adapted from book “Information Theory, Inference, and Learning Al-
gorithms” by David MacKay.

Show (by providing an example for both cases) that HP (Y |X = x) can be both
larger and smaller than HP (Y ).

Note: In Problem 4.4 below, you will show that, in expectation over X, the condi-
tional entropy HP (Y |X) (see Eq. 3 below) can never be larger than the marginal
entropy HP (Y ). Thus, we can say that conditioning on some X = x typically re-
duces the entropy of Y , but it is possible that certain specific values of x exist for
which conditioning on X=x increases the entropy of Y .

Solution: Consider two binary random variables X and Y with the following
joint and marginal distributions:

P (X=x, Y =y) ↓ x=0 ↓ ↓ x=1 ↓ ↓ P (Y =y) ↓
y=0 → 1/4 3/8 5/8

y=0 → 1/4 1/8 3/8

P (X=x) → 1/2 1/2

We can calculate the marginal entropy of Y by looking at the last column, and we
obtain HP (Y ) ≈ 0.95 bit. Further, by normalizing the columns in the center 2× 2
block, we obtain the following conditional probabilities P (Y =y |X=x):

P (X=x, Y =y) ↓ x=0 ↓ ↓ x=1 ↓
y=0 → 1/2 3/4

y=0 → 1/2 1/4

Therefore, we have HP (Y |X = 0) = 1 bit > HP (Y ), and HP (Y |X = 1) ≈
0.81 bit < HP (Y ). ■

(c) The notation HP (Y |X) denotes the expectation value of HP (Y |X = x), where

6



the expectation is taken over x. Thus,

HP (Y |X) =
∑
x

P (X=x)HP (Y |X=x) (3)

= −
∑
x

P (X=x)
∑
y

P (Y =y |X=x) log2 P (Y =y |X=x)

= −
∑
x,y

P (X=x, Y =y) log2 P (Y =y |X=x)

≡ EP

[
− log2 P (Y |X)

]
.

Derive the chain rule of the entropy (visualized in the lower parts of Figure 1):

HP

(
(X, Y )

)
= HP (X) +HP (Y |X) = HP (Y ) +HP (X |Y ). (4)

Solution:

HP (X) +HP (Y |X) = E
[
− log2 P (X)

]
+ E

[
− log2 P (Y |X)

]
= E

[
− log2 P (X)− log2 P (Y |X)

]
= E

[
− log2 P (X,X)

]
= HP

(
(X, Y )

)
The second equality in Eq. 4 follows from symmetry by swapping the names of X
and Y . ■

(d) What are the joint entropy HP

(
(X, Y )

)
and the two types of conditional entropy,

HP (Y |X=x) andHP (Y |X), if the two random variablesX and Y are statistically
independent, i.e., if P (X, Y ) = P (X)P (Y )?

Solution: For statistically independent random variables, the conditional prob-
ability is equal to the marginal probability:

P (Y |X) =
P (X, Y )

P (Y )
=

P (X)P (Y )

P (Y )
= P (X) (for X, Y stat. indep.)

Therefore, we have HP (Y |X=x) = HP (Y |X) = HP (Y ) for statistically indepen-
dent X, Y . By inserting this into Eq. 4, we find HP (X, Y ) = HP (X) + HP (Y ),
i.e., for statistically independent variables, the entropy is additive. ■

Problem 4.4: Mutual Information and Subadditivity of
Entropies

We now show that entropies of two random variables X and Y are subadditive, i.e.

HP

(
(X, Y )

)
≤ HP (X) +HP (Y ). (5)
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To show this, we define the mutual information IP (X;Y ) between X and Y ,

IP (X;Y ) := HP (X) +HP (Y )−HP

(
(X, Y )

)
(6)

as illustrated in the first two rows of Figure 1. We then show that IP (X;Y ) ≥ 0.

(a) Symmetry of the Mutal Information: Convince yourself that the mutual
information is symmetric, i.e., IP (X;Y ) = IP (Y ;X). (This is not really relevant
for the proof of IP (X;Y ) ≥ 0 but still important to know in general.)

Solution: Eq. 6 is clearly invariant under swapping X with Y . ■

(b) Convince yourself that the mutual information can be expressed as follows,

IP (X;Y ) = EP

[
log2

P (X, Y )

P (X)P (Y )

]
(7)

Then use Eq. 3 from last week’s problem set to express IP (X;Y ) as a Kullback-
Leibler divergence between two distributions (which two?). Thus, IP (X;Y ) ≥ 0
since Kullback-Leibler divergences are nonnegative, as you proved in Problem 3.1.

Solution: Eq. 7 follows directly from Eq. 6, the definition of the entropy, and
properties of the logarithm. One possibly non-obvious step is that an expectation
over a marginal distribution like P (X) can also be expressed as an expectation
over the joint distribution P (X, Y ). For example,

HP (X) = EP (X)

[
− log2 P (X)

]
= −

∑
x

P (X=x) log2 P (X)

= −
∑
x

(∑
y

P (X=x,X=y)
)
log2 P (X)

= −
∑
x,y

P (X=x,X=y) log2 P (X)

= EP (X,Y )

[
− log2 P (X)

]
.

This is why the lecture notes and problem sets will often just use the shorter
notation EP [ · ] with only subscript “P”.

From Eq. 7 and Eq. 3 on last week’s problem set, we find that

IP (X;Y ) = DKL

(
P (X, Y )

∣∣∣∣P (X)P (Y )
)
≥ 0

where the notation P (X)P (Y ) denotes the probability distribution (more precisely,
the “probability mass function”) that assigns to each pair (x, y) the probability
P (X = x)P (Y = y). The above identification of mutual information with a KL-
divergence admits a direct interpretation: the mutual information is the expected
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overhead (in bitrate) if we compress data from some arbitrary probability distri-
bution P (X, Y ) with the probabilistic model P (X)P (Y ), i.e., with a model that
assumes (possibly wrongfully) that X and Y are statistically independent (you will
show on next week’s problem set that, within all models that assume statistical
independence, the model P (X)P (Y ) that is a product of the marginals of the true
probability distribution P (X, Y ) is the optimal one). ■

(c) Combine Eqs. 4 and 6 to show that the mutual information can also be expressed
as follows (illustrated in the last three rows of Figure 1),

IP (X;Y ) = HP (X)−HP (X |Y ) (8)

= HP (Y )−HP (Y |X). (9)

Note: Since IP (X;Y ) ≥ 0, Eq. 9 implies thatHP (Y |X) ≤ H(Y ). Thus, while con-
ditioning on a specific X =x may increase the conditional entropy HP (Y |X=x)
compared to HP (Y ) (see Problem 4.3 (b)), in expectation, conditioning can only
decrease the entropy (or keep it unchanged at worst).

Solution: Combining Eqs. 4 and 6 leads to Eq. 9:

IP (X;Y )
(6)
= HP (X) +HP (Y )−HP

(
(X, Y )

)
(4)
= HP (X) +HP (Y )−

(
HP (X) +HP (Y |X)

)
= HP (Y )−HP (Y |X).

The relation in Eq. 8 follows similarly. ■

Interpretation: By the source coding theorem, the entropy HP (X) measures the ex-
pected number of bits that someone needs to tell us before we can be certain about
the value of X. Thus, we can interpret entropy as “amount of uncertainty” or “lack of
knowledge”. Then, the interpretation of Eq. 8 is that the mutual information IP (X;Y )
measures by how much our uncertainty about X decreases (= how much knowledge we
gain about X) if someone tells us the value of Y . Analogously, the interpretation of
Eq. 9 is that IP (X;Y ) also measures how much we learn about Y if someone tells us the
value of X. This interpretation will become helpful when we discuss lossy compression.

(d) What is the mutual information IP (X;Y ) ifX and Y are statistically independent?
Interpret this also in words: if X and Y are statistically independent (e.g., if they
represent the red and the blue die in our Simplified Game of Monopoly), then how
much do you learn about X if someone tells you the value of Y , or vice versa?

Solution: If X, Y are statistically independent, i.e., P (X, Y ) = P (X)P (Y ) then

IP (X;Y ) = DKL

(
P (X, Y )

∣∣∣∣P (X)P (Y )
)
= DKL

(
P (X)P (Y )

∣∣∣∣P (X)P (Y )
)
= 0.

This is consistent with our above interpretation of mutual information: if X and Y
are statistically independent then knowing X tells us nothing about Y and vice
versa. ■
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