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Problem 6.1: Understanding Information Content

This problem aims to give you a some additional intuition for the concept of “information
content” by considering the most trivial compression problem that one could think of. It
ties back to the UniformCoder that we used in class as a starting point for ANS coding.
The strategy that we use in this problem is something that you might find useful

for approaching any new topic, not just in this course. Whenever there’s something
you feel you don’t quite understand yet, I strongly encourage you to act like you’re
debugging some code that doesn’t work: reduce the problem to the absolute simplest
form, understand that simplified problem, and then gradually build up from that.

Problem Setup. Consider a data source that generates messages x. Different from the
problems so far, we don’t care what these messages are—they could be sequences of sym-
bols but they don’t have to be. All we care about is that the messages come from some
finite set X (which again, could be the product space of some finite alphabet, i.e., X = Xk,
but it doesn’t have to be). Now, we consider the simplest possible probabilistic model:
we assume that the messages are uniformly distributed, i.e., P (X=x) = 1/|X| ∀x ∈ X.

(a) What is the information content of any message x ∈ X?

(b) Take a step back from the setup for a moment and consider the binary representa-
tion of a positive integer n ∈ N. How long is this binary representation, i.e., how
many bits does it contain? Express your result as a mathematical function of n.

(c) Back to the compression problem: consider the following encoder for messages
x ∈ X: let f be an arbitrary bijective function from X to the set of integers
{0, . . . , |X| − 1}. To encode a message x ∈ X into a bit string, we simply write
out the integer f(x) in binary. To ensure unique decodability, we make all binary
representations equally long by padding shorter ones with leading zeros to the
length of the longest one (e.g., if the largest number, |X| − 1, is 13 = (1101)2 and
we want to encode some message x with f(x) = 2, then we write out 2 = (0010)2).
Using your result from part (b), calculate the bit rate R(x) ∀x ∈ X. Then use
part (a) to show that this trivial method achieves the theoretical lower bound on
the expected bit rate for lossless compression with less than one bit of overhead.

(d) Now argue—without referring to any fancy information theoretical theorems—why
the lossless compression method from part (c) is obviously optimal (up to maybe
one bit of overhead).
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Figure 1: Stream coding with the naive SlowAnsCoder from the lecture notes.

Problem 6.2: Streaming ANS in the Style of Piet
Mondrian

In the lecture, we first implemented a SlowAnsCoder that has near-optimal compression
performance but whose run-time cost O(k2) grows quadratic in the message length k.
Figure 1 illustrates how our naive SlowAnsCoder represents compressed data if we were
to encode the following sequence of symbols:1

� a symbol x1 with information content 1.5 bits;

� a symbol x2 with information content 2.2 bits;

� a symbol x3 with information content 1.4 bits;

� a symbol x4 with information content 1.7 bits;

� a symbol x5 with information content 1.9 bits;

� a symbol x6 with information content 0.8 bits;

� a symbol x7 with information content 1.1 bits;

� a symbol x8 with information content 0.7 bits;

� a symbol x9 with information content 1.6 bits; and

� a symbol x10 with information content 1.5 bits.

We then reduced the run-time cost to O(k) by splitting the representation of the
compressed data into a fixed-sized head and a variable-sized bulk, resulting in the
“streaming ANS” algorithm. We used a setup where head can hold up to 2×precision

bits. In streaming ANS, encoding normally only pushes compressed data onto head and
leaves bulk untouched; only if encoding onto head would lead to an overflow (i.e., if it
would lead to head ≥ 22×precision) then one first transfers the precision least significant
bits from head to the end of bulk before encoding onto head.

1We’ll gloss over the fact that, in reality, ANS wouldn’t be able to represent these precise information
contents since the corresponding probabilities 2−(information content) aren’t rational numbers, so they
can’t be precisely represented with the fixed-point model Q.
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Let’s visualize how streaming ANS would encode the above sequence of ten symbols.
Draw a figure analogous to Figure 1 to sketch what the resulting compressed representa-
tion would look like after each step of the process (i.e., which parts of the bulk and head

correspond to which symbol). Assume precision = 4 (which would be an unreasonably
low precision for real applications but suffices here for demonstration purpose).
You should find that some of the symbols get logically “split up” into two or even

three not necessarily neighboring parts. Further, the very first symbol x1 doesn’t get
flushed from head to bulk until the very end. More precisely, after encoding all ten
symbols and calling get compressed() you get a compressed representation that is a
sequence of four integers, each one being precision = 4 bits long, where

� the first integer encodes x3, x4, and a part of x2;

� the second integer encodes x6, x7, x8, and a part of x5;

� the third integer encodes x9, x10, another part of x2, and another part of x5; and

� the fourth integer encodes x1 and yet another part of x2.

Problem 6.3: Range Coding With an Autoregressive
Model for English Text

In Problem 3.2 on Problem Set 3, you trained an autoregressive machine learning model
(a recurrent neural network) to model the probability distribution of English text. You
then used this model as an entropy model for compressing text. Back then, you used a
Huffman coder since we hadn’t introduced stream codes yet.
In this problem, you’ll replace the Huffman coder with a range coder, and you’ll

evaluate empirically how this affects compression performance (i.e., the bit rate).

(a) Before you start: why is it better to use a range coder here and not an ANS coder?

(b) I won’t make you implement the core range coding algorithm because its implemen-
tation is a bit involved due to some edge cases and I don’t think you’ll learn much
from it. Instead, we’ll use a pre-built range coder provided by the constriction

library, which was specially developed with research and teaching use cases in
mind.2 Install constriction by executing (preferably in a virtual environment):

python3 -m pip install constriction~=0.2.4

Then try out the first code example from the API documentation of constriction’s
range coder.3 The example should execute without errors and print some example
message (i.e., a sequence of symbols), encode it, print the compressed representa-
tion, and then decode it and print the reconstructed message.

2If you run into problems with the constriction library, please let me know or report an issue at
https://github.com/bamler-lab/constriction/issues

3https://bamler-lab.github.io/constriction/apidoc/python/stream/queue.html
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Read the code example and make sure you understand what it does. You can ignore
anything related to message part2, which shows how to use a model class called
QuantizedGaussian—we won’t need this type of model, only the Categorical

model that’s used for encoding message part1 in this example.

(c) Now use your newly acquired range coding skills to replace the Huffman coder in
our compression method from Problem 3.2. Don’t worry if you haven’t completed
Problem 3.2, you can always download the proposed solutions4 from the course
website. The PDF document that’s part of the solutions also contains instructions
for how to set up your python environment and train the model (you’ll probably
have to reinstall constriction in the new python environment using the same
command as in part (b)).

Evaluate the compression performance by comparing the bit rate to (i) the results
that you get with Huffman coding and (ii) the information content under the model
(which is printed to the terminal in the proposed solutions for Problem 3.2).

4https://robamler.github.io/teaching/compress22/problem-set-03-solutions.zip
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