
Solutions to Problem Set 12 discussed:
29 July 2022

Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tuebingen

Course materials available at https://robamler.github.io/teaching/compress22/

Note: This problem set covers topics from the entire semester. The problems are
designed to more closely resemble potential exam questions than some of the problems
on previous problem sets.

Problem 12.1: Probabilities, Entropies, and Mutual
Information

Consider an unbiased coin that, when tossed, comes up either “one” or “zero” with equal
probability (and independent of any previous coin tosses). Assume that you flip the coin
three times and let Xi ∈ {0, 1} for i ∈ {1, 2, 3} be the outcome of the i’th throw. Let
Xsum = X1 +X2 +X3 be the total number of “one” throws.
In the following, all entropies should be calculated in bits (i.e., with base 2), as we

always did in this course.

(a) What is the entropy HP (Xi) for each i ∈ {1, 2, 3}? (no calculation required; it
suffices if you state the correct result.)

Solution: one bit ■

(b) What is the joint entropy HP

(
(X1, X2, X3)

)
of the tuple (X1, X2, X3)? (no calcu-

lation required; it suffices if you state the correct result.)

Solution: three bits (independent random variables, so the entropies simply add
up) ■

(c) What is the probability P (Xsum=xsum) for each xsum ∈ {0, 1, 2, 3}?

Solution: Each of the 23 = 8 combinations for (X1, X2, X3) ∈ {0, 1}3 has equal
probability of 1/8. Thus, P (Xsum=xsum) is 1/8 times the number of combinations
(X1, X2, X3) ∈ {0, 1}3 that lead to the requested sum. We find: P (Xsum=0) = 1/8,
P (Xsum=1) = 3/8, P (Xsum=2) = 3/8, and P (Xsum=3) = 1/8. ■

(d) What is the entropy HP (Xsum)? Provide your result in the form HP (X1) = a +
b log2 3 where a and b are rational numbers. Hint: log2 8 = 3.

1

https://robamler.github.io/teaching/compress22/

Solution:

HP (Xsum) = −1

8
log2

1

8
− 3

8
log2

3

8
− 3

8
log2

1

8
− 1

8
log2

1

8

=
2

8
log2 8 +

6

8
(log2 8− log2 3)

= 3− 6

8
log2 3 (≈ 1.81)

■

(e) What is the entropy HP

(
(X1, X2, X3, Xsum)

)
?

Solution: Since Xsum is a deterministic function of X1, X2, and X3, it doesn’t
add any additional entropy:

HP

(
(X1, X2, X3, Xsum)

)
= HP

(
(X1, X2, X3)

)︸ ︷︷ ︸
= 3 (see part (b))

+HP

(
Xsum|X1, X2, X3

)︸ ︷︷ ︸
=0

= 3.

■

(f) What is the conditional probability P (X1=x1 |Xsum=2) for each x1 ∈ {0, 1}?

Solution: For x1 = 0, we find:

P (X1=0 |Xsum=2) =
P (X1=0, Xsum=2)

P (Xsum=2)
=

1/8

3/8
=

1

3
.

Here, we used that P (X1=0, Xsum=2) = 1
8
because the two conditions X1=0 and

Xsum=2 are both satisfied only in the single configuration (X1, X2, X3) = (0, 1, 1),
which occurs with probability 1

8
. For x1 = 1, we find:

P (X1=1 |Xsum=2) = 1− P (X1=0 |Xsum=2) =
2

3
.

■

(g) What is the conditional entropy HP (X1 |Xsum=2)? Provide your result again in
the form HP (X1) = a+ b log2 3 where a and b are rational numbers.

Solution: Using our result from Part (f), we find:

HP (X1 |Xsum=2) = −1

3
log2

1

3
− 2

3
log2

2

3
= log2 3−

2

3
log2 2 = log2 3−

2

3
.

■

(h) Let X ′
sum := X1 + X2. Which of the following two statements about mutual

informations is true?

2

(i) IP (X1;Xsum) ≥ IP (X1;X
′
sum); or

(ii) IP (X1;Xsum) ≤ IP (X1;X
′
sum).

(you may assume that only one of the two statements is true.) Hint: no calcula-
tion is needed, but write a brief statement (at most one sentence) to justify your
answer.

Solution: X1 → X ′
sum → Xsum forms a Markov chain (since Xsum = X ′

sum +X3),
which implies that statement (ii) holds by the data processing inequality. ■

Problem 12.2: Source Coding Theorem & Huffman
Coding

Consider the following probability distribution over a random variable Xi from the al-
phabet X = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’}:

P (Xi=‘a’) = 0.3; P (Xi=‘c’) = 0.25; P (Xi=‘e’) = 0.3;

P (Xi=‘b’) = 0.1; P (Xi=‘d’) = 0.05.

(a) Draw a Huffman tree for this probability distribution and write down a table for
a corresponding Huffman code CHuffman : X → {0, 1}∗.

Solution:

■

(b) Calculate the expected code word length, L := EP

[
|CHuffman(Xi)|

]
where |·| denotes

the length of a bit string.

Solution:

L = 2× (0.3 + 0.1 + 0.3) + 3× (0.25 + 0.05) = 1.4 + 0.9 = 2.3

■

3

(c) Use your result for the expected code word length L and the source coding theorem
to derive a lower and an upper bound for the entropy HP (Xi). Express your result
in the form “a ? HP (Xi) ? a + 1” where a is a rational number and each “?”
denotes either “<” or “≤”.

Solution: Huffman coding achieves the smallest possible expected code word
length. According to the source coding theorem, the smallest possible expected
code word length is at least the entropy HP (Xi) and strictly less than one bit more
than the entropy. Thus,

HP (Xi) ≤ L < HP (Xi) + 1 ⇒ L− 1 < HP (Xi) ≤ L.

■

Assume now that you have a random message X ∈ Xk consisting of k symbols Xi ∈
X, i ∈ {1, . . . , k} that are all statistically independent and distributed according to
the above probability distribution. Assume that you encode these symbols with your
Huffman code.

(a) What is the expected length EP

[
|CHuffman(X)|

]
of the encoded representation of

the entire message X?

Solution: Huffman codes are prefix free symbol codes. Thus, when encoding
a sequence of symbols, we can simply concatenates their code words without any
deliminators:

EP

[
|CHuffman(X)|

]
= kL = k × 2.3

■

(b) Let σ2 := EP

[(
|CHuffman(Xi)| − L

)2]
be the variance of the code word lengths in

your Huffman code. Use the weak law of large number to provide a lower bound
for the probability P

(∣∣|CHuffman(X)|/k − L
∣∣ < β

)
for arbitrary β ≥ 0.

Solution: Since |CHuffman(X)| =
∑k

i=1 |CHuffman(Xi)| is a sum of independent
random variables with the same mean and (finite) variance, the weak law of large
number applies:

P
(∣∣|CHuffman(X)|/k − L

∣∣ < β
)
= 1− P

(∣∣|CHuffman(X)|/k − L
∣∣ ≥ β

)
≥ 1− σ2

kβ2
.

■

4

Problem 12.3: Variational Inference

Consider a so-called “hierarchical” latent variable model with observed data (or “mes-
sage”) X and with two latent variables Z and Z′. The joint probability distribution
is:

P (Z,Z′,X) = P (Z)P (Z′|Z)P (X|Z′). (1)

Assume that we observe some data x and we now want approximate the (intractable)
posterior distribution P (Z,Z′|X = x) with a variational distribution Qϕ (where ϕ are
the variational parameters) that factorizes as follows,

Qϕ(Z,Z
′ |X=x) = Qϕ(Z |X=x)Qϕ(Z

′ |Z,X=x). (2)

To find the optimal variational parameters ϕ∗, we maximize the evidence lower bound
(ELBO), which is defined analogous to our usual definition,

ELBO(ϕ) := EQϕ(Z,Z′|X=x)

[
log

P (Z,Z′,X=x)

Qϕ(Z,Z′ |X=x)

]
. (3)

Express the ELBO in the following form:

ELBO(ϕ) = −DKL

(
Qϕ(Z |X=x)

∣∣∣∣P (Z)
)
− E ?

[
DKL

(
?
∣∣∣∣ ?)]+ EQϕ(Z′|X=x)

[
P (X=x |Z′)

]
(4)

and fill in the three blanks marked with “?”. Here, DKL is the Kullback-Leibler diver-
gence.

Solution:

ELBO(ϕ) = EQϕ(Z,Z′|X=x)

[
log

P (Z,Z′,X=x)

Qϕ(Z,Z′ |X=x)

]

= EQϕ(Z|X=x)Qϕ(Z′|Z,X=x)

[
log

P (Z)P (Z′|Z)P (X|Z′)

Qϕ(Z |X=x)Qϕ(Z′ |Z,X=x)

]

= −EQϕ(Z|X=x)

[
log

Qϕ(Z |X=x)

P (Z)

]
− EQϕ(Z|X=x)

[
EQϕ(Z′|Z,X=x)

[
log

Qϕ(Z
′ |Z,X=x)

P (Z′|Z)

]]
+ EQϕ(Z′|X=x)

[
P (X=x |Z′)

]
= −DKL

(
Qϕ(Z |X=x)

∣∣∣∣P (Z)
)

− EQϕ(Z|X=x)

[
DKL

(
Qϕ(Z

′ |Z,X=x)
∣∣∣∣P (Z′|Z)

)]
+ EQϕ(Z′|X=x)

[
P (X=x |Z′)

]
.

■

5

Problem 12.4: Bits-Back Coding And Asymmetric
Numeral Systems (ANS)

Consider a latent variable model with latent variables Z, observed data (or “mes-
sage”) X, and joint probability distribution P (Z,X) = P (Z)P (X|Z).

(a) Assume you want to encode a message x using this latent variable model and the
bits-back trick. This means that you have to follow three steps, where each step
can be phrased in the following form:

{
encode or
decode

}{
x or
z

}
with entropy model

P (Z) or

P (X |Z=z) or
P (Z |X=x).

 (5)

Write down the three steps for encoding x in the correct order, phrasing each step
in the form of Eq. 5.

Solution: The bits-back encoder follows these three steps:

1) decode z with entropy model P (Z |X=x);

2) encode x with entropy model P (X |Z=z);

3) encode z with entropy model P (Z).

■

(b) Now formulate the three steps of the corresponding bits-back decoder, again phras-
ing each step in the form of Eq. 5.

Solution: The bits-back decoder inverts the three steps of the encoder, in reverse
order:

1) decode z with entropy model P (Z);

2) decode x with entropy model P (X |Z=z);

3) encode z with entropy model P (Z |X=x).

■

(c) As you’ve learned in the lecture, the Asymmetric Numeral Systems (ANS) algo-
rithm can be understood as bits-back coding for each symbol Xi. Listing 1 shows
the code for a simple (albeit slow) ANS coder. The code listing also contains a
usage example just in case it is not clear what the coder implementation does.
Consider the methods push and pop for encoding and decoding a symbol, respec-
tively. For each of the three steps of the bits-back algorithm that you identified
in parts (a) and (b) above, identify the (possibly empty) set of lines in the code
listing that implements that step.

6

Solution: Following our convention from the lecture, we refer to the latent
variable model that is used by ANS with the letter Q instead of P . Also, the
message that we encode in a single call to push or pop is a single symbol, which
we denote as Xi in the following.

� Method push (encoding a smbol):

1) decode zi with entropy model Q(Zi |Xi=xi): lines 7-8;

2) encode xi with entropy model Q(Xi |Zi = zi): not necessary here since
the likelihood Q(Xi |Zi = zi) is a deterministic probability distribution,
i.e., the symbol xi has zero information content under this likelihood;

3) encode zi with entropy model Q(Zi): line 9.

� Method pop (decoding a smbol):

1) decode zi with entropy model Q(Zi): lines 12-13.

2) decode xi with entropy model Q(Xi |Zi = zi): not necessary here since
the likelihood Q(Xi |Zi = zi) is a deterministic probability distribution,
i.e., we can identify xi from zi without any additional decoding (one could
argue that this identification of xi, which is implemented in lines 14-18,
corresponds to step 2);

3) encode zi with entropy model Q(Zi |Xi=xi): line 19;

■

Problem 12.5: Lossy Compression

Note: This is the only problem on the current problem set that would not be suitable
for an exam question. This is done deliberately so that I can save a more self-contained
problem for the exam.
In contrast to lossless compression, lossy compression can also be used for continuous

data. Interestingly, the rate/distortion-theorem holds for continuos data in the same
way as it does for discrete data, i.e., the optimal expected amortized bit rate for a given
lossy compression is given by the mutual information IP (X; X̂) between the original
message X and the reconstruction X̂.
Consider a data source that generates scalar continuous messages X ∈ R with dis-

tribution P (X) = N (X; 0, σ2), i.e., normal distributed with zero mean and standard
deviation σ2. After encoding and decoding, the reconstructed symbol X̂ ∈ R acquires
some additional Gaussian noise with variance γ2, i.e., P (X̂|X) = N (X̂;X, γ2), i.e.,
given X, the reconstruction X̂ is normal distributed with mean X and variance γ2.
Thus, the marginal distribution of the reconstruction, P (X̂) = EP (X)[P (X̂|X)] is the
convolution of two normal distributions. It is well-known that this convolution results
again in a Gaussian, where the variances add up, i.e., P (X̂) = N (X̂; 0, σ2 + γ2) (this is
known as “Gaussian error propagation”).

7

(a) The mutual information for continuous variables is defined as follows,

IP (X; X̂) = EP

[
log

p(X, X̂)

p(X) p(X̂)

]
(6)

where lower case “p” denotes the probability density function. Convince yourself
that, analogous to the case of discrete random variables, one can equivalently
express IP (X; X̂) as follows,

IP (X; X̂) = hP (X̂)− hP (X̂|X) (7)

where lower case hP denotes the differential entropy hp(X) := −
∫
p(x) log2 p(x) dx

and hP (X̂|X) := −
∫∫

p(x, x̂) log2 p(x̂|x) dx̂ dx with p(x̂|x) := p(x, x̂)/p(x).

Note: while a differential entropy can be negative, one can show that the difference
of differential entropies on the right-hand side of Eq. 7 is always positive.

Solution: Eq. 7 follows directly from Eq. 6 when we identify p(X, X̂)/p(X) as the
conditional probability density function p(X̂|X) and then express the expectation
over P as an integral and use the marginalization

∫
p(x, x̂) dx = p(x̂):

IP (X; X̂) = EP

[
log

p(X̂|X)

p(X̂)

]
=

∫∫
p(x, x̂) log2

p(x̂|x)
p(x̂)

dx dx̂

= hP (X̂)− hp(X̂|X).

■

(b) Look up the differential entropy of a normal distribution on Wikipedia (it is simply
called “entropy” there) and calculate the mutual information (and thus the optimal
expected amortized bit rate) IP (X; X̂) using Eq. 7. Express your result as a
function of the signal to noise ration σ2/γ2.

Solution: Wikipedia gives the differential entropy of a normal distribution with
variance σ2 as 1

2
log(2πσ2) + 1

2
. Note that Wikipedia follows the convention to

measure entropies with base e and, accordingly, the “log” denotes here the natural
logarithm. In the field of data compression, it is often more useful to measure
entropies in base 2 so that they correspond to practical bit rates. To translate
from base e to base 2, we first reformulate 1

2
log(2πσ2) + 1

2
= 1

2
log(2πeσ2) and

then change the base of the logarithm to 2, resulting in the entropy

hP (X) =
1

2
log2(2πeσ

2).

To evaluate the right-hand side of Eq. 7, we now need:

� the entropy of the marginal distribution P (X̂) of the reconstruction; as
noted above, we have P (X̂) = N (X̂; 0, σ2 + γ2) and thus we find hP (X̂) =
1
2
log2

(
2πe(σ2 + γ2)

)
.

8

� the entropy of the conditional distribution P (X̂|X) = N (X̂;X, γ2); since the
entropy of a normal distribution only depends on the variance and not on the
mean, hP (X̂|X) is independent of X and we have hP (X̂|X) = 1

2
log2(2πeγ

2).

Using Eq. 7, we therefore find

IP (X; X̂) = hP (X̂)− hP (X̂|X) =
1

2
log2

(
2πe(σ2 + γ2)

)
− 1

2
log2(2πeγ

2)

=
1

2
log2

(
1 +

σ2

γ2

)
.

Thus, the minimal required bitrate for lossy compression of continuous data in-
creases with increasing signal-to-noise ration σ2/γ2, as expected.

Note: it is instructive to consider the two limits of very low and very high signal-
to-noise ratio:

� For very high signal-to-noise ratio σ2

γ2 ≫ 1, we can neglect the “1+” inside
the logarithm and obtain

IP (X; X̂) ≈ 1

2
log2

σ2

γ2
= log2

σ

γ
(for

σ2

γ2
≫ 1).

i.e., the optimal bit rate grows logarithmically with the signal-to noise ration.
This result seems plausible since a logarithmically increasing bit rate admits
for a linearly increasing range of values that can be encoded.

Recall that we’re considering here a setup where we have a signal that is
normal distributed with variance σ2, and the lossy compression distorts the
signal by some additive noise with variance γ2. Thus, loosely speaking, most
signals are roughly from the interval [−σ, σ], and the noise with amplitude γ
prevents us from distinguishing signals that are closer than γ to each other.
Thus, our setup is similar to dividing the signal space [−σ, σ] into a grid with
spacing γ, resulting in ∝ σ/γ grid points. Enumerating these grid points
would require on the order of log2(σ/γ) bits, which is exactly what we obtain
in the regime of high signal-to-noise ratio.

� For very low signal-to-noise ratio σ2

γ2 ≪ 1, the above intuition breaks down

because we cannot divide the interval [−σ, σ] into a grid with spacing γ if the
grid spacing is larger than the interval itself. In this limit, we can use the
Taylor approximation log2(1 + ϵ) ≈ ϵ/ ln 2 for small ϵ. Thus, we find:

IP (X; X̂) ≈ 1

2 ln 2

σ2

γ2
(for

σ2

γ2
≪ 1).

i.e., the optimal bit rate is approximately proportional to the signal-to-noise
ratio σ2

γ2 .

■

9

1 class SimpleAnsCoder:

2 def __init__(self, precision, compressed=0):

3 self.n = 2**precision # ("**" denotes exponentiation)

4 self.compressed = compressed

5

6 def push(self, symbol, m): # Encodes one symbol.

7 z = self.compressed % m[symbol] + sum(m[0:symbol])

8 self.compressed //= m[symbol] # ("//" denotes integer division)

9 self.compressed = self.compressed * self.n + z

10

11 def pop(self, m): # Decodes one symbol.

12 z = self.compressed % self.n

13 self.compressed //= self.n # ("//" denotes integer division)

14 for symbol, m_symbol in enumerate(m):

15 if z >= m_symbol:

16 z -= m_symbol

17 else:

18 break

19 self.compressed = self.compressed * m_symbol + z

20 return symbol

21

22 def get_compressed(self):

23 return self.compressed

24

25 # USAGE EXAMPLE:

26

27 # Define an approximate entropy model Q with 4 bits of precision and

28 # Qi(Xi=0) = 7
24
, Qi(Xi=1) = 3

24
, and Qi(Xi=2) = 6

24
.

29 precision = 4

30 m = [7, 3, 6]

31

32 # Encode an example message (in reversed order):

33 example_message = [2, 0, 2, 1, 0]

34 encoder = SimpleAnsCoder(precision)

35 for symbol in reversed(example_message):

36 encoder.push(symbol, m) # We could use a different m for each symbol.

37 compressed = encoder.get_compressed()

38 print(f'Compressed bit string: {compressed:b}')

39

40 # Decode the example message:

41 decoder = SimpleAnsCoder(precision, compressed)

42 reconstructed = [decoder.pop(m) for _ in range(5)]

43 assert reconstructed == example_message # Verify correctness.

Listing 1: A simple (but slow) ANS coder.

10

	Probabilities, Entropies, and Mutual Information
	Source Coding Theorem & Huffman Coding
	Variational Inference
	Bits-Back Coding And Asymmetric Numeral Systems (ANS)
	Lossy Compression

