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Problem 8.1: Understanding the ELBO

This problem will give you some intuition for the terms that make up the evidence
lower bound (ELBO) that was introduced in the lecture. In fact, we’ll introduce three
equivalent formulations of the ELBO, and we’ll find an interpretation of each term in
each of these three formulations.

In the lecture, we introduced the ELBO as follows,

ELBO(¢) = Eq,(z/x=x) [log P(Z,X=x) —logQu,(Z| X:X)]. (1)

Here, P(Z,X) is the probabilistic model of the generative process with latent variables Z
and observed variables (i.e., the message) X. This generative model is typically given as
a product, P(Z,X) = P(Z)P(X|Z), of a prior P(Z) and a likelihood P(X|Z). Further,
Q4(Z =2z|X) is the variational distribution, which has variational parameters ¢. Finally,
the expectation in Eq. 1 is taken only over the latents Z (the message X = x is fixed).

Let’s assume for simplicity that both Z and X are discrete. For this case, we showed
in the lecture that the ELBO is the negative expected net bit rate of the modified bits-
back coding algorithm (“modified” because we use Q4(Z | X = x) as a stand-in for the
typically intractable true posterior P(Z|X = x)). Thus,

ELBO(¢) = —Eq,(zx—x [R\4 (x)]. (2)

This motivated us to mazimize the ELBO over the variational parameters ¢ (so that we
minimize the expected net bit rate). We’'ll show now that there are also a number of
other ways in which we can interpret the maximization of the ELBO.

(a) The second term on the right-hand side of Eq. 1 is the entropy of the variational
distribution: H[Qy(Z | X=x)] = —Eq, (z1x—x) [ log Q4(Z | X=x)]. Thus,

ELBO(¢) = Eq, (z1x—x) [ log P(Z, X=x)| + H[Q4(Z | X=x)]. (3)

Imagine the entropy term was absent, i.e., pretend that we only maximize the
first term on the right-hand side of Eq. 3. Argue (in words) why maximizing only
this first term over the variational parameters ¢ would lead to a deterministic
variational distribution Q- (Z | X=x), i.e., a variational distribution that puts all
probability mass on a single z*. Thus, we would have Q4+ (Z=2* | X=x) = 1 and
Qs (Z# 2" | X=x) = 0. What is the value of z*7
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Now let’s return to the full expression in Eq. 3 that includes the entropy term
H[Q4(Z|X =x)]. Argue why this entropy term acts against the variational dis-
tribution becoming deterministic (hint: what is the entropy of such a deterministic
distribution that puts all its probability mass on a single value?).

Solution: The first term on the right-hand side of Eq. 3 is an expectation of
a fixed function (log P(Z,X =x)) under the variational distribution, over whose
parameters we optimize. We can understand the expectation as a weighted aver-
age, where the weights have to add up to one. Clearly, if we want to make such a
weighted average as large as possible, we have to put all available weight on the
largest term (more technical argument: taking a weighted average is (trivially) a
convex operation). Thus, the first term on the right-hand side of Eq. 3 is max-
imized by a deterministic variational distribution Eq,. that puts all weight on
z* 1= argmax, log P(Z = z, X =x), provided that this distribution is part of the
variational family. Thus, maximizing only the first term on the right-hand side of
Eq. 3 would result in a simple maximum a-posteriori (MAP) estimate. (There’s an
edge case where the maximum of P(Z, X =x) is degenerate; in this case, we may
divide the weight in Q4+ arbitrarily between the degenerate maxima, so there’s
an infinite number of solutions for ()4, and some but not all of these are fully
deterministic probability distributions.)

If we now consider again the maximization of the full expression in Eq. 3 then
we can see that the entropy term H[Qy(Z|X =x)] punishes such deterministic
variational distributions: the entropy of a deterministic (discrete) distribution is
zero, which is the smallest possible value given that the entropy of any (discrete)
distribution is nonnegative. Therefore, the entropy term provides an incentive for
the maximization of the ELBO to go beyond a simple MAP estimate. As we’ll
show in part (c) below, the two contributions to the ELBO (expected log joint and
entropy) conspire together so that the variational distribution that maximizes the
ELBO is in some specific sense the one that’s closest to the true posterior. [ |

Show that the ELBO from Eq. 1 can also be expressed as follows,
ELBO(6) = B, (zx—x [ log P(X=x| 2)] — Dy (Qu(Z |X=%) || P(2)). (4

(Hint: it’s easier to start with Eq. 4 and derive Eq. 1 from it rather than trying it
the other way round.)

Eq. 4 tells us that maximizing the ELBO can be interpreted as a reqularized maz-
imum likelihood estimation. To see this, answer the following two questions: what
would be the optimal variational distribution Q- (Z | X =x) if we were maximizing
(i) only the first term or (ii) only the second term on the right-hand side of Eq. 4
over ¢ (no calculation required).

Solution: The equivalence between Eqgs. 1 and 4 follows directly from inserting



the definition of the KL-divergence into Eq. 4,

Eq,(zix=x) [log P(X=x|2)] = Dx1.(Qs(Z | X = x) || P(Z))
= Eq,(z1x=x) [ log P(X=x|Z) + log P(Z) — log Qy(Z | X =x)]
= Ko, (z1x—x) | log P(Z,X=x) — log Q4(Z | X =x)].

By an argument analogous to part (a), maximizing only the first term on the
right-hand side of Eq. 4 would lead to a deterministic variational distribution
that—this time—puts all its probability mass on the maximum likelihood solution
z* = argmax,log P(X = x| Z = z). By contrast, maximizing only the second
term on the right-hand side of Eq. 4 would correspond to minimizing (because of
the minus sign) the KL-divergence from the prior to the variational distribution,
which takes its minimal value (zero) if the variational distribution is equal to
the prior. We can interpret maximizing both terms as a regularized maximum-
likelihood estimation: the expected log likelihood term tries to fit the variational
distribution to the data x while the KL-term prevents the method from being

overly confident. [ ]

Show that the ELBO from Eq. 1 can also be expressed as follows,
ELBO(¢) = log P(X=x) — Dk1(Qs(Z | X=x) || P(Z | X=x)). (5)

(Hint: it’s again easier to start with Eq. 5 and derive Eq. 1 from it rather than
trying it the other way round.)

Combining Eq. 5 with Eq. 2, derive an expression for how much the expected bit
rate Eq,(z1x=x) [Rgft) (x)] of the (modified) bits-back coding algorithm increases
due to the fact that the algorithm replaces the true posterior P(Z | X =x) with
the variational distribution Q4(Z|X = x). Then explain why the process of
maximizing the ELBO is called “variational inference”, i.e., how does maximizing
the right-hand side of Eq. 5 over ¢ relate to Bayesian inference?

Solution: The equivalence between Eqgs. 1 and 5 follows directly from inserting
the definition of the KL-divergence into Eq. 5,

log P(X=x) — Dx1.(Qo(Z | X=x) || P(Z | X =x))
= Eq, (z1x—x) | log P(X=x) + log P(Z | X=x) — log Qy(Z | X =x)]
= Eq,(z1x=x) [log P(Z,X=x) —logQu(Z | X:X)}

where we used the fact that log P(X =x) is a constant (as opposed to a function
of Z) and can thus be pulled into the expectation.

The KL-divergence on the right-hand side of Eq. 5 is zero if the variational dis-
tribution equals the true posterior, Q4(Z | X = x) = P(Z|X =x). Thus, by
combmmg Eq. 5 with Eq. 2, we find that the difference between the net bit rate
R (x) of the modified bits-back algorithm and the bit rate Ryet(x) of the exact

net



bits-back algorithm is, in expectation, the KL-diveregence from the true posterior
to the variational distribution,
~(Z
Eq, (zix=x) [ Bt (X)] = Fuet(x) = D1.(Qo(Z | X=x) || P(Z| X =x)) > 0.

Maximizing the ELBO in Eq. 5 not only minimizes the expected bit rate of the
modified bits-back algorithm. It can also be understood as searching for the vari-
ational distribution that minimizes the KL-divergence from the true posterior dis-
tribution (second term on the right-hand side of Eq. 5). In this sense, the resulting
optimal variational distribution Q- (Z | X=x) with ¢* := arg maxs ELBO(¢) can
be regarded as an approximation to the true posterior. |

Problem 8.2: Black-Box Variational Inference

In this problem, we discuss the actual task of maximizing the ELBO in Eq. 1.

The most efficient way to maximize the ELBO is the so-called coordinate ascent
variational inference (CAVI) algorithm (see, e.g., review by Blei et al. (2017)). This
algorithm can be derived by solving the equation Vs ELBO(¢) = 0 analytically for one
coordinate ¢; at a time (by writing out the expectation on the right-hand side of Eq. 1
as an explicit integral over z, taking the derivative w.r.t. ¢;, and solving the resulting in-
tegrals analytically). While this CAVI algorithm is extremely fast (and should therefore
be preferred whenever possible!), its application is limited because the resulting inte-
grals can be solved analytically only for very special models (e.g., so-called conditional
conjugate models).

Mainstream adoption of variational inference only occurred after the invention of so-
called black box variational inference (BBVI), which estimates expectations by sampling
instead of evaluating them analytically, thus making VI possible for (almost) arbitrary
models. In this problem, you derive the main two approaches to BBVI.

(a) Let’s first understand why BBVI is nontrivial: Eq. 1 expresses the ELBO as an ex-
pectation value: ELBO(¢) = Eq, zjx=x)[((¢, Z)] with £(¢, Z) = log P(Z, X =x) —
log Qy(Z | X=x). This seems similar to the typical situation in supervised learn-
ing, where the loss function is usually also expressed as some expectation value
(in this case, the expectation is taken over samples from the training set). The
method of choice for minimizing the loss function in supervised learning is usually
the stochastic gradient descent algorithm (see below).

Why can’t we just straight-forwardly apply stochastic gradient descent! to the
maximization of the ELBO? In other words, why can’t we do the following:

e draw some sample z; ~ Qy(Z | X=x);

e evaluate the gradient g := V, {(¢, z5) w.r.t. ¢ at this sample;

Imore precisely, stochastic gradient ascent since we want to mazimize, but that’s not the issue here.



e use this gradient as an estimate of V,, ELBO(¢), and update ¢ < ¢+ pg with
some small learning rate (aka step size) p > 07

Hint: look for all places where ¢ appears in the ELBO.

Solution: The gradient step ¢ <— ¢+ pg in stochastic gradient descent has to be
constructed from an unbiased gradient estimate g, i.e., an estimate that satisfies
Eq,zx=x)[9] = V4 ELBO(¢). However, the above estimate does not satisfy this
requirement because it only takes the gradient of the term inside the expectation
in Eq. 1. This neglects the fact that the distribution Q4(Z | X=x) over which the
expectation is taken depends on ¢ itself. This dependency also contributes to the
gradient:

Vs ELBO(¢) = V4 (E%(Z\x:x) [4(¢, 2)] )
- V¢<ZQ¢<Z:Z | X =x){(o, z))

_ Z [VsQo(Z=2|X=x)]0(¢, 2) + Eq,(z1x=x)4]-

Thus, Eq,(zix=x)[9] # Vs ELBO(¢) in general, i.e., g is not an unbiased gradient
estimate. [

In the following parts, we discuss two possible solutions to the problem from part (a).

(b) The simplest form of BBVI uses so-called reparameterization gradients (Kingma
and Welling, 2014). Assume, for example, that the latent variable z is continuous
and d-dimensional (i.e., z € R?) and assume that the variational family is the set
of all fully factorized normal distributions. Thus, ()4 has the form

Qo(Z=2|X=x) = HN(zi;ui,az?) (6)

where the means {y;}¢_, and standard deviations {o;}?_, together comprise the
variational parameters ¢ over which we optimize.

Convince yourself that, for such a variational distribution, the expectation of any
function f(z) can be expressed as follows,

E. @, zx=x) [f(2)] = Econon[f(p+0o@e)]. (7)

Here, p = (p1,...,1q) and o = (01,...,04) are the concatenations into vectors
of the means and standard deviations, respectively. Further, N'(0, I) denotes a d-
dimensional standard normal distribution (i.e., with zero mean and unit variance
in each direction), and ® denotes elementwise multiplication of two vectors.

Now use Eq. 7 to fix the problem from part (a), i.e., to come up with an unbiased
estimate of V, ELBO(¢).



Solution: The equivalence between Eqs. 6 and 7 simply follows from the fact
that a normal distribution with mean p; and standard deviation o; can be obtained
from stretching a standard normal distribution by o; and shifting it by y; (in fact,
this is the most typical way how one draws samples from a normal distribution
in practice: use a library function to draw a sample from a standard normal
distribution, then scale and shift it).

In the reparameterization in Eq. 7, the distribution A(0, 1) over which the ex-
pectation on the right-hand side is taken no longer depends on the variational
parameters ¢. Thus, we can take the gradient inside the expectation:

v¢ ELBO(¢) = V¢ EENN(O,I) [€(¢, B+o© 6)} = ]EGNN(O,I) [V¢ E(QS? B+o® 6):|

where one mustn’t forget that pu and o are the components of the variational
parameters ¢, i.e., the function ¢ inside the expectation depends on ¢ in both of
its arguments (in practice, this is usually automatically taken into account by an
automatic differentiation framework). Thus, one can maximize the ELBO with
stochastic gradient descent by drawing random samples € ~ N (0, ), calculating
gradient estimates Jreparam. := Vo (¢, p+0 ®€), and then updating the variational
parameters with the gradient step ¢ <= ¢ + pgreparam. - [ |

While the reparameterization gradient method from part (b) can be generalized to
some variational distributions other than the normal distribution, it does not work
on arbitrary variational distributions. In particular, reparameterization gradients
don’t work (without additional tricks (Jang et al., 2016; Maddison et al., 2016))
for variational distributions over discrete latents Z (because they would require
taking derivatives w.r.t. integers).

For such variational distributions, an alternative and more general approach called
score function gradient estimates (aka the “REINFORCE method”) can be used
(Ranganath et al., 2014). This method is actually similar to the naive approach
from part (a): one first draws some random sample z; ~ Q4(Z | X =x). However,
in the next step, one does not simply evaluate V, {(¢, z5) as suggested in part (a).
Instead, one calculates a different gradient estimate,

g(z) = g0 (=) + 9P (=) (8)

where

9 (z5) = (Vplog Qu(Z =2 | X=x)) U(¢, 2);
G99 (26) 1= Vul(¢, 25) = —Vylog Qu(Z =2z | X =x). (9)

Show that §(zs) is an unbiased gradient estimate of the ELBO, i.e., that

E.,(zix=x) [9(2)] = Vs ELBO(¢). (10)

Thus, §(zs) can be used to optimize the ELBO with stochastic gradient descent.



Hint: write out the expectation Eq,[-] in the definition of the ELBO (Eq. 1) as
a weighted average over all possible values z, pull the gradient operation V, into
the sum (or integral), and apply the product rule of differential calculus. Then
compare the result to the left-hand side of Eq. 10.

Solution: We’ll do the derivation for discrete Z. For continuous Z, the proof
is analogous, except that sums are replaced by integrals and probability mass
functions are replaced by probability density functions.

Vv, ELBO(¢) =
= Vi (Eenq,zix=x) [((0. 2)])
— V¢<ZQ¢(Z:z | X =x) {(¢, z))

= > Vo (Qu(Z=21X=x)((6,2))
= 3 (VeQu(Z =21 X=x))£(6.2) + 32 QolZ =2 | X=x) (Tel(9:2)

\Y Z=z|X=
N Z QolZ=7]X=x) Z?fé:zlz)‘izxj) U, 2) + Eegyzix= [§7(2)]

[ J/
-~

—50(2)
=E.<q,(zx=x) [?](1)(2) + §/(2)(2)} =E..0,z1x=x) [3(2)]

=) Qu(Z=2|X=x) (Vylog Qy(Z=2|X=x)) £($, 2) +E-q,z1x=x) [ (2)]

(d) It turns out that the score-function gradients from Eqgs. 8-9 can be simplified: we
don’t actually need §®(z). Show that

E2~Q¢(Z|X:x) [g(2) (Z)] = O. (11)

Hint: Write out the expectation in Eq. 11 again as a weighted average, apply the
chain rule of differentiation and then pull the gradient operation out of the sum
(or integral) and use the fact that the probability mass function (or probability
density function) Q4(Z | X = x) is normalized over Z.



Solution: We’ll do the derivation again for discrete Z.

E.Quz1x=x [ (2)] = ~Eanqyzix—x [ Vo l0g Qy(Z =2 | X =x)]

_ vy VeQo(Z=2| X =x)
T2 Q= X S N

= —ZV¢Q¢(Z:Z | X=x)

=-Vy Y Qu(Z=2|X=x)
= —V,(1) =0.

Note: Such contributions to a gradient estimate whose expectation value is zero
may still be useful because they may (if constructed well) reduce the variance of the
gradient estimate (aka “gradient noise”), which speeds up convergence of stochastic
gradient optimization because it allows using larger learning rates. Terms with this
property are called “control variates”, and there is still a lot of ongoing research
about finding good control variates (e.g., in automatic ways). [ |
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