
Solutions to Problem Set 6 discussed:
17 June 2022

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tuebingen

Course materials available at https://robamler.github.io/teaching/compress22/

Problem 6.1: Understanding Information Content

This problem aims to give you a some additional intuition for the concept of “information
content” by considering the most trivial compression problem that one could think of. It
ties back to the UniformCoder that we used in class as a starting point for ANS coding.
The strategy that we use in this problem is something that you might find useful

for approaching any new topic, not just in this course. Whenever there’s something
you feel you don’t quite understand yet, I strongly encourage you to act like you’re
debugging some code that doesn’t work: reduce the problem to the absolute simplest
form, understand that simplified problem, and then gradually build up from that.

Problem Setup. Consider a data source that generates messages x. Different from the
problems so far, we don’t care what these messages are—they could be sequences of sym-
bols but they don’t have to be. All we care about is that the messages come from some
finite set X (which again, could be the product space of some finite alphabet, i.e., X = Xk,
but it doesn’t have to be). Now, we consider the simplest possible probabilistic model:
we assume that the messages are uniformly distributed, i.e., P (X=x) = 1/|X| ∀x ∈ X.

(a) What is the information content of any message x ∈ X?

Solution:

− log2 P (X=x) = − log2
1

|X|
= log2 |X|

■

(b) Take a step back from the setup for a moment and consider the binary representa-
tion of a positive integer n ∈ N. How long is this binary representation, i.e., how
many bits does it contain? Express your result as a mathematical function of n.

Solution: The length of the binary representation of a positive integer n is
⌈log2(n+ 1)⌉, where ⌈·⌉ denotes rounding up to the nearest integer.

To prove this claim, it’s easier to first think about the inverse problem: what are all
the positive integers whose binary representations have some given length ℓ ∈ N?
The smallest of these integers is represented in binary as a single “1” followed by
ℓ−1 zeros, i.e., its value is nsmallest,ℓ = 2ℓ−1; and the largest integer whose binary

1

https://robamler.github.io/teaching/compress22/

representation has length ℓ is represented in binary as a string of ℓ “1”-bits, i.e.,
its value is nlargest,ℓ = 2ℓ − 1.

Let’s now calculate f(n) := ⌈log2(n+ 1)⌉ for each n ∈ {nsmallest,ℓ, . . . , nlargest,ℓ}.
� f(nlargest,ℓ) = ⌈log2(nlargest,ℓ + 1)⌉ = ⌈log2(nℓ − 1 + 1)⌉ = ⌈ℓ⌉ = ℓ;

� for nsmallest,ℓ, we note that log2(nsmallest,ℓ+1) > log2(nsmallest,ℓ) = log2(2
ℓ−1) =

ℓ− 1 where we used that the logarithm is a strictly increasing function;
therefore, when we round up to the nearest integer, we find f(nsmallest,ℓ) =
⌈log2(nsmallest,ℓ + 1)⌉ > ℓ− 1, i.e., f(nsmallest,ℓ) ≥ ℓ (since f maps to integers);

� since the function f is monotonically nondecreasing, we find for all n ∈
{nsmallest,ℓ, . . . , nlargest,ℓ} that f(nsmallest,ℓ) ≤ f(n) ≤ f(nlargest,ℓ). Combin-
ing this with our results f(nsmallest,ℓ) ≥ ℓ and f(nlargest,ℓ) = ℓ, we thus get
ℓ ≤ f(n) ≤ ℓ for all n in the range, i.e., f(n) = ℓ.

This proves the claim. It’s generally a good idea to check for mistakes by consid-
ering some examples:

n: 1 2 3 4 5 6 7 8
binary: (1)2 (10)2 (11)2 (100)2 (101)2 (110)2 (111)2 (1000)2
length: 1 2 2 3 3 3 3 4

log2(n+ 1): 1 1.58 2 2.32 2.58 2.81 3 3.17

Looks good: rounding up the values in the last row to the nearest integer results
in the correct lengths. ■

(c) Back to the compression problem: consider the following encoder for messages
x ∈ X: let f be an arbitrary bijective function from X to the set of integers
{0, . . . , |X| − 1}. To encode a message x ∈ X into a bit string, we simply write
out the integer f(x) in binary. To ensure unique decodability, we make all binary
representations equally long by padding shorter ones with leading zeros to the
length of the longest one (e.g., if the largest number, |X| − 1, is 13 = (1101)2 and
we want to encode some message x with f(x) = 2, then we write out 2 = (0010)2).
Using your result from part (b), calculate the bit rate R(x) ∀x ∈ X. Then use
part (a) to show that this trivial method achieves the theoretical lower bound on
the expected bit rate for lossless compression with less than one bit of overhead.

Solution: Since we pad all binary representations to the same length, the bit rate
R(x) is independent of the message x ∈ X, and it is always the length of the binary
representation of the largest integer, |X|−1. Thus, R(x) = ⌈log2(|X| − 1 + 1)⌉ =
⌈log2 |X|⌉ for all x ∈ X. Compared to the information content of log2 |X|, we thus
have an overhead of less than one bit (since the rounding-up operation ⌈·⌉ increases
a number always by less than one). ■

(d) Now argue—without referring to any fancy information theoretical theorems—why
the lossless compression method from part (c) is obviously optimal (up to maybe
one bit of overhead).

2

Solution: I didn’t expect a very formal answer here; this question was mainly
intended to encourage you to think about what lossy compression means. The goal
of lossy compression is to find an injective mapping from the message space X to
the space of bit strings that makes the resulting bit strings as short as possible. We
typically have a probabilistic model over the message space, and if some message
x ∈ X is more probable than others according to this model, then we try extra
hard to map this message x to a very short bit string even if this means that
several other messages will have to be mapped to a longer bit string so as to avoid
collisions.

But in the toy example that we’re considering here, all messages x ∈ X have the
same probability. Therefore, there’s no reason to treat any one message differently
from the others, and we really just have to map the entire message space X in-
jectively to the |X| shortest bit strings, in arbitrary order. Up to minor details
related to unique decodability, the |X| shortest bit strings are precisely the binary
representations of the numbers {0, 1, . . . , |X| − 1}. ■

Problem 6.2: Streaming ANS in the Style of Piet
Mondrian

In the lecture, we first implemented a SlowAnsCoder that has near-optimal compression
performance but whose run-time cost O(k2) grows quadratic in the message length k.
Figure 1 illustrates how our naive SlowAnsCoder represents compressed data if we were
to encode the following sequence of symbols:1

� a symbol x1 with information content 1.5 bits;

� a symbol x2 with information content 2.2 bits;

� a symbol x3 with information content 1.4 bits;

� a symbol x4 with information content 1.7 bits;

� a symbol x5 with information content 1.9 bits;

� a symbol x6 with information content 0.8 bits;

� a symbol x7 with information content 1.1 bits;

� a symbol x8 with information content 0.7 bits;

� a symbol x9 with information content 1.6 bits; and

� a symbol x10 with information content 1.5 bits.

1We’ll gloss over the fact that, in reality, ANS wouldn’t be able to represent these precise information
contents since the corresponding probabilities 2−(information content) aren’t rational numbers, so they
can’t be precisely represented with the fixed-point model Q.

3

Figure 1: Stream coding with the naive SlowAnsCoder from the lecture notes.

We then reduced the run-time cost to O(k) by splitting the representation of the
compressed data into a fixed-sized head and a variable-sized bulk, resulting in the
“streaming ANS” algorithm. We used a setup where head can hold up to 2×precision

bits. In streaming ANS, encoding normally only pushes compressed data onto head and
leaves bulk untouched; only if encoding onto head would lead to an overflow (i.e., if it
would lead to head ≥ 22×precision) then one first transfers the precision least significant
bits from head to the end of bulk before encoding onto head.
Let’s visualize how streaming ANS would encode the above sequence of ten symbols.

Draw a figure analogous to Figure 1 to sketch what the resulting compressed representa-
tion would look like after each step of the process (i.e., which parts of the bulk and head

correspond to which symbol). Assume precision = 4 (which would be an unreasonably
low precision for real applications but suffices here for demonstration purpose).
You should find that some of the symbols get logically “split up” into two or even

three not necessarily neighboring parts. Further, the very first symbol x1 doesn’t get
flushed from head to bulk until the very end. More precisely, after encoding all ten
symbols and calling get compressed() you get a compressed representation that is a
sequence of four integers, each one being precision = 4 bits long, where

� the first integer encodes x3, x4, and a part of x2;

� the second integer encodes x6, x7, x8, and a part of x5;

� the third integer encodes x9, x10, another part of x2, and another part of x5; and

� the fourth integer encodes x1 and yet another part of x2.

Solution: The following figure shows one possible way to illustrate the encoding
process of streaming ANS. The width of each colored rectangle is proportional to the
information content represented by the rectangle.

4

■

5

Problem 6.3: Range Coding With an Autoregressive
Model for English Text

In Problem 3.2 on Problem Set 3, you trained an autoregressive machine learning model
(a recurrent neural network) to model the probability distribution of English text. You
then used this model as an entropy model for compressing text. Back then, you used a
Huffman coder since we hadn’t introduced stream codes yet.
In this problem, you’ll replace the Huffman coder with a range coder, and you’ll

evaluate empirically how this affects compression performance (i.e., the bit rate).

(a) Before you start: why is it better to use a range coder here and not an ANS coder?

Solution: Range coding operates as a queue (“first in first out”) whereas ANS
operates as a stack (“last in first out”). For autoregressive models, it’s much easier
to encode with queue semantics because both encoder and decoder iterate through
symbols in the message in the same order. We’ll see a compression scenario that
can more easily be addressed with stack semantics on the next problem set. ■

(b) I won’t make you implement the core range coding algorithm because its implemen-
tation is a bit involved due to some edge cases and I don’t think you’ll learn much
from it. Instead, we’ll use a pre-built range coder provided by the constriction

library, which was specially developed with research and teaching use cases in
mind.2 Install constriction by executing (preferably in a virtual environment):

python3 -m pip install constriction~=0.2.4

Then try out the first code example from the API documentation of constriction’s
range coder.3 The example should execute without errors and print some example
message (i.e., a sequence of symbols), encode it, print the compressed representa-
tion, and then decode it and print the reconstructed message.

Read the code example and make sure you understand what it does. You can ignore
anything related to message part2, which shows how to use a model class called
QuantizedGaussian—we won’t need this type of model, only the Categorical

model that’s used for encoding message part1 in this example.

(c) Now use your newly acquired range coding skills to replace the Huffman coder in
our compression method from Problem 3.2. Don’t worry if you haven’t completed
Problem 3.2, you can always download the proposed solutions4 from the course
website. The PDF document that’s part of the solutions also contains instructions
for how to set up your python environment and train the model (you’ll probably
have to reinstall constriction in the new python environment using the same
command as in part (b)).

2If you run into problems with the constriction library, please let me know or report an issue at
https://github.com/bamler-lab/constriction/issues

3https://bamler-lab.github.io/constriction/apidoc/python/stream/queue.html
4https://robamler.github.io/teaching/compress22/problem-set-03-solutions.zip

6

https://github.com/bamler-lab/constriction/issues
https://bamler-lab.github.io/constriction/apidoc/python/stream/queue.html
https://robamler.github.io/teaching/compress22/problem-set-03-solutions.zip

Evaluate the compression performance by comparing the bit rate to (i) the results
that you get with Huffman coding and (ii) the information content under the model
(which is printed to the terminal in the proposed solutions for Problem 3.2).

Solution: See accompanying git bundle. Encoding and decoding is implemented
in the file compression.py; the other files were not changed. For instructions on
how to clone or pull from the git bundle, and how to encode and decode data, see
the solutions to Problem 3.2 (see download link in footnote 4 on page 6).

With this implementation, I obtain a bit rate of 2.11170 bits per character on
the test set, which corresponds to an overhead of 0.02% over the the information
content (2.11129 bits per character). Recall that, with Huffman Coding (Problem
Set 3), the bit rate was 2.38 bits per character, corresponding to an overhead of
12% over the information content.

Thus, the compression performance of the range coder is extremely close to op-
timal. If one wanted to reduce the bitrate further, it really wouldn’t make any
sense at this point to improve the entropy coder. Instead, one should improve the
probabilistic model. ■

7

	Understanding Information Content
	Streaming ANS in the Style of Piet Mondrian
	Range Coding With an Autoregressive Model for English Text

