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Problem 9.1: Simple Variational Autoencoder (VAE)

The accompanying jupyter notebook guides you through the implementation of a simple
(toy) variational autoencoder. Follow the instructions in the notebook to complete the
implementation.

Problem 9.2: Random Sampling by Decoding Random
Bit Strings

In this problem, we show that decoding some message from a uniformly distributed
random bit string with an entropy coder that is optimal for some probabilistic model is
equivalent to drawing a random sample from the same probabilistic model.
As a reminder, this issue came up in the lecture on June 23 when we derived the

connection between the (modified) bits-back coding algorithm and variational inference.
The encoding process of our modified bits-back coding algorithm started with decoding z
from some existing bit string, where the entropy model for the coder was the variational
distribution Qϕ(Z |X=x). Since the existing bit string was not under our control, we
wanted to average over all possible bit strings, and we claimed that this averaging was
equivalent to taking the expectation under z ∼ Qϕ(Z |X = x). You will provide the
proof for this claim in this exercise.
Since the equivalence between sampling and decoding from a uniformly distributed

random bit string holds in general and not just for bits-back coding, we won’t use
the letters z and Q here and we will instead follow our usual naming conventions and
consider the case of decoding a message x ∈ Xk that is a sequence of k symbols xi ∈ X
from some discrete alphabet X using a model P (X). For simplicity, we’ll assume that
P (X) models the symbols as i.i.d., i.e., P (X) =

∏k
i=1 P (Xi) where P (Xi) is the same

probability distribution for all i ∈ {1, . . . , k}.

(a) Let’s first convince ourselves that the claim holds for the concrete case of decoding
with Asymmetric Numeral Systems (ANS). Assume you have a string of statisti-
cally independent and uniformly distributed random bits, and you decode the first
symbol x1 from it using ANS with the model P (X1).

Recall how decoding with ANS works and argue why x1 will be distributed (al-
most) as x1 ∼ P (X1) (with the only deviation coming from the fact that ANS
approximates P (X1) in fixed point arithmetic). You may assume that the random

1

https://robamler.github.io/teaching/compress22/


Figure 1: Reminder of how ANS works (for Problem 9.2 (a)).

bit string is at least precision bits long so that ANS doesn’t run out of bits. You
may want to refer to Figure 1 for your argument.

The equivalence between decoding from a random bit string and sampling from the
employed entropy model is actually not just a special property of ANS but holds for
all optimal entropy coders. Roughly speaking, the argument for this is that encoding
symbols that are distributed according to the employed entropy model must result in
a bit string of maximum entropy (i.e., independent and uniformly distributed bits) be-
cause otherwise the bit string could be further compressed and thus the coder is not
optimal. Therefore, decoding from independent and uniformly distributed random bits
must reverse the process and result in samples from the model. However, formalizing
this argument is a bit more subtle because the length of the resulting bit string depends
on the encoded symbols.
Let C be an encoder for symbols xi ∈ X that can append to some existing bit string.

For concreteness, we’ll assume that encoding and decoding operate with “stack” se-
mantics (i.e., “last in first out”, as in ANS). Thus, C : ({0, 1}∗,X) → {0, 1}∗ is an
injective function that maps some existing bit string s ∈ {0, 1}∗ and a symbol xi ∈ X
to a new bit string C(s, xi) ∈ {0, 1}∗. The decoding operation C−1 inverts this pro-
cess and recovers both the encoded symbol xi as well as the original bit string s, i.e.,
C−1(C(s, xi)) = (s, xi).
We further introduce the shorthands ℓmin := minxi∈X[− log2 P (Xi=xi)] and ℓmax :=

maxxi∈X[− log2 P (Xi=xi)] for the minimum and maximum information content per sym-
bol and we assume, for simplicity, that our model P has ℓmin > 0 and ℓmax < 0.

(b) Assume we are given some initial random bit string string S0 with some fixed
length |S0|, where the bits are independent and uniformly distributed. We now
use the coder C to decode some number k of symbols Xk from S. Since the bit
string S is random, we have to treat the decoded symbols Xk also as random
variables, and we denote the probability distribution that is induced by decoding
from S as Pdec(X1, . . . , Xk) to distinguish it from our model P .

In detail, we decode one symbol after the other:

(S1, X1) := C−1(S0);

(S2, X2) := C−1(S1);

(S3, X3) := C−1(S2);

...

(Sk, Xk) := C−1(Sk−1).

(1)
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We assume that the coder C is an optimal stream code for the model P (X) =∏
i=1 P (Xi) in the sense that decoding some specific message x ∈ Xk consumes

− log2 P (X=x)+ε bits, where ε ∈ [−γ, γ] with some constant γ takes into account
that the stream code amortizes fractional information contents over multiple bits
(e.g., in ANS, we have γ = precision). In particular, this means that

|S0| − |Sk| > − log2 P (X=x)− γ ∀x ∈ Xk with k ≤ (|S0| − γ)/ℓmax. (2)

where | · | denotes the length of a bit string and we assumed that the original bit
string S0 is long enough so that we don’t run out of bits, i.e., |S0| ≥ k ℓmax + γ.

Use Eq. 2 to show that1

Pdec(X=x) < 2γ+1P (X=x) ∀x ∈ Xk with k ≤ (|S0| − γ)/ℓmax. (3)

Hint: How many initial bit strings S0 are there at most that decode to a given
message x given that C−1 is injective, and how many total bit strings of the (fixed)
length |S0| are there?

(c) Use Eq. 3 to derive an upper bound on the Kullback-Leibler (KL) divergence

∆k := DKL

(
Pdec(X1, . . . , Xk)

∣∣∣∣P (X1, . . . , Xk)
)
≤ const (4)

from the model P (X1, . . . , Xk) = P (X1)P (X2) · · ·P (Xk) to the probability distri-
bution Pdec(X1, . . . , Xk) that is induced by decoding from the random bit string S0.

Eq. 4 holds for all k ≤ (|S0|−γ)/ℓmax and the bound that you should find is a constant
(independent of k). Therefore, you might already be convinced that the KL-divergence
must actually be zero since, if it wasn’t it should grow for growing k. The remaining
parts of this problem formalize this argument.

(d) Show that

∆k −∆k−1 = H
(
Pdec(Xk), P (Xk)

)
−HPdec

(Xn |X1, X2, . . . , Xk−1) (5)

where, following our usual notation, the first term on the right-hand side denotes
the cross entropy between the marginal distribution of Xk under Pdec and the
marginal model distribution P (Xk), and the second term on the right-hand side is
the conditional entropy as defined in Problem 4.3 (c) on Problem Set 4.

Then show that

∆k −∆k−1 ≥ DKL

(
Pdec(Xk)

∣∣∣∣P (Xk)
)
. (6)

Hint: Use the fact that the conditional entropy is smaller or equal to the en-
tropy (recall: the difference between the two is the mutual information, which is
nonnegative).

1An earlier version of this problem set wrongfully stated the bound as 2γP (X=x), without the “+1”
in the exponent. This error had no impact on any arguments that build on Eq. 3 since the “+1”
can be absorbed in a redefinition of γ.
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(e) Finally, use the telescopic sum ∆k = ∆1 +
∑k

i=2(∆i −∆i−1) and Eqs. 4 and 6 to
show that

k∑
i=1

DKL

(
Pdec(Xi)

∣∣∣∣P (Xi)
)
≤ ∆k < const (7)

and thus, that the average KL-divergence from P (Xi) to Pdec(Xi) per symbol Xi

can be bounded by an arbitrarily small constant ∝ 1/k by considering increasingly
long initial random bit strings S0.
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