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Recommended Literature
� Written words:

� Yang, Mandt, Theis. “An Introduction to Neural Data Compression.” arXiv:2202.06533 (2022)
� MacKay. “Information Theory, Inference, and Learning Algorithms.” Cambridge U. Press (2003)

→ free PDF by the author: http://www.inference.org.uk/mackay/itprnn/book.html
� Murphy. “Machine Learning: a Probabilistic Perspective.” MIT Press (2012)

� Moving pictures:
� information theory course by David MacKay:

https://youtube.com/playlist?list=PLruBu5BI5n4aFpG32iMbdWoRVAA-Vcso6
� probabilistic machine learning course by Philipp Hennig:

https://youtube.com/playlist?list=PL05umP7R6ij1tHaOFY96m5uX3J21a6yNd
� information theory videos by mathematicalmonk:

https://youtube.com/playlist?list=PLE125425EC837021F
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Spectrum of Topics Covered in This Course
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Problem Setting: Communication Over a Channel
sender receiver� �� � � �� �

message −−−−−−−→ encoder −−−−−−−→ channel −−−−−−−→ decoder −−−−−−−→ reconstructed
message

Goal: transmit a message from sender to receiver
� efficiently, i.e., using the channel as little as possible
� reliably, i.e., without errors or with as little (relevant) distortion as possible
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Admin Stuff
� time and place
� resources (problem sets + solutions, lecture notes, videos, ...)

� website: https://robamler.github.io/teaching/compress23/
� Outdated Ilias link
� new videos every Friday (covering lecture from preceding Wednesday)

� exam: 26 July during lecture hours (tentatively)
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Preview: Source-Channel Separation Theorem

message −−−−−−−→ encoder −−−−−−−→ channel −−−−−−−→ decoder −−−−−−−→ reconstructed
message

� We’ll prove in Lecture 10 that one can (in principle) always use a more modular setup:

message −−→ source
coding −−→ channel

coding −−→ channel −−→ channel
coding −−→ source

coding −−→ reconstructed
message
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Test Your Understanding
� Question 1: Consider a data source that generates messages which are strings of N bits.

Further, consider a channel that transmits one bit each time it is invoked, but it
sometimes flips the transmitted bit due to noise. You want to communicate one message,
and you want to be certain beyond reasonable doubt that the receiver can decode the
message without errors. How many times do you have to invoke the channel?
(a) N bits (b) more than N bits (c) fewer than N bits (d) it depends

� Question 2: Consider a noise-free channel and a message with some redundancies (e.g.,
English text). What should an encoder and a decoder do with these redundancies?

� Question 3: Same message as in Question 2, but now with a noisy channel. What
additional task do encoder and decoder have to do now? Think again about redundancies.
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Outlook
� Problem 0.1 on Problem Set 0: simple examples of source coding vs. channel coding

� Coming up: “Lossless Compression I: Symbol Codes”
� unique decodability & prefix codes
� Huffman coding (used in zip, gzip, png, ...)
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Overview
� Recap from last video: Source Coding & Channel Coding

sender receiver� �� � � �� �

message −→ source
coding −→ channel

coding −→ channel −→ channel
coding −→ source

coding −→ reconstructed
message

needs:
• prob. model

of data source
• distortion

metric

needs:
• prob. model

of channel

needs:
• prob. model

of channel

needs:
• prob. model

of data source
• (distortion

metric)

� This course: focus on source coding , i.e., data compression
� We’ll begin with lossless compression.

� Two approaches to lossless compression:
(a) symbol codes: conceptionally simple but suboptimal
(b) stream codes: more involved but close to optimal
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Definitions and Notation
� Example:

� a data source generates ASCII-encoded text of variable length;
� we want to send the message x = “Rosebud” over a noise-free binary channel.

� More generally:
� The message x is a variable-length sequence of symbols from a discrete alphabet:

x = (x1, x2, . . . , xk(x)) ∈ X∗ where

X is called the “alphabet” (discrete set, known to sender and receiver);
k(x) is the length of a given message x;

xi ∈ X is called a “symbol” ∀i ∈ {1, . . . , k};
X∗ :=

�
k≥0

Xk is called the “Kleene closure” of X.

� The channel transmits B-ary bits, i.e., elements of {0, . . . , B − 1} for some B ≥ 2.

Robert Bamler · Lecture 1, Part 2 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 2

Definition of Symbol Codes
� Have: discrete alphabet X, message x = (x1, x2, . . . , xk(x)) ∈ X∗, lossless B-ary channel.
� Goal (lossless compression): find a mapping X∗ → {0, . . . , B − 1}∗ such that

� the mapping is injective (i.e., invertible); and
� the resulting bit strings are short.

� B-ary symbol code: map each xi to a bit string C (xi), then simply concatenate them.
C : X → {0, . . . , B − 1}∗ is called the “code book”;

C (xi) is called the “code word” for symbol xi ∈ X;
|C (xi)| denotes the length of the code word (i.e., the number of B-ary bits);
C ∗(x) := C (x1) || C (x2) || . . . || C (xk(x)) is the resulting encoding of the message x;

|C ∗(x)| =
�k(x)

i=1 |C (xi)| denotes the length of the encoding (= “bit rate”)
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Examples of Symbol Codes
� Morse code

International Morse Code
 1. The length of a dot is one unit. 
2. A dash is three units. 
3. The space between parts of the same letter is one unit. 
4. The space between letters is three units. 
5. The space between words is seven units.

U
V
W
X
Y
Z

A
B
C
D
E
F
G
H
I
J
K
L
M
N
O

Q
P

R
S
T

1
2
3
4
5
6
7
8
9
0

(figure source: Wikipedia; CC-0)
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 1. The length of a dot is one unit. 
2. A dash is three units. 
3. The space between parts of the same letter is one unit. 
4. The space between letters is three units. 
5. The space between words is seven units.

Examples of Symbol Codes
� Morse code
� UTF-8

(figure source: Wikipedia)
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Examples of Symbol Codes
� Morse code
� UTF-8
� Counterexample (not a symbol code): molecular formulae in chemistry

� methane: H C
H

H
H = CH4

� ethane: H C
H

H
C
H

H
H = C2H6

� propane: H C
H

H
C
H

H
C
H

H
H = C3H8

� Note: The DEFLATE algorithm (used in zip, gzip, png, ...) works somewhat similarly.

Robert Bamler · Lecture 1, Part 2 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 6



Examples of Symbol Codes
� Morse code
� UTF-8
� Counterexample: molecular formulae in chemistry
� Toy Example: Simplified Game of Monopoly (SGoM)

� message x ∈ X∗ is sequence of symbols;
� for each symbol: throw a pair of fair dice and record their sum;
� for simplicity, let’s use 3-sided dice ⇒ X = {2, 3, 4, 5, 6}.

x C (1)(x) C (2)(x) C (3)(x) C (4)(x) C (5)(x)

2 10 010 010 10 010
3 11 011 10 011 01
4 100 100 00 11 00
5 101 101 11 00 11
6 110 110 011 010 110
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Properties of Symbol Codes
A symbol code with code book C : X → {0, . . . , B − 1}∗ is called
� “uniquely decodable” if the resulting code C ∗ : X∗ → {0, . . . , B − 1}∗ is injective

� necessary property for lossless compression
� difficult to prove in general since it requires reasoning over X∗

� “prefix free” (aka, C is a “prefix code”) if no code word is a prefix of another code word
� more formally:
� easier to prove than unique decodability since it requires only reasoning over X.
� easier to decode than non-prefix-free codes (using a greedy algorithm).

We will show ...
� ... on Problem Set 0 that “prefix free” ⇒ “uniquely decodable” but not the reverse;
� ... in Lecture 2 that a slightly weaker generalization of the reverse does hold, however.

(This will allow us to simplify future discussions.)
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Back to Our SGoM
x C (1)(x) C (2)(x) C (3)(x) C (4)(x) C (5)(x)

2 10 010 010 10 010
3 11 011 10 011 01
4 100 100 00 11 00
5 101 101 11 00 11
6 110 110 011 010 110

uniquely decodable? ✗ ✓ ✓ ✓ ✓

prefix free? ✗ ✓ ✓ ✓ ✗

best choice?
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Reminder from Last Video

sender receiver� �� � � �� �

message −−→ source
coding −−→ channel

coding −−→ channel −−→ channel
coding −−→ source

coding −−→ reconstructed
message

needs:
• prob. model

of data source
• distortion

metric

needs:
• prob. model

of channel

needs:
• prob. model

of channel

needs:
• prob. model

of data source
• (distortion

metric)

Robert Bamler · Lecture 1, Part 2 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 10

Probabilistic Model of the Data Source
x possible throws probability p(x) C (1)(x) C (2)(x) C (3)(x) C (4)(x) C (5)(x)

2 10 010 010 00 010
3 , 11 011 10 111 01
4 , , 100 100 00 01 00
5 , 101 101 11 10 11
6 110 110 011 110 110

uniquely decodable? ✗ ✓ ✓ ✓ ✓

prefix free? ✗ ✓ ✓ ✓ ✗

expected code word length LC :=
�

x∈X p(x) |C (x)|
best choice? ✗ ✗ ✗
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Optimal Symbol Codes: Huffman Codes [Huffman, 1952]

� Our first example of an entropy coder:
probabilistic model p of a data source �−→ lossless compression code C

� Example for SGoM:
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Huffman Coding for B = 2 (and finite X)
Informal algorithm: create a binary tree whose leaves are the symbols x ∈ X as follows:
� start from the leaves; each leaf x ∈ X is represented as a node with weight p(x);
� while the graph is not fully connected:

� identify two nodes with lowest weights w and w � among all nodes that don’t yet have a parent;
� combine these two nodes by introducing a parent node with weight w + w �;
� label the edges from the new parent node to its two children with “0” and “1” in arbitrary order;

� interpret the resulting tree as a trie for a prefix code on X.

More formal algorithm: Problem Set 1

Claim: Huffman codes are optimal uniquely decodable symbol codes (i.e., they minimize LC).
� Proof: Lecture 3
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Outlook
� Problem Set 0: simple warm-up exercises (mostly SGoM)

� Problem Set 1: Huffman coding
� breaking ties
� implementation in Python

� Next 2 videos: Source Coding Theorem
� fundamental theoretical bound for lossless compression
� We’ll prove both that a certain bound holds and that it is meaningful in practice.

� Later videos:
� use machine learning to model the data source
� even better lossless codes than Huffman codes (stream codes)
� lossy compression
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