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Data Compression With And Without Deep Probabilistic Models
Prof. Robert Bamler, University of Tuebingen

Course materials available at https://robamler.github.io/teaching/compress22/

Note: This problem set covers topics from the entire semester. The problems are
designed to more closely resemble potential exam questions than some of the problems
on previous problem sets.

Problem 12.1: Probabilities, Entropies, and Mutual
Information

Consider an unbiased coin that, when tossed, comes up either “one” or “zero” with equal
probability (and independent of any previous coin tosses). Assume that you flip the coin
three times and let Xi ∈ {0, 1} for i ∈ {1, 2, 3} be the outcome of the i’th throw. Let
Xsum = X1 +X2 +X3 be the total number of “one” throws.
In the following, all entropies should be calculated in bits (i.e., with base 2), as we

always did in this course.

(a) What is the entropy HP (Xi) for each i ∈ {1, 2, 3}? (no calculation required; it
suffices if you state the correct result.)

(b) What is the joint entropy HP

(
(X1, X2, X3)

)
of the tuple (X1, X2, X3)? (no calcu-

lation required; it suffices if you state the correct result.)

(c) What is the probability P (Xsum=xsum) for each xsum ∈ {0, 1, 2, 3}?

(d) What is the entropy HP (Xsum)? Provide your result in the form HP (X1) = a +
b log2 3 where a and b are rational numbers. Hint: log2 8 = 3.

(e) What is the entropy HP

(
(X1, X2, X3, Xsum)

)
?

(f) What is the conditional probability P (X1=x1 |Xsum=2) for each x1 ∈ {0, 1}?

(g) What is the conditional entropy HP (X1 |Xsum=2)? Provide your result again in
the form HP (X1) = a+ b log2 3 where a and b are rational numbers.

(h) Let X ′
sum := X1 + X2. Which of the following two statements about mutual

informations is true?

(i) IP (X1;Xsum) ≥ IP (X1;X
′
sum); or

(ii) IP (X1;Xsum) ≤ IP (X1;X
′
sum).

(you may assume that only one of the two statements is true.) Hint: no calculation
is needed, but write a brief statement (at most one sentence) to justify your answer.
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Problem 12.2: Source Coding Theorem & Huffman
Coding

Consider the following probability distribution over a random variable Xi from the al-
phabet X = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’}:

P (Xi=‘a’) = 0.3; P (Xi=‘c’) = 0.25; P (Xi=‘e’) = 0.3;

P (Xi=‘b’) = 0.1; P (Xi=‘d’) = 0.05.

(a) Draw a Huffman tree for this probability distribution and write down a table for
a corresponding Huffman code CHuffman : X → {0, 1}∗.

(b) Calculate the expected code word length, L := EP

[
|CHuffman(Xi)|

]
where |·| denotes

the length of a bit string.

(c) Use your result for the expected code word length L and the source coding theorem
to derive a lower and an upper bound for the entropy HP (Xi). Express your result
in the form “a ? HP (Xi) ? a + 1” where a is a rational number and each “?”
denotes either “<” or “≤”.

Assume now that you have a random message X ∈ Xk consisting of k symbols Xi ∈
X, i ∈ {1, . . . , k} that are all statistically independent and distributed according to
the above probability distribution. Assume that you encode these symbols with your
Huffman code.

(a) What is the expected length EP

[
|CHuffman(X)|

]
of the encoded representation of

the entire message X?

(b) Let σ2 := EP

[(
|CHuffman(Xi)| − L

)2]
be the variance of the code word lengths in

your Huffman code. Use the weak law of large number to provide a lower bound
for the probability P

(∣∣|CHuffman(X)|/k − L
∣∣ < β

)
for arbitrary β ≥ 0.

Problem 12.3: Variational Inference

Consider a so-called “hierarchical” latent variable model with observed data (or “mes-
sage”) X and with two latent variables Z and Z′. The joint probability distribution
is:

P (Z,Z′,X) = P (Z)P (Z′|Z)P (X|Z′). (1)

Assume that we observe some data x and we now want approximate the (intractable)
posterior distribution P (Z,Z′|X = x) with a variational distribution Qϕ (where ϕ are
the variational parameters) that factorizes as follows,

Qϕ(Z,Z
′ |X=x) = Qϕ(Z |X=x)Qϕ(Z

′ |Z,X=x). (2)
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To find the optimal variational parameters ϕ∗, we maximize the evidence lower bound
(ELBO), which is defined analogous to our usual definition,

ELBO(ϕ) := EQϕ(Z,Z′|X=x)

[
log

P (Z,Z′,X=x)

Qϕ(Z,Z′ |X=x)

]
. (3)

Express the ELBO in the following form:

ELBO(ϕ) = −DKL

(
Qϕ(Z |X=x)

∣∣∣∣P (Z)
)
− E ?

[
DKL

(
?
∣∣∣∣ ?)]+ EQϕ(Z′|X=x)

[
P (X=x |Z′)

]
(4)

and fill in the three blanks marked with “?”. Here, DKL is the Kullback-Leibler diver-
gence.

Problem 12.4: Bits-Back Coding And Asymmetric
Numeral Systems (ANS)

Consider a latent variable model with latent variables Z, observed data (or “mes-
sage”) X, and joint probability distribution P (Z,X) = P (Z)P (X|Z).

(a) Assume you want to encode a message x using this latent variable model and the
bits-back trick. This means that you have to follow three steps, where each step
can be phrased in the following form:

{
encode or
decode

}{
x or
z

}
with entropy model


P (Z) or

P (X |Z=z) or
P (Z |X=x).

 (5)

Write down the three steps for encoding x in the correct order, phrasing each step
in the form of Eq. 5.

(b) Now formulate the three steps of the corresponding bits-back decoder, again phras-
ing each step in the form of Eq. 5.

(c) As you’ve learned in the lecture, the Asymmetric Numeral Systems (ANS) algo-
rithm can be understood as bits-back coding for each symbol Xi. Listing 1 shows
the code for a simple (albeit slow) ANS coder. The code listing also contains a
usage example just in case it is not clear what the coder implementation does.
Consider the methods push and pop for encoding and decoding a symbol, respec-
tively. For each of the three steps of the bits-back algorithm that you identified
in parts (a) and (b) above, identify the (possibly empty) set of lines in the code
listing that implements that step.
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Problem 12.5: Lossy Compression

Note: This is the only problem on the current problem set that would not be suitable
for an exam question. This is done deliberately so that I can save a more self-contained
problem for the exam.
In contrast to lossless compression, lossy compression can also be used for continuous

data. Interestingly, the rate/distortion-theorem holds for continuos data in the same
way as it does for discrete data, i.e., the optimal expected amortized bit rate for a given
lossy compression is given by the mutual information IP (X; X̂) between the original
message X and the reconstruction X̂.
Consider a data source that generates scalar continuous messages X ∈ R with dis-

tribution P (X) = N (X; 0, σ2), i.e., normal distributed with zero mean and standard
deviation σ2. After encoding and decoding, the reconstructed symbol X̂ ∈ R acquires
some additional Gaussian noise with variance γ2, i.e., P (X̂|X) = N (X̂;X, γ2), i.e.,
given X, the reconstruction X̂ is normal distributed with mean X and variance γ2.
Thus, the marginal distribution of the reconstruction, P (X̂) = EP (X)[P (X̂|X)] is the
convolution of two normal distributions. It is well-known that this convolution results
again in a Gaussian, where the variances add up, i.e., P (X̂) = N (X̂; 0, σ2 + γ2) (this is
known as “Gaussian error propagation”).

(a) The mutual information for continuous variables is defined as follows,

IP (X; X̂) = EP

[
log

p(X, X̂)

p(X) p(X̂)

]
(6)

where lower case “p” denotes the probability density function. Convince yourself
that, analogous to the case of discrete random variables, one can equivalently
express IP (X; X̂) as follows,

IP (X; X̂) = hP (X̂)− hP (X̂|X) (7)

where lower case hP denotes the differential entropy hp(X) := −
∫
p(x) log2 p(x) dx

and hP (X̂|X) := −
∫∫

p(x, x̂) log2 p(x̂|x) dx̂ dx with p(x̂|x) := p(x, x̂)/p(x).

Note: while a differential entropy can be negative, one can show that the difference
of differential entropies on the right-hand side of Eq. 7 is always positive.

(b) Look up the differential entropy of a normal distribution on Wikipedia (it is simply
called “entropy” there) and calculate the mutual information (and thus the optimal
expected amortized bit rate) IP (X; X̂) using Eq. 7. Express your result as a
function of the signal to noise ration σ2/γ2.
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1 class SimpleAnsCoder:

2 def __init__(self, precision, compressed=0):

3 self.n = 2**precision # ("**" denotes exponentiation)

4 self.compressed = compressed

5

6 def push(self, symbol, m): # Encodes one symbol.

7 z = self.compressed % m[symbol] + sum(m[0:symbol])

8 self.compressed //= m[symbol] # ("//" denotes integer division)

9 self.compressed = self.compressed * self.n + z

10

11 def pop(self, m): # Decodes one symbol.

12 z = self.compressed % self.n

13 self.compressed //= self.n # ("//" denotes integer division)

14 for symbol, m_symbol in enumerate(m):

15 if z >= m_symbol:

16 z -= m_symbol

17 else:

18 break

19 self.compressed = self.compressed * m_symbol + z

20 return symbol

21

22 def get_compressed(self):

23 return self.compressed

24

25 # USAGE EXAMPLE:

26

27 # Define an approximate entropy model Q with 4 bits of precision and

28 # Qi(Xi=0) = 7
24
, Qi(Xi=1) = 3

24
, and Qi(Xi=2) = 6

24
.

29 precision = 4

30 m = [7, 3, 6]

31

32 # Encode an example message (in reversed order):

33 example_message = [2, 0, 2, 1, 0]

34 encoder = SimpleAnsCoder(precision)

35 for symbol in reversed(example_message):

36 encoder.push(symbol, m) # We could use a different m for each symbol.

37 compressed = encoder.get_compressed()

38 print(f'Compressed bit string: {compressed:b}')

39

40 # Decode the example message:

41 decoder = SimpleAnsCoder(precision, compressed)

42 reconstructed = [decoder.pop(m) for _ in range(5)]

43 assert reconstructed == example_message # Verify correctness.

Listing 1: A simple (but slow) ANS coder.
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