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Problem 10.1: Lossy Compression With a Variational
Autoencoder (VAE)

The accompanying jupyter notebook contains code for a variational autoencoder that can
be used for lossy compression of handwritten digits. Most of it is already implemented,
you just have to fill in a few key steps. Follow the instructions in the notebook.

Problem 10.2: Channel Capacity

In this problem, you will calculate the capacity of two toy examples of noisy channels.
Then, you will come up with a simple channel coding scheme that is optimal for one of
the considered channels.
In the lecture, we discussed the problem of transmitting a bit string S ∈ {0, 1}k of

length k over a noisy channel P (Y|X):

S
channel encoder−−−−−−−−−−−−→

P (X |S)
X

channel−−−−−−−−−−−→
P (Y |X)

Y
channel decoder−−−−−−−−−−−−→

P (Ŝ |Y)
Ŝ∈ ∈ ∈ ∈

{0, 1}k Xn Yn {0, 1}k

We defined the channel capacity of a memoryless channel P (Y|X) =
∏n

i=1 P (Yi|Xi):
1

C := max
P (Xi)

IP (Xi;Yi). (1)

Here, the maximization is over all possible input distributions P (Xi) (this input dis-
tribution is under our control since we are designing the channel encoder P (X|S) that
outputs X). The channel capacity C is an important property of a channel since it
quantifies how many bits we can reliably transmit per channel invocation: the noisy
channel coding theorem states that, for long bit strings S, we can transmit k bits with
only n channel invocations at an arbitrarily small probability of failure as long as k

n
< C.

Let’s now actually calculate the capacity of some example channels.

1More precisely, the maximum (“max”) in Eq. 1 should be a supremum (“sup”) because the maximum
might not exist. We’ll favor readability over mathematical rigor here, though.
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(a) The binary symmetric channel: Consider a channel P (Yi|Xi) that maps a
binary input Xi ∈ X = {0, 1} to a binary output Yi ∈ X = {0, 1}. The channel
flips bits with some probability f ∈ [0, 1]:

P (Yi=yi |Xi=xi) =

{
1− f if yi = xi

f if yi ̸= xi.
(2)

Show that the capacity of this channel is C = 1−H2(f) where H2(f) = −f log2 f−
(1− f) log2(1− f) is the entropy of a Bernoulli distribution with parameter f .

Hint: Write the mutual information as IP (Xi;Yi) = HP (Yi)−HP (Yi|Xi) (see Eq. 9
on Problem Set 4). To evaluate both entropies, you have to assume some input
probability distribution P (Xi). Consider a general input probability distribution
P (Xi=0) = 1− α, P (Xi=1) = α and maximize the mutual information over α.

Solution: We express the mutual information as IP (Xi;Yi) = HP (Yi)−HP (Yi|Xi),
where we immediately find HP (Yi|Xi) =

∑
xi∈{0,1} P (Xi=xi)HP (Yi |Xi=xi) =

H2(f) since, due to the symmetry of the channel, the conditional entropy of
P (Yi |Xi=xi) is always H2(f), independently of xi.

To obtain HP (Yi), we assume a generic input distribution P (Xi) with P (Xi=0) =
1− α and P (Xi=1) = α and calculate the P (Yi) by marginalizing over Xi,

P (Yi=yi) =
∑

xi∈{0,1}

P (Xi=xi)P (Yi=yi |Xi=xi)

=

{
(1− α)(1− f) + αf = 1− (α + f − 2αf) if yi = 0;

α(1− f) + (1− α)f = α + f − 2αf if yi = 1.

Therefore, we obtain for the mutual information:

IP (Xi;Yi) = HP (Yi)−HP (Yi|Xi) = H2(α + f − 2αf)−H2(f).

To calculate the channel capacity, we have to maximize IP (Xi;Yi) over all input
distributions P (Xi), i.e., over all α ∈ [0, 1]. Recalling that the entropy of a coin flip,
H2(ξ), is maximized if the coin is unbiased (i.e., ξ = 1

2
), we solve α+ f − 2αf = 1

2

and for α and obtain that for α = 1
2
we get HP (Yi) = H2(

1
2
) = 1 and therefore

C = max
α∈[0,1]

IP (Xi;Yi) = 1−H2(f).

■

(b) The noisy parking disc: (this is a variation of the “noisy typewriter” exam-
ple from the MacKay book, see link on the course website). Consider a channel
P (Yi|Xi) where both the input Xi and the output Yi is an integer from one to
twelve, i.e., X = Y = {1, 2, . . . , 12}. Picture these twelve numbers arranged in
a circle, like they are on an analog clock or a parking disc. The sender points
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to number xi on the circle and the receiver reads off the indicated number as yi.
Unfortunately, the sender has very thick fingers, and therefore the receiver may
confuse the indicated number with one of its immediate neighbors. More precisely,

P (Yi=yi |Xi=xi) =

1
3

if yi ∈ {xi ⊖ 1, xi, xi ⊕ 1}
0 otherwise

(3)

where “⊖” and “⊕” denote subtraction and addition that wraps around.

(i) Show that the channel capacity is C = 2 bits.

Hint: write the mutual information again as IP (Xi;Yi) = HP (Yi)−HP (Yi|Xi).
Why does it suffice to maximize only HP (Yi)? What is the maximum entropy
HP (Yi) of a random variable Yi ∈ {1, . . . , 12}? Notice that you don’t need to
find the optimal input distribution P (Xi) to derive the capacity C here.

Solution: We express the mutual information again as IP (Xi;Yi) = HP (Yi)−
HP (Yi|Xi). Like in the case of the binary symmetric channel, the marginal
entropy HP (Yi |Xi = xi) is independent of xi due to the symmetry of the
channel: the conditional distribution P (Yi |Xi=xi) is always a uniform dis-
tribution over three outcomes (xi⊖1, xi, and xi⊕1) and therefore has entropy
HP (Yi |Xi=xi) = log2 3, which means that the expected marginal entropy
HP (Yi|Xi) = Exi∼P (Xi)

[
HP (Yi |Xi=xi)

]
= log2 3. The marginal entropy of

the outcome, HP (Yi), can again be maximized (with value HP (Yi) = log2 12)
if we find an input distribution P (Xi) that makes P (Yi) a uniform distribu-
tion. Due to the symmetry of the channel, this is clearly again achived by
making P (Xi) a uniform distribution. Thus, the channel apacity is

C = max
P (Xi)

IP (Xi;Yi) = max
P (Xi)

[
HP (Yi)−HP (Yi|Xi)

]
= log2 12− log2 3 = log2

12

3
= log2 4 = 2.

■

(ii) Show that one possible input distribution that maximizes IP (Xi;Yi) in Eq. 1
is a uniform distribution, i.e., P (Xi=xi) =

1
12

∀xi ∈ X.

Solution: See symmetry argument above. For an explicit calculation that a
uniform P (Xi) leads to a uniform P (Yi), we’d have to marginalize P (Xi, Yi)
over Xi,

P (Yi=yi) =
12∑

xi=1

P (Xi=xi)P (Yi=yi |Xi=xi) =

yi⊕1∑
xi=yi⊖1

1

12

1

3

= 3× 1

12

1

3
=

1

12
∀yi ∈ {1, . . . , 12}.

■
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(iii) While a uniform input distribution P (Xi) = 1
12

does maximize the mutual
information IP (Xi;Yi), designing a channel code that uses all possible input
values xi ∈ {1, . . . , 12} is somewhat difficult in practice. Luckily, the uniform
distribution is not the only input distribution that maximizes the mutual
information for the noisy parking disc channel. Can you come up with some
very simple channel encoder P (X|S) and channel decoder P (Ŝ|Y) that admits
perfect reconstruction of all possible inputs s ∈ {0, 1}k and that allows you
to transmit exactly 2 bits per channel invocation (i.e., k

n
= C = 2)?

Hint: You don’t need any fancy theorems here. Just think simple.

Note: By coming up with a concrete encoder/decoder pair that reaches the
alleged limit of k

n
= C, you prove here that the noisy channel coding theorem

holds for the specific example of the noisy parking disc channel. In the next
lecture, we’ll prove the theorem for general channels. The proof consists of
constructing random channel codes that will actually turn out to be quite
similar to the channel code that solves the noisy parking disc problem.

Solution: We can completely eliminate any chance of confusion if we use
a channel encoder that only ever outputs numbers xi that are divisible by 3.
This leaves 4 possible values for xi (3, 6, 9, and 12), which we can use to
encode two bits of information, and it partitions the output space Y into 4
disjoint sets that each correspond to a unique input xi:

xi=3 ⇒ yi ∈ {2, 3, 4}; xi=9 ⇒ yi ∈ {8, 9, 10};
xi=6 ⇒ yi ∈ {5, 6, 7}; xi=12 ⇒ yi ∈ {11, 12, 1}.

Since these four subsets of Y are disjoint, the channel decoder can uniquely
identify the input symbol xi for any yi. ■

Problem 10.3: Data Processing Inequality

In this problem, you will prove a fundamental theorem of communication systems: the
data processing inequality. This inequality will become crucial for the theory of lossy
compression.
Consider a sequence of random variables Xi, i ∈ {1, . . . , n} that form a Markov chain

X1 → X2 → · · · → Xn, as introduced in the lecture on May 12 (and discussed on
Problem Set 5), i.e.,

P (X1, X2, . . . , Xn) = P (X1)P (X2|X1)P (X3|X2) · · ·P (Xn|Xn−1)

(for a Markov chain X1 → X2 → · · · → Xn).
(4)

A Markov chain can model any memoryless process, i.e., a process where one chains
together stateless stochastic operations and each stochastic operation takes as input
only the output of the immediately preceding operation. For example, think about kids
at a birthday party who play a game of telegraph (German: “Flüsterpost”).
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The data processing inequality makes two statements about how information propa-
gates through such a Markov chain:

� Information about past items Xi can only decrease but never increase along a
Markov chain. More formally:

IP (Xi;Xj) ≥ IP (Xi;Xk) ∀i < j < k (for Markov chains). (5)

� Information about future items Xk can only increase but never decrease along a
Markov chain. More formally:

IP (Xi;Xk) ≤ IP (Xj;Xk) ∀i < j < k (for Markov chains). (6)

.

The following steps guide you through the proofs of Eqs. 5 and 6.

(a) In order to relate Eqs. 5-6 to their respective verbal statements, recall why the
mutual information IP (X;Y ) can be interpreted as a measure of how much infor-
mation Y gives us about X and vice versa. This was discussed in Problem 4.4 (c)
on Problem Set 4 and in the paragraph marked “Interpretation” below it.

Solution: See Problem 4.4 (c) on Problem Set 4. ■

(b) We’ll first prove Eq. 6:

(i) Recall that, if we pick three items Xi, Xj, and Xk of a Markov chain in order
(i.e., i < j < k), then they form a Markov chain Xi → Xj → Xk (if this is
not obvious to you, then refer back to Problem 5.2 (b) (ii) on Problem Set 5).
Thus, P (Xi, Xj, Xk) = P (Xi)P (Xj|Xi)P (Xk|Xj).

Solution: The relation P (Xi, Xj, Xk) = P (Xi)P (Xj|Xi)P (Xk|Xj) follows
by marginalizing Eq. 4 over all Xi′ with i′ /∈ {i, j, k}, see solutions to Prob-
lem 5.2 (b) (ii) on Problem Set 5. ■

(ii) Use IP (X;Y ) = HP (Y )−HP (Y |X) to derive a relation of the form

IP (Xj;Xk)− IP (Xi;Xk) = EP

[
− log2

(
P (X?|X?)

P (X?|X?)

)]
(7)

where each “?” is either i, j, or k.

Solution:

IP (Xj;Xk)− IP (Xi;Xk) = HP (Xk)−HP (Xk|Xj)−
(
HP (Xk)−HP (Xk|Xi)

)
= HP (Xk|Xi)−HP (Xk|Xj)

= EP

[
− log2 P (Xk|Xi) + log2 P (Xk|Xj)

]
= EP

[
− log2

(
P (Xk|Xi)

P (Xk|Xj)

)]
.

■
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(iii) Use Jensen’s inequality to pull the logarithm in Eq. 7 out of the expectation.
Then write out the expectation as a weighted average (using the fact that
P (Xi, Xj, Xk) = P (Xi)P (Xj|Xi)P (Xk|Xj)) and prove Eq. 6.

Solution: Using Jensen’s inequality for the convex function f(ξ) = − log2 ξ,
we obtain the bound

IP (Xj;Xk)− IP (Xi;Xk) =

= EP

[
− log2

(
P (Xk|Xi)

P (Xk|Xj)

)]
≥ − log2

(
EP

[
P (Xk|Xi)

P (Xk|Xj)

])
= − log2

( ∑
xi,xj ,xk

P (Xi=xi)P (Xj=xj |Xi=xi)P (Xk=xk |Xj=xj)

× P (Xk=xk |Xi=xi)

P (Xk=xk |Xj=xj)

)
= − log2

(∑
xi,xj

[
P (Xi=xi, Xj=xj)

∑
xk

P (Xk=xk |Xi=xi)︸ ︷︷ ︸
=1

])

= − log2(1) = 0.

Thus, IP (Xj;Xk) ≥ IP (Xi;Xk) ■

(c) To prove Eq. 5, recall that, for three random variables Xi, Xj, and Xk, the state-
ment “Xi → Xj → Xk is a Markov chain” is equivalent to the statement “Xi

and Xk are conditionally independent given Xj”. Use the symmetry of conditional
independence to argue that Xk → Xj → Xi is also a Markov chain and therefore
Eq. 5 holds.

Solution: As we proved in Problem 5.1. (a) the statement “Xi → Xj → Xk

is a Markov chain” is equivalent to the statement “Xi and Xk are conditionally
independent given Xj”, i.e.,

P (Xi, Xk|Xj) = P (Xi|Xj)P (Xk|Xj).

Clearly, this equation is invariant if we exchange i with k. Therefore, the statement
“Xi → Xj → Xk is a Markov chain” is equivalent to the statement “Xk → Xj → Xi

is a Markov chain”. ■

(d) What is information? The data processing inequality can be interpreted as
follows: assume we feed some input data X1 into some (possibly nondeterministic)
machine that processes the data and outputs X2, and we then feed X2 (but not X1)
into some other (possibly nondeterministic) machine that outputs X3. Using the
interpretation of the mutual information reviewed in part (a), the data processing

6



inequality Eq. 5 then tells us that any information about X1 that gets destroyed
by the first machine cannot be regenerated by the second machine.

Think about what this means for the interpretation of our notion of “information”.
How well does our formal notion of the “information content” capture what we
would colloquially consider as “information”? For example, think about a cryp-
tographic pipeline X1 → X2 → X3 where X1 is a clear text message, X2 is the
encrypted representation of X1, and X3 is the decrypted message (thus, X3 = X1).
What does Eq. 5 imply about IP (X1;X2)?

Or think about a crime scene, where the perpetrator first destroys as much evidence
as they can, and the police then recover some of it. How much information about
the crime do the police unveil, according to our very specific notion of information?

These considerations should be a reminder that information theory uses a very
specific notion of the term “information”. Any information theoretical statement
should always be considered within the context of this specific notion. Like many
other technical terms in other branches of science, the term “information” is used in
information theory as a metaphor. In particular, information theory does not take
computational feasibility into account (the absence of a so-called computational
model is one of the main differences between information theory and cryptogra-
phy).

Solution: In the cryptography example, we have X3 = X1 and therefore
IP (X1;X3) = HP (X1)+HP (X3)−HP

(
(X1, X3)

)
= HP (X1)+HP (X1)−HP (X1) =

HP (X1). Thus, by the information processing inequality, we have IP (X1;X2) ≥
IP (X1;X3) = HP (X1) while at the same time IP (X1;X2) = HP (X1)−HP (X1|X2).
Thus, HP (X1|X2) = 0, i.e., any eavesdropper who knows the encrypted represen-
tation X2 has zero uncertainty about the clear text message X1. Clearly, this only
makes sense if we assume that the eavesdropper can break the code. For public-key
cryptography, this would mean that the eavesdropper has to have extremely large
computational capabilities.

In the crime scene example, one could formally argue that the police do not unveil
any new information because, since the crime was in the past, any information
that they find out about the crime must have been there already. Clearly, this
does not match our colloquial use of the term “information”. ■

(e) Can we exceed the channel capacity? The precise phrasing of the channel
coding theorem that we used in the lecture only states that ratios k

n
up to the

channel capacity C are achievable. But is it possible to exceed the channel capac-
ity without introducing errors? More precisely, if we transmit k bits using only
n invocations of a memoryless channel with capacity C, can we somehow make the
transmission error arbitrarily small for all possible input strings even if k

n
> C?

Hint: This problem is still about the data processing inequality.

Solution: This is not possible. Assume we have a memoryless channel with
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capacity C and a channel encoder/decoder pair for bit strings of length k that
invokes the channel n times. The original bit string S, channel encoded represen-
tation X, channel output Y, and reconstructed bit string Ŝ form a Markov chain
S → X → Y → Ŝ. Therefore, by combining both forms of the data processing
inequality (Eqs. 5 and 6), we find, for all input distributions P (S),

IP (S; Ŝ)
(5)

≤ IP (S;Y)
(6)

≤ IP (X;Y).

We can further bound the mutual information between X and Y by the sum of
the mutual information between Xi and Yi for each i ∈ {1, . . . , n} by exploiting
the assumption that the channel P (Y|X) =

∏n
i=1 P (Yi|Xi) is memory free, which

implies that HP (Y|X) = EP

[
−
∑n

i=1 logP (Yi|Xi)
]
=

∑n
i=1 EP

[
− logP (Yi|Xi)

]
=∑n

i=1HP (Yi|Xi) and therefore,

IP (X;Y) = HP (Y)︸ ︷︷ ︸
≤
∑n

i=1 HP (Yi)

− HP (Y|X)︸ ︷︷ ︸
=
∑n

i=1 HP (Yi|Xi)

≤
n∑

i=1

(
HP (Yi)−HP (Yi|Xi)

)
=

n∑
i=1

IP (Xi;Yi) ≤ nC.

Thus, in total, IP (S; Ŝ) ≤ nC for all input distributions P (S). We now choose
P (S) to be the uniform distribution over all bit strings of length k and assume
that we can communicate all bit strings without errors. Thus, Ŝ = S and therefore
IP (S; Ŝ) = HP (S) = k for uniform P (S). This proves that k ≤ nC, i.e., we cannot
communicate without errors above the channel capacity. ■
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