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Problem 5.1: Conditional Independence

In last week’s lecture, we learned that every probability dis-
tribution P satisfies the so-called chain rule of probability
theory. For example, for any three random variables X, Y ,
and Z, we can always factorize their joint probability distri-
bution as follows (see also illustration on the right),

P (X, Y, Z) = P (X)P (Y |X)P (Z |X, Y ). (1)

We then introduced the concept of conditional independence between two random
variables X and Z given a third random variable Y , which is defined analogously to
normal (i.e., unconditional) statistical independence as follows,

X and Z are conditionally independent given Y :⇔ P (X,Z |Y ) = P (X |Y )P (Z |Y ).
(2)

(a) Show that conditional independence between X and Z given Y means that, once
you know the value of Y , learning about the value of X would not provide any
additional information about Z, i.e.,

X and Z are cond. independ. given Y ⇔ P (Z |X, Y ) = P (Z |Y ). (3)

Remark: Eq. 3 implies that, if and only if X and Z are condi-
tionally independent given Y , then the chain rule from Eq. 1
simplifies as follows (see also illustration on the right),

X and Z are cond. indep. given Y ⇔ P (X, Y, Z) = P (X)P (Y |X)P (Z|Y ). (4)

If three random variables X, Y , and Z satisfy the right-hand side of Eq. 4, then we
say that they form a Markov chain X → Y → Z. A Markov chain can be interpreted
as a memoryless process: if you want to generate a random sample from a Markov
chain, then you can do so by ancestral sampling : you first generate some random sample
x ∼ P (X), then you generate some y ∼ P (Y |X = x), and finally you generate some
z ∼ P (Z |Y = y). Notice that, once you’ve generated the random sample y, you no
longer need to keep x in memory because you won’t need it for generating z. Later
in this course, you will prove the important data processing inequality, which states
that information about the initial random variable X can never increase along a Markov
chain, i.e., IP (X;Z) ≤ IP (X;Y ). The information processing inequality has far reaching
consequences, e.g., on how information can propagate along a deep neural network.
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(b) Show that conditional independence is neither a strictly stronger nor a strictly
weaker property than normal (i.e., unconditional) independence. Thus,

(i) show that two random variables X and Z can be statistically independent
even if they are not conditionally independent given some third random vari-
able Y ;

Hint: Consider our Simplified Game of Monopoly. You already showed in
Problem 4.1 (b) that Xred and Xblue are statistically independent. Now show
that Xred and Xblue are, however, not conditionally independent given Xsum.

(ii) show that two random variables X and Z can be conditionally independent
given some third random variable Y even if X and Z by themselves are not
statistically independent.

Hint: Almost any Markov process will do. For example, you could consider
a sequence of three independent coin tosses and let Ci ∈ {0, 1} be the result
of the ith coin toss. Assume that the coin is bent (why is this necessary?),
i.e., P (Ci = 1) = α and P (Ci = 0) = 1 − α with some α 6= 1

2
. Then define

X := C1, Y := (X + C2) mod 2, and Z := (Y + C3) mod 2. Thus, X and Z
are clearly conditionally independent given Y because they satisfy Eq. 3.
Show by explicit calculation that X and Z, however, do not satisfy normal
statistical independence.

Problem 5.2: Correlated Symbols in Various
Probabilistic Model Architectures

In last week’s lecture, we introduced various architectures for models of complicated
probability distributions. We will make these architectures more concrete and discuss
which compression method works best with which model architecture in upcoming lec-
tures. But before we do this, let’s analyze how capable each model architecture actually
is. In particular, we analyze whether each of the proposed probabilistic models can
capture correlations between symbols in a message, i.e., the fact that, in messages that
appear in the real world, symbols are typically not statistically independent. All models
below describe a message X = (X1, X2, . . . , Xk) where each symbol Xi, i ∈ {1, 2, . . . , k}
is modeled as a random variable with values from some discrete alphabet X.
The four parts (a)-(d) of this problem can be solved independently. So

don’t give up if you have trouble with some part.

(a) Fully factorized models: before we look at more complicated model architec-
tures below, let’s consider the most trivial class of models which assume that all
symbols Xi, i ∈ {1, 2, . . . , k} are statistically independent. Such a model is of-
ten called “fully factorized” because the joint probability distribution P (X) of the
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message X can be written as a product of the marginal distributions:

Pmodel(X) =
k∏
i=1

Pmodel(Xi). (5)

Here, we explicitly reinstated the subscript “model” because we now want to search
for the best model, P ∗model(X), in the form of Eq. 5 that approximates some data
distribution Pdata(X), which is typically not fully factorized.

Thus, consider the cross entropy H
(
Pdata(X), Pmodel(X)

)
. Convince yourself that,

for a model of the form of Eq. 5 (warning: but not for more general models),

H
(
Pdata(X), Pmodel(X)

)
=

k∑
i=1

H
(
Pdata(Xi), Pmodel(Xi)

)
(6)

where, following our usual notation, Pdata(Xi) is the marginal distribution of sym-
bol Xi under Pdata (i.e., the distribution that you obtain if you marginalize P (X)
over all Xj with j 6= i). Then argue that the right-hand side of Eq. 6 is mini-
mized by setting P ∗model(Xi) = Pdata(Xi) for all i. (Hint: what is the cross entropy
H(P, P ) of a distribution with itself, and why is it smaller or equal than any
H(P,Q) for all other distributions Q 6= P?)

Thus, within the class of fully factorized models, the best approximation P ∗model(X)
of an arbitrary distribution Pdata(X) is the product of the marginals, P ∗model(X) =∏k

i=1 Pdata(Xi). Convince yourself that, for this model, the cross entropy is the
sum of the marginal entropies of each symbol under the data distribution,

H
(
Pdata(X), P ∗model(X)

)
=

k∑
i=1

HPdata
[Xi] (for optimal fully factorized model).

(7)

(b) Markov Chains: as discussed in the lecture, a Markov chain models the creation
of a sequence of symbols X1, X2, . . . , Xk as a memoryless stochastic process, i.e.,

P (X) = P (X1)
k∏
i=2

P (Xi |Xi−1) (8)

where, from here on, we drop the subscript “model” for simplicity.

(i) Show that, although each symbol Xi is conditioned only on its immediately
preceding symbol Xi−1 (for i > 1) and not on any earlier symbols, a Markov
chain can still model correlations between any symbols, even if they are not
nearest neighbors. I.e., show that there exists a model of the form of Eq. 8
where all pairs of symbols Xi and Xj with i 6= j are not statistically inde-
pendent.
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Figure 1: (a) autoregressive model, see Problem 5.2 (c); (b) latent variable model, see
Problem 5.2 (d)

Hint: For example, you could consider the Markov chain over the alphabet
X = {0, 1} with P (X1 =0) = P (X1 =1) = 1

2
and

P (Xi=xi |Xi−1 =xi−1) =

{
0.99 for xi = xi−1;

0.01 for xi 6= xi−1.
(9)

Then convince yourself (either by explicit calculation or simply by reasoning
about what this Markov process models) that all marginal probabilities are
P (Xi=0) = P (Xi=1) = 1

2
∀i by symmetry but that, e.g., the conditional

probability P (Xj =1 |Xi=1) > 1
2

for at least for some i 6= j (it actually turns
out that P (Xj =1 |Xi=1) > 1 ∀j ≥ i but this is more difficult to show).

(ii) Now show that, although a Markov chain can model symbols that are not
statistically independent, any two symbols Xi and Xl with l ≥ i + 2 are
conditionally independent given any Xj with i < j < l.

Hint: write out the joint probability of all symbols up to Xl as follows,

P (X1, . . . , Xl) =

(
P (X1)

i∏
α=2

P (Xα |Xα−1)

)
︸ ︷︷ ︸

=P (X1,...,Xi)

(
j∏

α=i+1

P (Xα |Xα−1)

)
︸ ︷︷ ︸

=P (Xi+1,...,Xj |Xi)

×

×

(
l∏

α=j+1

P (Xα |Xα−1)

)
︸ ︷︷ ︸

=P (Xj+1,...,Xl |Xj)

. (10)

What do you get if you now marginalize both sides over all symbols except
Xi, Xj, and Xl? Compare the result to Eq. 4.

(c) Autoregressive models: Figure 1 (a) illustrates an autoregressive model like
the one you’ve used in Problem 3.2. The figure is a graphical representation of the
following factorization of the joint probability distribution,

P (X) =
k∏
i=1

P (Xi |Hi) with H1 = fixed; Hi+1 = f(Hi, Xi) (11)
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where f is some deterministic function (e.g., a neural network). Show that au-
toregressive models are more powerful than Markov chains in that they can model
probability distributions where two symbols Xi and Xl are not conditionally inde-
pendent given some third symbol Xj with i < j < l.

Hint: For example, you could consider a toy autoregressive model over the alphabet
X = {0, 1} with H1 = 0 and Hi+1 = f(Hi, Xi) = (Hi + Xi) mod 10. Thus, the
hidden state Hi counts how many “1” symbols have appeared before symbol Xi

(modulo 10 so that the hidden states don’t grow out of bounds). Now you could
make the probability of “1” symbols depend on Hi, e.g., by setting P (Xi=1 |Hi) =
Hi+1
10

and P (Xi=0 |Hi) = 1− Hi+1
10

. Then, consider the first three symbols X1, X2,
and X3 (the statement is also true for other triples of symbols, but the calculations
are more tedious). Show by explicit calculation that

P (X3 =1 |X1 =1, X2 =1) 6= P (X3 =1 |X2 =1), (12)

i.e., that even this simple toy model already violates the right-hand side of Eq. 3.
The value of the left-hand side of Eq. 12 follows directly from the model definition
but calculating the right-hand side takes a few more steps. Before you do these
calculations, test your understanding by reasoning in words whether you expect
the left-hand side of Eq. 12 to be smaller or larger than the right-hand side.

(d) Latent variable models: Figure 1 (b) illustrates a latent variable model. You’ll
learn how to use latent variable models for effective data compression with the
so-called bits-back trick in the next lecture. But let’s first prove here that latent
variable models can in fact capture correlations between symbols.

The illustration in Figure 1 (b) is a pictorial representation of the following fac-
torization of a joint probability distribution over symbols X = (X1, . . . , Xk) and a
(usually multidimensional) so-called latent variable Z,

P (X, Z) = P (Z)
k∏
i=1

P (Xi |Z). (13)

Here P (Z) is called the “prior distribution” and P (Xi |Z) is called the “likelihood”.
At a first glance, the model architecture in Eq. 13 might look like it couldn’t
possibly capture any correlations between different symbols Xi because the part
of Eq. 13 that describes symbols is fully factorized (similar to the model in Eq. 5).
However, this impression is deceptive because the symbols Xi are only conditionally
independent given the latent Z. However, Z is not part of the message. The
probabilistic model of the message is the marginal distribution of X,

P (X) =


∑

z P (X, Z=z) for discrete Z;∫
P (X, Z=z) dz for continuous Z.

(14)
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Show that the marginal distribution in Eq. 14 can indeed describe correlations
between symbols, i.e., a distribution of this form can model data sources where
any two symbols Xi and Xl are not statistically independent, and are also not
conditionally independent given any different third symbol Xj.

Hint: You could consider, e.g., a toy model over the alphabet X = {0, 1} with
k = 3, scalar Z ∈ {0, 1}, and with a likelihood P (Xi |Z) that is the same for all i.
Come up with some explicit probabilities for P (Z=z) and P (Xi=xi |Z=z) for all
z, xi ∈ {0, 1}. Then show first that P (X1 =x1, X3 =x3) 6= P (X1 =x1)P (X3 =x3)
and finally that P (X3 =x3 |X1 =x1, X2 =x2) 6= P (X3 =x3 |X2 =x2) in your model
for some x1, x2, x3 ∈ {0, 1} of your choice. Try to explain your findings in words
too: why does knowing the value of, e.g., X1 influence the probability distribution
over X3?

No programming problem this week; next week’s problem set will be mostly program-
ming however. You’ll improve our autoregressive compression method for natural lan-
guage by replacing the Huffman coder with a range coder, and you’ll implement and
empirically analyze the bits-back trick for a toy latent variable model.
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