
Problem Set 7 published: 3 June 2022
discussion: 24 June 2022

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tuebingen

Course materials available at https://robamler.github.io/teaching/compress22/

Bits-Back Coding With a Latent Variable Model

This problem set guides you through the implementation of the bits-back trick that we
covered in the lecture. We will use a toy example model here, but the same technique
that we use here is also applied in the literature to powerful deep latent variable models
such as hierarchical variational autoencoders (discussed in the lecture on June 23), both
for lossy and lossless compression.
The individual problems on this problem set guide

101 102 103 104

message length k [log]

0.6

0.8

1.0

1.2

bi
ts

 p
er

 sy
m

bo
l independently

MAP
bits-back
uncompressed

you step by step through the implementations of
three different compression techniques that are all
based on the same probabilistic model. You will
then compare the bit rates of these three compres-
sion techniques on some artificial test data. Your
comparison will generate the plot on the right, which
already made an appearance in the lecture. Use
this plot to test your knowledge: once you
worked through this problem set, you should
understand every aspect of this plot (see concrete questions in Problem 5.5).

Setting up Your System

The accompanying jupyter notebook already contains most of the boilerplate code.
You’ll only need to fill in some critical missing parts. Make sure you execute the
jupyter notebook from an environment where you can install python packages. The
recommended way to do this is to create a virtual environment. To do this, execute the
following commands from the directory that contains the file problem-set-06.ipynb:

python -m pip install virtualenv

python -m virtualenv venv

source venv/bin/activate

python -m pip install notebook matplotlib

jupyter notebook

The last command should open a new browser tab with a directory listing. Click on
“problem-set-06.ipynb” to open the notebook that contains the prepared code templates.
All further instructions are given directly in the jupyter notebook. For your reference,

a static rendering of this notebook is appended below.

1

https://robamler.github.io/teaching/compress22/

problem-set-07-static-rendering

June 24, 2022

1 Problem Set 7: Bits-Back Coding With a Latent Variable Model
Course: Data Compression With And Without Deep probabilistic models (Prof. Robert Bamler
at University of Tuebingen)

• This notebook is part of Problem Set 7, published on 3 June 2022 and discussed on 24 June
2022.

• You can download the full problem set (and solutions) from the course website.

This problem set guides you through the implementation of the bits-back trick that we covered in
the lecture. We will use a toy example model here, but the same technique that we use here is also
applied in the literature to powerful deep latent variable models such as hierarchical variational
autoencoders (discussed in the lecture on June 23), both for lossy and lossless compression.

1.1 Overview of the Problem Set
This problem set consists of five problems. Problem 7.1 covers all the prep work: we’ll introduce
a latent variable model for a hypothetical data source, we’ll generate some artificial test data, and
we’ll install an external library that will ultimately take care of entropy coding in the subsequent
problems. Problems 7.2-7.4 then guide you step by step through the implementation of three
different compression techniques:

• in Problem 7.2, you’ll implement a naive compression method that simply ignores correlations
between symbols in a message;

• in Problem 7.3, you’ll encode and transmit a MAP estimated latent variable, and then encode
the message conditioned on the MAP estimate; and

• in Problem 7.4, you’ll improve on the method from Problem 7.3 by using the bits-back trick.

Finally, in problem 7.5, you will compare the bit rates of the above three compression methods
empirically, and you will discuss and explain their differences. This discussion in Problem 7.5 is
the most important part of this problem set. Use this discussion to test your understanding:
once you worked through this problem set and implemented all three compression methods, you
should be able to answer all questions in Problem 7.5.

1.2 Problem 7.1: Prerequisites
You won’t yet write much code in this problem, we’ll just set up everything here so that you can
get your hands dirty in Problems 7.2-7.4 below.

1

1.2.1 Problem 7.1 (a): a library of entropy coding primitives

On this problem set, we’ll focus on the interplay between data compression and probabilistic model
architectures. In other words, we’ll address the question “which random variables have to be
encoded or decoded with which probabilistic models and in which order?”. Once we’ve figured this
out, we’ll delegate the actual task of encoding and decoding the symbols to a third party library
that provides the ANS algorithm (which we also discussed and implemented in class).

We’ll use the constriction library, which we already used in Problem 6.3 on the last problem set,
but this time we’ll use constriction’s ANS coder rather than its range coder (please report issues
if you run into problems with constriction).

To install constriction, execute the following cell:

[]: import sys
!{sys.executable} -m pip install constriction~=0.2.4 matplotlib

Collecting constriction~=0.2.4
Using cached

constriction-0.2.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (368
kB)
Requirement already satisfied: matplotlib in
/home/robamler/Dropbox/teaching/compress22/venv/lib/python3.9/site-packages
(3.5.2)
Requirement already satisfied: numpy~=1.19 in
/home/robamler/Dropbox/teaching/compress22/venv/lib/python3.9/site-packages
(from constriction~=0.2.4) (1.22.4)
Requirement already satisfied: packaging>=20.0 in
/home/robamler/Dropbox/teaching/compress22/venv/lib/python3.9/site-packages
(from matplotlib) (21.3)
Requirement already satisfied: python-dateutil>=2.7 in
/home/robamler/Dropbox/teaching/compress22/venv/lib/python3.9/site-packages
(from matplotlib) (2.8.2)
Requirement already satisfied: pillow>=6.2.0 in
/home/robamler/Dropbox/teaching/compress22/venv/lib/python3.9/site-packages
(from matplotlib) (9.1.1)
Requirement already satisfied: cycler>=0.10 in
/home/robamler/Dropbox/teaching/compress22/venv/lib/python3.9/site-packages
(from matplotlib) (0.11.0)
Requirement already satisfied: pyparsing>=2.2.1 in
/home/robamler/Dropbox/teaching/compress22/venv/lib/python3.9/site-packages
(from matplotlib) (3.0.9)
Requirement already satisfied: fonttools>=4.22.0 in
/home/robamler/Dropbox/teaching/compress22/venv/lib/python3.9/site-packages
(from matplotlib) (4.33.3)
Requirement already satisfied: kiwisolver>=1.0.1 in
/home/robamler/Dropbox/teaching/compress22/venv/lib/python3.9/site-packages
(from matplotlib) (1.4.2)
Requirement already satisfied: six>=1.5 in

2

/home/robamler/Dropbox/teaching/compress22/venv/lib/python3.9/site-packages
(from python-dateutil>=2.7->matplotlib) (1.16.0)
Installing collected packages: constriction
Successfully installed constriction-0.2.4

Now, test constriction by running the example code below. Carefully read the example code and
make sure you understand how the showcased parts of the library are used.

[]: import constriction
import numpy as np

Specify a probabilistic model of a data source (typically referred to as an
"entropy model"). We'll use a categorical distribution with P(X=0) = 0.3,
P(X=1) = 0.4, P(X=2) = 0.2, and P(X=3) = 0.1 in this example.
probs = np.array([0.3, 0.4, 0.2, 0.1], dtype=np.float64) # (must be float64)
entropy_model = constriction.stream.model.Categorical(probs)

Define two example messages; symbols must be 32-bit signed integers within the
range from zero (inclusively) to `len(probs)` (exclusively).
message1 = np.array([3, 0, 1, 0, 2, 3, 2, 2], dtype=np.int32)
message2 = np.array([1, 3, 2, 1, 3], dtype=np.int32)

Construct an entropy coder that uses the Asymmetric Numeral Systems (ANS)
method that we introduced in class. Then encode both example messages using
the coder and the entropy model.
#
Please note:
- we encode both messages with the same entropy model here for simplicity, but
you could also use a different entropy model for each message, as long as
you use the same models for encoding and decoding (see exercise below); and
- when you construct `coder` below, you could also provide some initial bit
string to the constructor; encoding would then *append* to this bit string.
coder = constriction.stream.stack.AnsCoder()
coder.encode_reverse(message2, entropy_model) # We encode `message2` before
coder.encode_reverse(message1, entropy_model) # `message1` since ANS is a stack.

Get the compressed data as an array of unsigned 32-bit integers (this is how
the `constriction` library represents compressed data by default).
compressed = coder.get_compressed()
print(f'bit rate: {len(compressed)*32} (includes padding to a multiple of 32).')
print(f'compressed: {compressed}') # should print: "[3521629398 430756]"

Create a decoder and decode the messages.
Please note:
- we're *popping the messages off the stack*, so we'll first get `message1`
and then `message2`;
- the `AnsCoder` class actually doesn't distinguish between an encoder and a
decoder, i.e., you could also use the original `coder` for decoding; and

3

- the second argument to the method `decode` is the number of symbols you want
to decode (if you leave out this argument you'll decode a single symbol).
decoder = constriction.stream.stack.AnsCoder(compressed)
reconstruction1 = decoder.decode(entropy_model, 8) # (decodes 8 i.i.d. symbols)
reconstruction2 = decoder.decode(entropy_model, 5) # (decodes 5 i.i.d. symbols)

Verify correctness.
assert np.all(reconstruction1 == message1)
assert np.all(reconstruction2 == message2)
print('Both messages reconstructed successfully.')

An `AnsCoder` encapsulates a compressed bit string. Encoding symbols *appends*
data to the encapsulated bit string and decoding symbols *consumes* data from
the encapsulated bit string (with "stack" semantics). Thus, once you've
decoded all symbols, the encapsulated bit string is empty:
assert len(decoder.get_compressed()) == 0

bit rate: 64 (includes padding to a multiple of 32).
compressed: [3521629398 430756]
Both messages reconstructed successfully.

Your Task: To verify that you understand how the library works, change the above example so
that it still encodes both message1 and message2, but now with different entropy models. While
message1 should be encoded and decoded as before, message2 should now be encoded and decoded
with a model that supports only the alphabet {1, 2, 3} (i.e., it doesn’t support the symbol “0”),
and the probabilities are 𝑃(𝑋𝑖 = 1) = 0.5, 𝑃(𝑋𝑖 = 2) = 0.2, and 𝑃 (𝑋𝑖 = 3) = 0.3. Your
implementation should print the compressed representation as being [2884514895 59071],
and it should then be able to successfully reconstruct both messages.

Hint: constriction.stream.model.Categorical can only model distributions over a range of
symbols that starts at zero. So you’ll have to define a categorical probability distribution over
the alphabet {0, 1, 2} and encode message2 - 1 instead of message2. And when you decode the
message, use reconstruction2 = decoder.decode(...) + 1.

If you want to play around more with the constriction library then you may want to refer to its
API documentation.

1.2.2 Problem 7.1 (b): Latent Variable Model

Now, let’s set up everything we need for Problems 7.2-7.4 below, where you will implement three
different compression techniques.

The first step is to define a probabilistic model of a data source. We will use a very simple
probabilistic model so that you can focus on the coding techniques and you don’t get distracted by
complicated model architectures. Unfortunately, this means that our example model is somewhat
contrived. Don’t get discouraged by this! The same techniques that you will learn at the example
of this toy model have recently been applied to powerful deep learning models such as variational
autoencoders (which we’ll cover in the lecture on June 23), resulting in some of the most competitive
image and video compression methods. Trying out the same techniques on a simplified toy model

4

will allow you to easily change parameters so that you can explore why certain methods work better
or worse in different regimes (see Problem 5.5 below).

We consider messages x = (𝑥1, 𝑥2, … , 𝑥𝑘) that are sequences of 𝑘 binary symbols, 𝑥𝑖 ∈ {0, 1} ∀𝑖 ∈
{1, … , 𝑘}, where the message length 𝑘 is known to both the sender and the receiver. Our proba-
bilistic model of the data source assumes that each symbol 𝑥𝑖 was generated by throwing a die and
then setting:

𝑥𝑖 = {1 if the die throw resulted in 1, 2, 3, 4, or 5
0 otherwise.

However, the die that is used to generate these symbols is not a standard six-sided die. Instead, it
is a fair 𝑧-sided die, where 𝑧 can be any integer between 10 and 60 (both inclusively). Importantly,
the value of 𝑧 is not part of the message, but it is the same for all symbols 𝑥𝑖 within one message
(but can be different for different messages). In this sense, 𝑧 is similar to the latent “topic” of the
newspaper headlines that we discussed in the lecture, which was also not part of the message and
assumed to be the same for all words in any given headline.

Thus, the probabilistic model 𝑃(X) of the messages X results from marginalizing over a latent
variable 𝑍 ∈ {10, … , 60} in a joint probability distribution 𝑃(X, 𝑍), i.e.,

𝑃(X) =
60

∑
𝑧=10

𝑃(X, 𝑍 = 𝑧)

where the joint probability distribution factorizes as follows,

𝑃(X, 𝑍) = 𝑃(𝑍) 𝑃(X|𝑍) = 𝑃(𝑍)
𝑘

∏
𝑖=1

𝑃 (𝑋𝑖|𝑍).

We assume that we have no prior knowledge about the value of 𝑍 (apart from the fact that it is in
the range from 10 to 60). In statistics speak, this means that the so-called prior distribution 𝑃(𝑍)
is the distribution over {10, … , 60} with maximum entropy, i.e., the uniform distribution,

𝑃(𝑍 = 𝑧) = 1
51 for all 𝑧 ∈ {10, … , 60}.

The likelihood 𝑃(𝑋𝑖|𝑍) follows from the die-throwing process described above, i.e.,

𝑃(𝑋𝑖 = 𝑥𝑖 | 𝑍 = 𝑧) = {
5
𝑧 if 𝑥𝑖 = 1;
𝑧−5

𝑧 if 𝑥𝑖 = 0.

The following code defines the prior and likelihood. Read it carefully and make sure you understand
what both functions do and why they match the above mathematical definitions.

[]: import numpy as np
import constriction
import matplotlib.pyplot as plt

5

[]: domain_z = np.arange(10, 60 + 1)
domain_x = np.array([0, 1])

def prior(z):
prior_probability = 1 / len(domain_z)
if isinstance(z, np.ndarray):

If `z` is an array then return an array with the prior probability of
each element of `z` (which is always simply `1 / len(domain_z)`).
return np.full(z.shape, prior_probability)

else:
return prior_probability

def likelihood(x, z):
The following line acts like an `if` statement but it also works if `x` is
an array of symbols rather than a single symbol (in which case it returns
an array whose elements are the likelihood of each `x[i]`).
return (x * 5 + (1 - x) * (z - 5)) / z

Verify Model Correctness and Generate Toy Data It’s always a good idea to check em-
pirically if we’ve made any obvious mistake in the model definition (like missing a prefactor, etc.).
We want to catch such mistakes early because they will be very hard to detect later on (even if we
made a mistake in the model definition, it’s possible that all the compression methods on top of it
will still technically work, they will just perform worse than they could).

A simple way to check for obvious errors in the model definition is to implement the generative
process in the most naive way possible (so that you can be sure it’s correct), generate some random
samples from the model, plot histograms of these random samples, and then just visually compare
the histograms to the model. As a side effect of this, we also get some toy data that we will later
use to test our compression methods.

Note: We only test the likelihood here, i.e., we pretend that we know the value of the latent
variable 𝑍. In the full problem, we assume that at least the receiver doesn’t know the value of 𝑍.

[]: rng = np.random.RandomState(123) # Set a random seed to make tests reproducible.

num_samples_per_z = 10000
samples_x = np.empty((len(domain_z), num_samples_per_z), dtype=np.int32)
fig, axs = plt.subplots(1, (len(domain_z)+9)//10, figsize=(14,2.5), sharey=True)

for z_index, z in enumerate(domain_z):
Generate some samples from the likelihood P(X_i|Z=z) in the most straight-
forward way possible so that we can be confident there's no bug here.
for i in range(num_samples_per_z):

Note: `rng.choice(z)` returns a value from 0 to `z-1`.
samples_x[z_index, i] = 1 if rng.choice(z) < 5 else 0

if z_index % 10 == 0:
Plot the likelihood for every 10th value of z.

6

ax = axs[z_index // 10]
ax.set_title(f'$z = {z}$')
ax.hist(samples_x[z_index], label='empirically',

weights=[1/num_samples_per_z] * num_samples_per_z)
ax.plot([0, 1], likelihood(domain_x, z), 'o', label='model likelihood')
ax.set_xlabel('value x_i')
ax.set_xlim(-0.5, 1.5)
ax.set_xticks([0, 1])
ax.set_xticklabels([0, 1])

axs[0].set_ylabel('fraction of symbols\nwith value x_i')
axs[0].legend(loc='upper left')

fig.subplots_adjust(wspace=0.04)

Your Task Look at the above graphs and make sure you understand what they show (you’ll
probably have to refer to the code for this purpose). Then make sure that you understand why the
graphs are consistent with what we expect from the model.

In particular, you should notice:

• that the models (organge dots) match the empirical distributions (blue bars) up to small
deviations (some amount of noise should be expected);

• that the likelihood for 𝑧 = 10 looks like it’s symmetric; why is this what we expect for the
case 𝑧 = 10?

• that, for increasing 𝑧, both the empirical distribution and the model likelihood start to favor
the symbol “0”; why is this, too, consistent with our expectation?

1.2.3 Problem 7.1 (c): Test Harness

As a final setup step before we can do get to the interesting parts, the following code defines a generic
function that we’ll use to test and benchmark the three compression methods we’ll implement in
Problems 7.2-7.4. Read the doc string and make sure you understand it, then move on to Problem
7.2, where you’ll finally implement the first compression method.

[]: def test_compression_method(encode, decode, message_length=100):
"""Verify correctness and evaluate compression performance.

7

This function encodes several random messages from the model into a single
bit string by repeatedly calling the provided callback `encode`. It then
decodes all messages from the resulting compressed bit string by repeatedly
calling the provided callback `decode`, and it verifies that all decoded
messages match the original messages. The function returns the average bit
rate per symbol (averaged over all symbols in all test messages).

Thus, this function simulates a real-world scenario where you'd typically
use a single channel to communicate several messages. All sample messages
are *independent* draws from the probabilistic model. Thus, while the
symbols *within each message* are all generated with the same latent z,
the value of z can differ across messages. Therefore, the *concatenation*
of the sample messages would *not* be distributed according to the
probabilistic model. Again, this simulates the typical real-world scenario:
if you were to communicate, e.g., a sequence of images, then you'd expect
each individual image to show some scene, but it would be unreasonable to
assume that the concatenation of all images would also show a single scene.

Args:
encode: function with signature `encode(message, existing_compressed)`.

When called, the function should compress `message` by appending a
compressed representation of it to `existing_compressed` and return
the resulting (now longer) compressed bit string.

decode: a function with signature `decode(compressed, message_length)`.
The function should decode a message of length `message_length`
from the *end* of the bit string `compressed` and return a tuple
`(message, remaining)`, where `message` is the decoded message and
`remaining` is any part of the original bit string `compressed` that
is left over after decoding.

message_length: the number of symbols per message (defaults to 100).

Returns:
float: the average bit rate per symbol.

"""

assert message_length <= samples_x.shape[1]

Compress the messages, starting with no compressed data, and growing the
buffer of compressed data in each step.
[Technical note: this function is for demonstration purpose; in a real
application, you'd want to pass around `AnsCoder`s instead of raw
compressed data so that the `encode` callback doesn't have to copy
compressed data into and out of an `AnsCoder` all the time.]
compressed = np.array([], dtype=np.uint32)
for i, z in enumerate(domain_z):

compressed = encode(samples_x[i, :message_length], compressed)

8

The bit string `compressed` is represented as an array of 32-bit integers.
total_bitrate = len(compressed) * 32

Decompress the data and verify that we reconstruct the original messages.
We iterate *in reverse order* since we assume that the encoder-decoder
pair that the caller provided operates as a stack.
for i, z in reversed(list(enumerate(domain_z))):

reconstructed, compressed = decode(compressed, message_length)
assert np.all(reconstructed == samples_x[i, :message_length])

return total_bitrate / (message_length * len(domain_z))

1.3 Various Compression Techniques
Problems 7.2-7.4 below make up the main part of this problem set. You’ll implement three different
techniques to encode data from the data source defined in Problem 7.1 (b) above. You’ll start with
a trivial technique in Problem 7.2 and then gradually increase the complexity in Problems 7.3
and 7.4. In Problem 7.5, you’ll compare the empirical compression performances of these three
techniques.

1.4 Problem 7.2: Compressing Without Exploiting Correlations
1.4.1 Problem 7.2 (a): Define a Simplified Model of the Data Source

Our simplest compression technique just ignores any correlations between the symbols 𝑋𝑖 that
result from the marginalization over the latent variable 𝑍. Thus, while the data that we want
to compress will still come from the probability distribution 𝑃 defined in Problem 7.1 (b) above,
we don’t actually use this probability distribution as our entropy model for compression for now.
Instead, we use a simplified model 𝑃 ′ that factorizes over all symbols,

𝑃 ′(X) =
𝑘

∏
𝑖=1

𝑃 ′(𝑋𝑖)

and we simply encode all messages by encoding each symbol independently with the entropy model
𝑃 ′. We therefore don’t even have to encode and transmit any value of 𝑍 to the receiver.

Your Tasks:

1. Remind yourself that, within the constraints of such a fully factorized model, the optimal
probability distribution 𝑃 ′(𝑋𝑖) for each symbol is the marginal probability under the model,
i.e., 𝑃 ′

optimal(𝑋𝑖) = 𝑃(𝑋𝑖) ≡ ∑60
𝑧=10 𝑃(𝑍 = 𝑧)𝑃 (𝑋𝑖|𝑍 = 𝑧). Refer to Problem 5.2 (a) from

last week’s problem set if this is not clear to you.
2. Implement the function marginal_symbol_probability below and verify that it returns the

correct result when applied to domain_x, as indicated in the comment below.

[]: def marginal_symbol_probability(x):
YOUR TASK: marginalize $P(Z, X_i=x) = P(Z) P(X_i=x|Z)$ over all Z in
`domain_z` and return the resulting marginal probability $P(X_i=x)$.
If `x` is an array of symbols rather than a single symbol, then calculate

9

P(X_i=x[i])$ for each array entry `x[i]` and return an array of the
results. (about 4 lines of code)

[]: # This should return `array([0.818539, 0.181461])`.
marginal_symbol_probability(domain_x)

[]: array([0.818539, 0.181461])

Looks reasonable, it’s somewhere between the two extreme cases for 𝑧 = 10 and 𝑧 = 60 in the plots
from Problem 7.1 (b) above.

1.4.2 Problem 7.2 (b): Implement and Test the Encoder and Decoder

Your Task: Now, let’s get real! Implement functions encode_independently and
decode_independently that encode and decode a message by using the marginal probability dis-
tribution 𝑃(𝑋𝑖) for each symbol, which you calculated above. These methods should behave as
described in the doc string of the function test_compression_method (see Problem 7.1 (c) above).
You may find it useful to refer back to Problem 7.1 (a) to refresh your memory of how to construct
an AnsCoder with some existing compressed data, how to encode and decode some symbols with
it, and how to get the compressed data out of an AnsCoder.

Once you’ve implemented both the encoder and the decoder, run the unit test as indicated below
and make sure that it passes.

[]: def encode_independently(message, existing_compressed):
YOUR TASK: fill in the function body (about 3-5 lines of code)

def decode_independently(compressed, message_length):
YOUR TASK: fill in the function body (about 3-5 lines of code)

[]: # This should run without raising an exception and return an average
bit rate of about 0.69 bits per symbol.
test_compression_method(encode_independently, decode_independently)

[]: 0.6901960784313725

1.5 Problem 7.3: Compressing With a Maximum A-Posteriori (MAP) Estimate
of 𝑍

In this problem, you will encode the message x = (𝑥1, 𝑥2, … , 𝑥𝑘) with a more accurate model than
the simplified model 𝑃 ′ from Problem 5.2. To do this, you will exploit the fact that the stochastic
process that generated the message used the same value 𝑧 of the latent variable 𝑍 for generating
all symbols 𝑥𝑖 within any given message. Thus, if we know 𝑧, then the likelihood 𝑃(𝑋𝑖|𝑍 = 𝑧)
should be a better model for encoding each symbol in a message than 𝑃 ′(𝑋𝑖).
Unfortunately, the receiver doesn’t know which 𝑧 was used to generate the message. Thus, you’ll
have to encode and transmit not only the message x but also a value 𝑧 for the latent variable
𝑍 (even though 𝑧 is not part of the message). But which value 𝑧 should you encode? First off,
the sender might know the true value of 𝑍 that was used during the generation of the message

10

(depending on the circumstances of how our compression method gets deployed). But this “ground
truth” value of 𝑍 is actually irrelevant here because it is not part of the message and so we don’t
care about transmitting it. We only care about transmitting the message x, and about making
the compressed representation as short as possible. Thus, we should set 𝑍 = 𝑧∗, where 𝑧∗ is not
necessarily the ground truth value of 𝑍 but instead the one that results in the shortest total bit
rate when using the above described encoding scheme. As we discussed in the lecture, we get 𝑧∗

by minimizing the joint information content of 𝑍 and the given message x over 𝑍,

𝑧∗ = arg min
𝑧

[− log 𝑃(X = x, 𝑍 = 𝑧)] = arg max
𝑧

[log 𝑃(𝑍 = 𝑧) +
𝑘

∑
𝑖=1

log 𝑃(𝑋𝑖 = 𝑥𝑖 | 𝑍 = 𝑧)] .

Note that:

• The logarithm may seem unnecessary for taking the arg max, but it is important in practice
because it prevents numerical underflow as 𝑃(X = x | 𝑍 = 𝑧) = ∏𝑘

𝑖=1 𝑃(𝑋𝑖 = 𝑥𝑖 | 𝑍 = 𝑧) is
exponentially small in 𝑘.)

• As discussed in the lecture, the solution 𝑧∗ is also called the maximum a-posteriori (MAP)
solution since maximizing the joint distribution 𝑃(X = x, 𝑍) over all possible values of 𝑍 is
equivalent to maximizing the posterior distribution, 𝑃(𝑍 | X = x) = 𝑃(X = x, 𝑍) / 𝑃(X = x)
(because the posterior and the joint only differ by the positive factor 𝑃 (X = x), which is a
constant for any given message x).

Your tasks:

1. Implement the function map_estimate below, which takes a message (i.e., x) and returns 𝑧∗.
2. Make sure you didn’t make any obvious mistake by running the code below that tests

map_estimate on some of our sample messages and generates a visualization of the results.
3. Then implement an encoder and decoder (similar to Problem 7.2) and test them.

• Remember that, in this problem, you have to transmit both the message x and the
latent variable 𝑧∗, and you’ll need to use different entropy models for the two (use the
prior 𝑃(𝑍) to encode 𝑧∗ and the likelihood 𝑃(𝑋𝑖|𝑍 = 𝑧∗) to encode each symbol in the
message). You should have experience in this kind of task from solving Problem 7.1 (a).

• Also remember that the AnsCoder that we’re using here is a stack. So you’ll have to
encode first x and then 𝑧∗ because the decoder will have to decode 𝑧∗ first so it can use it
to calculate the likelihood 𝑃(𝑋𝑖|𝑍 = 𝑧∗) for decoding x. (For the current problem, you
could also use a range coder, which operates as a queue as discussed in the lecture on 19
May, but Problem 7.4 below will be much easier to solve with a stack; the constriction
library provides a range coder implementation whose API is very similar to that of the
AnsCoder; if you’re curious, refer to the API documentation for range coding)

[]: def log_joint_probability(message, z):
This is already provided for you. You don't need to change it.
(But you should understand it.)
return np.log(prior(z)) + np.sum(np.log(likelihood(message, z)))

def map_estimate(message):
YOUR TASK: fill in the function body (about 4 lines of code)

Check that you didn’t make any obvious mistake:

11

[]: fig, axs = plt.subplots(1, 3, figsize=(8, 2.5), sharey=True)

for ax, message_length in zip(axs, [10, 100, 1000]):
map_estimates = [map_estimate(samples_x[i, :message_length])

for i in range(len(domain_z))]
ax.set_title(f'$k={message_length}$')
ax.plot(domain_z, map_estimates, label='MAP estimate')
ax.plot(domain_z, domain_z, '--', c='gray', label='ground truth')
ax.set_xlabel('true z')

axs[0].set_ylabel('MAP estimate')
axs[-1].legend(loc='upper left', bbox_to_anchor=(1, 1))
fig.subplots_adjust(wspace=0.04)

You should see that the MAP estimates (blue lines) are close to the ground truth for long messages
(right plot) but the two may be very different for short messages (left plot). This is to be expected
since short messages are more susceptible to noise, so a message generated with some 𝑍 = 𝑧† may,
by coincidence, actually look more as if it had been generated with some different 𝑍 = 𝑧∗. In such
a case, it would be foolish to compress the message with the entropy model 𝑃(X|𝑍 = 𝑧†) since
you’ll get a lower bit rate with the entropy model 𝑃(X|𝑍 = 𝑧∗).

[]: Categorical = constriction.stream.model.Categorical # shortcut for convenience

def encode_map(message, existing_compressed):
YOUR TASK: fill in the function body (about 5-8 lines of code)

def decode_map(compressed, message_length):
YOUR TASK: fill in the function body (about 4-8 lines of code)

[]: # This should run without raising an exception and return an average bit rate of
about 0.70 bits per symbol. You'll do a more thorough quantitative comparison
between the various compression methods in Problem 7.5 below.
test_compression_method(encode_map, decode_map)

12

[]: 0.7027450980392157

1.6 Problem 7.4: Bits-Back Coding
You’ll now implement the bits-back coding algorithm. This compression method is similar to
the method you implemented in Problem 7.3 above. However, instead of setting 𝑍 to the MAP
estimate 𝑧∗, the encoder will now sneak some side information into its choice of value for 𝑍. This
side information can be any bit string that we may want to transmit; in our implementation, the
side information will be the end of some previously compressed data. The decoder will then be
able to recover this side information (in addition to being able to recover the encoded message).

1.6.1 Problem 7.4 (a): Bayesian Inference (i.e., Obtaining the Posterior Distribution)

As discussed in the lecture, the first step of bits-back coding is to perform Bayesian inference. Thus,
given a message x that you want to compress, you have to find the posterior probability distribution,

𝑃(𝑍 | X = x) = 𝑃(X = x, 𝑍)
𝑃 (X = x) = 𝑃(𝑍) 𝑃 (X = x | 𝑍)

∑
𝑧′

𝑃 (𝑍 = 𝑧′) 𝑃 (X = x | 𝑍 = 𝑧′)

Your task:

1. Implement a function posterior_probabilities, which takes a message (i.e., x) and returns
an array of floats of length len(domain_z), which sums up to one (up to rounding errors)
and which lists the posterior probabilities 𝑃(𝑍 = 𝑧 | X = x) for all 𝑧 ∈ {10, 11, … , 60}.

2. Then run the code below that tests posterior_probabilities on some sample messages
and generates a visualization of the results. Check if the plots look plausible as explained
underneath the plots.

[]: def posterior_probabilities(message):
YOUR TASK: fill in the function body (about 5 lines of code)

Let’s evaluate the posterior probability distribution 𝑃(𝑍 | X = x) on several sample messages x
and compare it to the MAP approximation:

[]: fig, axs = plt.subplots(3, (len(domain_z) + 9) // 10, figsize=(13, 5),
sharex=True, sharey=True)

for i, message_length in enumerate([10, 100, 1000]):
for z_index, z in enumerate(domain_z):

message = samples_x[z_index, :message_length]
posterior = posterior_probabilities(message)
map_result = map_estimate(message)

if z_index % 10 == 0:
ax = axs[i, z_index // 10]
ax.text(.5,.83, f'$k={message_length}$',

horizontalalignment='center', transform=ax.transAxes)
ax.bar(domain_z, posterior,

13

label='$P(Z=z \,|\, \mathbf{X}=\mathbf{x})$')
ax.plot([z] * 2, [-1, 2], '--', c='orange', label='true z')
ax.plot([map_result] * 2, [-1, 2], ':', c='purple', label='MAP')
ax.set_ylim(0, .17)

if i == 2:
ax.set_xlabel('z')

if z_index == 0:
ax.set_ylabel('probability')

axs[0,-1].legend(loc='upper left', bbox_to_anchor=(1, 1))
plt.subplots_adjust(hspace=0.1, wspace=0)

Looking at the above plots, you should find that:

• The MAP estimate (dotted purple vertical line) sits indeed always at the maximum of the
posterior distribution (blue bars).

• The posterior distribution is very broad throughout the upper row, where we condition on
messages of only length 𝑘 = 10. This is plausible since, the fewer symbols we have, the more
uncertain we are about which parameter 𝑧 was used to generate the symbols. By contrast,
the posterior becomes sharper towards the lower rows, where 𝑘 grows, i.e., where we condition
on more data.

• Overall, the posterior distribution shifts to the right as the ground truth (dashed orange
vertical line) moves to the right. In particular, in the last row (𝑘 = 1000), the posterior
alwayas has a clearly discernible peak, and the ground truth always lies within the peak).

1.6.2 Problem 7.4 (b): Bits-Back Coding

Now implement the bits-back coding method. As discussed in the lecture, the encoder should do
the following:

1. construct an AnsCoder from the provided bit string existing_compressed;
2. decode (no typo) a value for 𝑧 using the posterior 𝑃(𝑍 | X = x);
3. encode the message x, where the entropy model is the likelihood 𝑃(X | 𝑍 = 𝑧) with 𝑧 being

the value decoded in step 2;

14

4. encode 𝑧 using the prior model 𝑃(𝑍);
5. return the compressed data that’s now on the AnsCoder;

And the decoder should invert the steps of the encoder, in reverse order (since the AnsCoder is a
stack).

Your tasks: Fill in the blanks in the function bodies below and then run the unit test.

[]: Categorical = constriction.stream.model.Categorical # shortcut for convenience

def encode_bitsback(message, existing_compressed):
coder = constriction.stream.stack.AnsCoder(existing_compressed)
if len(existing_compressed) != 0:

YOUR TASK: decode a latent variable `z` using the posterior
distribution (about 2 lines of code)

else:
Bits-back coding expects some side information from which it decodes
`z`. If no side information is available yet (the "initial bits
problem"), then we'll just set `z` to the MAP estimate (like in
Problem 5.3) since that's the best we can do in this situation. Note
that the *decoder* won't be aware that we didn't use any side
information, so it'll still generate and return some side information,
which the caller can simply ignore.
z = map_estimate(message) # (There's nothing left for you to do here.)

YOUR TASK: fill in the rest of the bits-back encoder; your solution will
probably be very similar to Problem 7.3 (about 3-5 lines of code).

def decode_bitsback(compressed, message_length):
YOUR TASK: fill in the function body (about 6-10 lines of code)

[]: # This should run without raising an exception and return an average bit rate of
about 0.66 bits per symbol. You'll do a more thorough quantitative comparison
between the various compression methods in Problem 7.5 below.
test_compression_method(encode_bitsback, decode_bitsback)

[]: 0.6650980392156862

2 Problem 7.5: Quantitative Evaluation and Comparison of the
Three Methods

This is the most important problem on this problem set. If you can solve this problem (i.e.,
answer all questions below with confidence) then you’ve understood how bits-back coding works.

In Problems 7.2-7.4, you’ve implemented three different methods for compressing data from the
same data source. Let’s now compare how well these three methods perform as a function of the
message length 𝑘:

15

[]: test_lengths = [10, 30, 100, 300, 1000, 3000, 10000]

bitrates_independently = [
test_compression_method(encode_independently, decode_independently,

message_length)
for message_length in test_lengths]

bitrates_map = [
test_compression_method(encode_map, decode_map, message_length)
for message_length in test_lengths]

bitrates_bitsback = [
test_compression_method(encode_bitsback, decode_bitsback, message_length)
for message_length in test_lengths]

fig, ax = plt.subplots(figsize=(6, 5))
ax.set_xscale('log')
ax.plot(test_lengths, bitrates_independently, 'o-', label='independently')
ax.plot(test_lengths, bitrates_map, 's-', label='MAP')
ax.plot(test_lengths, bitrates_bitsback, 'd-', label='bits-back')
xlims = ax.get_xlim()
ax.plot(xlims, [1, 1], '--', color='gray', label='uncompressed')
ax.set_xlim(xlims)
ax.set_ylim(0.6, 1.3)
ax.set_xlabel('message length k [log]')
ax.set_ylabel('bits per symbol')
ax.legend()

[]: <matplotlib.legend.Legend at 0x7fa2ff13eca0>

16

Your tasks: You should be able to understand pretty much every aspect about the above plot.
Explain the following observations:

• Why do all methods become more effective (i.e., the bit rate per symbol drops) as the message
length 𝑘 grows? (This is important to understand for the MAP and the bits-back method;
for the “independent” method, it is just due to a small constant overhead of the ANS coder
(about 16 to 32 bit), which becomes a bottleneck for very small 𝑘.)

• How is it possible that “compression” with the MAP method (orange curve) actually increases
the file size over the uncompressed representation (dotted gray line) for very low 𝑘? (Hint:
think about the extreme case of 𝑘 = 1: what does the MAP method transmit in this case?)

• Why does the compression performance of the MAP method (orange curve) approach the
bits-back performance (green curve) in the limit 𝑘 → ∞?

• In the limit 𝑘 → ∞, all curves seem to converge to constant values, i.e., the bit rate per
symbol no longer decreases as 𝑘 grows even further. What are these constants (express both
of them as entropies or cross entropies of some probability distributions)? In particular, the
fact that you were able to outperform the “independent” method (blue line)—which would be
the optimal compression method if the symbols were statistically independent—demonstrates
that the symbols 𝑋𝑖 that our latent variable model produces are not statistically independent
(see also Problem 5.2 (d) on last week’s problem set).

17

Note: if you decrease the message length below 𝑘 = 10 then you will get very noisy results because
you’ll then average over very little data (also, the coder has a small constant overhead of up to 32
bits in this limit, which becomes a bottleneck for very small 𝑘). Already in the above plot, the fact
that the “bits-back” curve and the “independent” curve seem to meet at 𝑘 = 10 does not have any
fundamental reason.

18

