Theoretical Bounds for Lossless Compression

Robert Bamler • Summer Term of 2023

These slides are part of the course "Data Compression With and Without Deep Probabilistic Models" taught at University of Tübingen. More course materials-including video recordings, lecture notes, and problem sets with solutions-are publicly available at https://robamler.github.io/teaching/compress23/.

Admin Stuff

- Important: next lecture only on zoom, not in classroom
- Sign up to course using (new) Ilias link to get zoom link by email (link will also be on website ~ 30 minutes before next week's lecture starts)
- You'll have to sign up for exam on Alma starting 5 June (independently of whether you signed up to the course on llias)
- More details will follow.

Recap: Symbol Codes

- alphabet \mathfrak{X} (discrete set) with probabilities $p(x)$ for all symbols $x \in \mathfrak{X}$
- message $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k(\mathbf{x})}\right) \in \mathfrak{X}^{*}$
- code book C maps any $x \in \mathfrak{X}$ to its code word $C(x) \in\{0, \ldots, B-1\}^{*}$ (usually: $B=2$)
- induces a symbol code $C^{*}: \mathfrak{X}^{*} \rightarrow\{0, \ldots, B-1\}^{*}$ by concatenation (without delimiters): $C^{*}(\mathbf{x}):=C\left(x_{1}\right)\left\|C\left(x_{2}\right)\right\| \ldots \| C\left(x_{k(\mathbf{x})}\right)$
- properties of symbol codes:
- unique decodability: C^{*} is injective
- prefix code: no code word $C(x)$ is a prefix of another code word $C\left(x^{\prime}\right)$ with $x^{\prime} \neq x$
- C is a prefix code $\Rightarrow C$ is uniquely decodable (but reverse is in general not true) \rightarrow Problem 0.2 (d)
- expected code word length $L_{C}:=\sum_{x \in \mathfrak{F}} p_{\mathbb{N}}(x)|C(x)|$
- Huffman coding generates an optimal symbol code (that minimizes L_{C}) for a given p

Theoretical Bounds for Lossless Compression

- Goal of this lecture: Source Coding Theorem [Shannon, 1948]
- Relates L_{C} to the so-called entropy $H_{B}[p]$ (which we'll define later today).
- The Bad News: a uniquely decodable B-ary symbol code C cannot have $L_{C}<H_{B}[p]$.
- The Good News: $\forall p$, one can make L_{C} close to $H_{B}[p]$ with less than 1 bit per symbol overhead.
- Step 1: proof bound on code word lengths, independent of p (KM-Theorem)
- Step 2: proof bound on expected code word length for a given model p
- Credits: Our proof follows:
https://www.youtube.com/watch?v=yHw1ka-4g0s\&list=PLE125425EC837021F\&index=14

Robert Bamler • Lecture 2, Part 1 of the course "Data Compression With and Without Deep Probabilistic Models". Summer Term of 2023 . more course materials at https: //robammer.github. io/teaching/compress $23 /$

The Kraft-McMillan Theorem [Kraft, 1949; McMillan, 1956]
(a) $\forall B$-ary uniquely decodable symbol codes over some discrete alphabet \mathfrak{X} :

$$
\begin{equation*}
\sum_{x \in \mathfrak{X}} \frac{1}{B^{|C(x)|}} \leq 1 \quad \text { ("Kraft inequality") } \tag{1}
\end{equation*}
$$

Interpretation: we have a finite budget of "shortness" for code words:

- interpret $\frac{1}{B C(x) \mid}$ as the "shortness" of code word $C(x)$;
- the sum of all "shortnesses" must not exceed 1;
- if we shorten one code word then we may have to make another code word longer so that we don't exceed our "shortness budget".

(b) \forall functions $\ell: \mathfrak{X} \rightarrow \mathbb{N}$ that satisfy the Kraft inequality (i.e., $\sum_{x \in \mathfrak{X}} \frac{1}{B^{(x)}} \leq 1$): of some $x^{\prime} \neq x$

Corollary: \forall uniquely decodable B-ary symbol codes C :
\exists a B-ary prefix code C^{\prime} with same code word lengths (i.e., $\left|C^{\prime}(x)\right|=|C(x)| \forall x \in \mathfrak{X}$)

Lemma

- let: $\left\{\begin{array}{l}C \text { be a } B \text {-ary uniquely decodable symbol code over } \mathfrak{X} \text {; } \\ s \in \mathbb{N}_{0} ; \\ Y_{s}:=\left\{\mathbf{x} \in \mathfrak{X}^{*} \text { with }\left|C^{*}(\mathbf{x})\right|=s\right\} .\end{array}\right.$
- then: $\left|Y_{s}\right| \leq B^{s}$.

Proof: Let $S:=\{\underbrace{C^{*}(\underline{x})}_{\{0, \ldots, B-1\}^{s}}: \quad x \in Y_{s}\} \subseteq \underbrace{\{0, \ldots, B-1\}^{s}}_{\text {size: } B^{s}} \Rightarrow\left|S_{s}\right| \leqslant B^{s}$

$$
\begin{aligned}
& \text { Assume }\left|Y_{s}\right|>B^{s} \Rightarrow\left|Y_{s}\right|>\left|S_{s}\right| \\
& \Rightarrow \exists \underline{x}, \underline{x}^{\prime} \in Y_{s} \text { with } \underline{x} \neq x^{\prime} \text { but } C^{*}(\underline{x})=C^{*}\left(x^{\prime}\right) \\
& \Rightarrow C^{*} \text { not in jootrve, i.e., Cnot unipuely decadable }
\end{aligned}
$$

Proof of Part (a) of KM Theorem

Claim (reminder): C is uniquely decodable $\Longrightarrow \underbrace{\sum_{x \in \mathfrak{X}} \frac{1}{B^{C(x) \mid}}} \leq 1$.
Proof:

$$
\begin{aligned}
& \text { Let } k \in \mathbb{N} . \\
& r^{k}=\left(\sum_{x \in \notin \mathbb{A}} B^{-|c(x)|}\right)^{k}=\left(\sum_{x_{1} e \notin} B^{-\left|c\left(x_{1}\right)\right|}\right)\left(\sum_{x_{2} \in \notin} B^{-\left|c\left(x_{2}\right)\right|}\right) \cdots\left(\sum_{x_{k} \in \mathcal{A}} B^{-\left|c\left(x_{k}\right)\right|}\right)=\sum_{\underline{x} \in \mathbb{F}^{k}} B^{-\left|C^{*}(\underline{x})\right|}
\end{aligned}
$$

(i) if \mathfrak{X} is finite: $\Rightarrow \gamma:=\max _{x \in \mathcal{X}}|C(x)|<\infty$ is well -defined \& finite,

$$
\begin{aligned}
& r^{k}=\sum_{\underline{x} \in \pi^{k}} B^{-\left|C^{*}(\underline{x})\right|}=\sum_{s=0}^{\gamma k} \sum_{\underline{x} \in Y_{s}} B^{-s}=\sum_{s=0}^{\gamma k} \underbrace{\left|Y_{s}\right|}_{\leqslant B^{-s}(\text { Lemma })} B^{-s} \leqslant \gamma^{k+1} \Rightarrow \underbrace{r^{k}-1}_{\substack{\rightarrow \infty \\
\text { for } k \rightarrow \infty}}<\underbrace{\gamma}_{\substack{\text { indop. } \\
\text { of }}} \\
& \text { (ii) if } \mathfrak{X} \text { is countably infinite: without rostrictron, assume } \mathbb{X}=\mathbb{N} \text {; } \\
& \Rightarrow r=\sum_{x \in \mathbb{N}} B^{-|C(x)|}=\sum_{x=1}^{\infty} B^{-|C(x)|}=\lim _{n \rightarrow \infty} \sum_{x=1}^{n} B^{-|C(x)|} \leqslant 1 \\
& \Rightarrow r \leqslant 1
\end{aligned}
$$

Proof of Part (b) of KM Theorem

UNIVERSITAT UNIVERSITAT
TUBINGEN .

Claim (reminder): $\sum_{x \in \mathfrak{X}} \frac{1}{\left.B^{\ell(x)}\right)} \leq 1 \Longrightarrow \exists B$-ary prefix code of algorithm below C_{ℓ} with $\left|C_{\ell}(x)\right|=\ell(x) \forall x \in \mathfrak{X}$.
Constructive proof: we show existence of C by showing how it can be obtained.

```
Algarithm: sort symbols in \(\neq\left\{x, x^{\prime}, x^{\prime \prime}, \ldots\right\}\) s.t. \(\ell(x) \geqslant l\left(x^{\prime}\right) \geqslant l\left(x^{\prime \prime}\right) \geqslant\)
    initialize \(\xi \leftarrow 1\);
    for each \(x \in \mathcal{F}\) in above order
    update \(s \leftarrow \xi^{-} B^{-l(x)}\);
    write \(\xi \in[0,1)\) in \(B\)-ary: \(\delta=(0,2 ? 2 ? \ldots)_{B}\);
    set \(C(x)\) to first \(l(x)\) bits here (pad with trailing zevas if necessary)
```

Claim: The resulting code book C_{ℓ} is prefix free (proof: Problem 2.1). $\begin{aligned} & \text { also discusses case } \\ & \text { (cantablys infinle } \nexists\end{aligned}$

Example: Simplified Game of Monopoly (SGoM)

x	$\ell(x)$	$C_{\ell}(x)$
2	3	111
3	2	10
4	2	01
5	2	00
6	3	110

sorting by
descending $e(x)$
(1)
(3)
(4)
(5)
(2)
$\xi \leftarrow 1 \quad$ (initialitation)
$\xi \in 1-2^{-3}=(1.000)_{2}-(0.001)_{2}=(0.111)_{2}$
$\xi \leftarrow(0.110)_{2}-(0.01)_{2}=(0.10)_{2}$
$\xi \leftarrow(0.10)_{2}-(0.01)_{2}=(0.01)_{2}$
$5 \longleftarrow(0.01)_{2}-(0.01)_{2}=(0.00)_{2}$
$\xi \leftarrow(0.111)_{2}-(0.001)_{2}=(0.110)_{2}$

- Check Kraft inequality for $B=2: \sum_{x \in \neq 7} 2^{-l(x)}=2 \times 3^{-2}+3 \times 2^{-2}=1 \leqslant 1$
- Question: how should we choose $\ell: \mathfrak{X} \rightarrow \mathbb{N}$ for a given probabilistic model p ?
- optimally: via Huffman coding
- near-optimally: via information content (next part).

Outlook

- Problem Set 2:
- complete proof of part (b) of KM-Theorem
- implement Huffman decoder in Python
- Next part:
- theoretical bounds on the expected code word length L_{C} ("The Bad News" \& "The Good News")
- theoretical bounds beyond symbol codes: Source Coding Theorem

Lecture 2, Part 2:

The Source Coding Theorem

Robert Bamler • Summer Term of 2023

These slides are part of the course "Data Compression With and Without Deep Probabilistic Models" taught at University of Tübingen. More course materials-including video recordings, lecture notes, and problem sets with solutions-are publicly available at https://robamler.github.io/teaching/compress23/.

Recap: Kraft-McMillan (KM) Theorem

(a) $\forall B$-ary uniquely decodable symbol codes over some discrete alphabet \mathfrak{X} :

$$
\begin{equation*}
\sum_{x \in \mathcal{X}} \frac{1}{B^{|C(x)|}} \leq 1 \quad \text { ("Kraft inequality"). } \tag{1}
\end{equation*}
$$

(b) \forall functions $\ell: \mathfrak{X} \rightarrow \mathbb{N}$ that satisfy the Kraft inequality (i.e., $\sum_{x \in \mathfrak{X}} \frac{1}{B^{\ell(x)}} \leq 1$):
$\exists B$-ary prefix code C_{ℓ} with $\left|C_{\ell}(x)\right|=\ell(x) \forall x \in \mathfrak{X}$.

- Question: how should we choose $\ell: \mathfrak{X} \rightarrow \mathbb{N}$ for a given probabilistic model p ?
- optimally: via Huffman coding (problem: no closed-form solution)
- near-optimally (this part): via information content spoiler: $\ell_{\mathrm{S}}(x):=\left\lceil-\log _{B} p(x)\right\rceil$

Optimal Choice of ℓ

- Constrained optimization problem: (\star)
- minimize: $L_{C_{\ell}}=\sum_{x \in \mathfrak{X}} p(x)\left|C_{\ell}(x)\right|=\sum_{x \in \mathfrak{X}} p(x) \ell(x)$

$$
\cdot \forall x \in \mathcal{F}: 0=\frac{\partial \mathscr{L}_{\ell, \lambda}}{\partial l(x)}=\frac{\partial L_{e}}{\partial \ell(x)}+\lambda \frac{\partial}{\partial \ell(x)} B^{-l(x)}
$$

- constraints: (i) $\sum_{x \in \mathfrak{X}} \frac{1}{B^{\ell(x)}} \leq 1$;
(ii) $\ell(x) \in \mathbb{N} \forall x \in \mathfrak{X}$.

$$
\begin{aligned}
& =p(x)+\lambda \frac{\partial}{\partial \ell(x)} e^{\ln \left(B^{-l(x)}\right)} \\
& =l(x) \ln B
\end{aligned}
$$

$$
=p(x)+\lambda \frac{\partial l(x)}{\partial \rho(x)} e^{-l(x) \ln B}
$$

- Idea: relax constraint (ii): (\square)

$$
=p(x)-\lambda \ln B e^{-l(x) \ln B}
$$

- minimize: $L_{\ell}:=\sum_{x \in \mathfrak{X}} p(x) \ell(x)$

$$
\begin{aligned}
& =p(x)-\lambda \ln B e^{-x-e(x)} \\
& =p(x)-\lambda \ln B B^{-1}
\end{aligned}
$$

$$
\text { - solve for } l(x) \text { : }
$$

- constraints: (i) $\sum_{x \in \mathfrak{F}} \frac{1}{B^{\varepsilon(x)}} \leq 1$;
(ii') $\ell(x) \in \mathbb{R}_{>0} \quad \forall x \in \mathfrak{X}$.
\Rightarrow yields lower bound: solution L_{ℓ} of $(\square) \leq$ solution $L_{C_{\ell}}$ of (\star)
- Observation: solution of (\square) satisfies: $(i ') \sum_{x \in \mathfrak{X}} \frac{1}{B^{\ell(x)}}=1$.
- Enforce via Lagrange multiplier λ :

$$
\cdot 0=\frac{\partial \mathscr{L}_{2,1}}{\partial \lambda}=\sum_{x \in \neq 7} B^{-l(x)}-1 \Leftrightarrow \text { constraint }\left(\text { (i' }^{\prime}\right)
$$

-solve for $\ell(x)$. p (x)
$l(x)=-\log _{\beta}\left(\frac{p}{\lambda \ln B}\right)$
$=-\log _{B} p(x)+\alpha^{\alpha=\log _{\beta}\left(\lambda \alpha_{B} B\right)}$

- abtain λ from constraint.
$1=\sum_{x \in \mathcal{A}} B^{-l(x)}=B^{-\alpha} \sum_{x \in \neq} p(x) \Rightarrow \alpha=0$
find stationary point of $\mathcal{L}_{\ell, \lambda}:=L_{\ell}+\lambda\left(\sum_{x \in \mathfrak{F}} \frac{1}{B^{\ell(x)}}-1\right) \quad$ w.r.t. $\quad \lambda \in \mathbb{R}$ and all $\ell(x) \in \mathbb{R}_{\geq 0} \forall x \in \mathfrak{X}$.

- Solution of relaxed optimization problem (\square): $\ell(x)=\underbrace{-\log _{B} p(x)}$
- $L_{\ell}=\sum_{x \in \mathfrak{X}} p(x) \ell(x)=\underbrace{-\sum_{x \in \mathfrak{X}} p(x) \log _{B} p(x)}_{=: H_{B}[p](\text { "entropy") }}$
"information content of the symbol x "
(under model p and to base B)
- Let's now restore the constraints from (\star), i.e., $\ell: \mathfrak{X} \rightarrow \mathbb{N}$ must be integer valued.
- Recall: solution L_{ℓ} of $(\star) \geq$ solution L_{ℓ} of (\square)
- Thus, for all integer valued ℓ that satisfy Kraft inequality: $L_{C_{\ell}} \geq H_{B}[p]$
- By part (a) of the KM-Theorem:
lower bound on the expected code word length L_{C} of any uniquely decodable B-ary symbol code C :

$$
L_{C} \geq H_{B}[p]
$$

Shannon Coding [Shannon, 1948]

- Last slide:
"the bad news"
- Lower bound for uniquely decodable B-ary symbol code: $L_{C} \geq H_{B}[p]=-\sum_{x \in \mathscr{X}} p(x) \log _{B} p(x)$
- We would achieve equality $\left(L_{C}=H_{B}[p]\right)$ if we were able to set $\ell(x)=\underbrace{-\log _{B} p(x)}_{\notin \mathbb{N}(\text { in general) }} \forall x \in \mathfrak{X}$.
- Question: How closely can we approach this bound?
- Idea: choose $\ell_{S}: \mathfrak{X} \rightarrow \mathbb{N}$ as follows: $\ell_{S}(x)=\left\lceil-\log _{B} p(x)\right\rceil$ to nerest integer.
- Satisfies Kraft inequality: $\sum_{x \in \mathcal{X}} B^{-\ell s(x)}=\sum_{x \in \mathcal{X}} B^{-\left[-\log _{B} p(x)\right]} \leq \sum_{x \in \mathcal{X}} B^{\log _{B} p p}(x)=\sum_{x \in \mathcal{X}} p(x)=1$
- By part (b) of KM-Theorem: $\exists B$-ary prefix code C_{S} with $\left|C_{S}(x)\right|=\ell_{S}(x) \forall x \in \mathfrak{X}$.
- $L_{C_{s}}=\sum_{x \in \mathcal{X}} p(x) \ell_{s}(x)=\sum_{x \in \mathcal{X}} p(x)\left\lceil-\log _{B} p(x)\right\rceil<\sum_{x \in \mathcal{X}} p(x)\left(-\log _{B} p(x)+1\right)=H_{B}[p]+1$
- in short: $L C_{C_{S}}<H_{B}[p]+1$ "the good nevs"

Symmary: Theoretical Bounds for symbol codes

- The Bad News: no (uniquely decodable B-ary) symbol code can have an expected code word length smaller than the entropy $H_{B}[p]$ of a symbol.
- The Good News: one can always approach this lower bound with less than 1 bit of overhead per symbol (e.g., by using the Shannon code C_{S}).
- Thus, the optimal code $C_{\text {opt }}$ (that minimizes L_{C}) satisfies:

$$
H_{B}[p] \leq L_{C_{\text {opt }}}<H_{B}[p]+1
$$

(but this requives that
$\left|C\left(x^{\prime}\right)\right|>-\log _{B} p\left(x^{\prime}\right)$ for
some $x^{\prime} \neq x$, see discussion of $K M$-theorem)

- Note: The above bounds are in expectation over all symbols $x \in \mathfrak{X}$.
- For any specific symbol $x \in \mathfrak{X}$, a code C can "violate the lower bound": $|C(x)|<-\log _{B} p(x)$.
- But: Shannon code satisfies $-\log _{B} p(x) \leq\left|C_{S}(x)\right|<-\log _{B} p(x)+1$ for each individual $x \in \mathfrak{X}$.

Robert Bamler • Lecture 2, Part 2 of the course "Data Compression With and Without Deep Probabilistic Models" - Summer Term of 2023 • more course materials at https: //robamier.github. .io/teaching/compress $23 /$

The Source Coding Theorem [Shannon, 1948]

- So far: theoretical bounds for symbol codes: $H_{B}[p] \leq L_{C_{\text {opt }}}<H_{B}[p]+1$

- Symbol codes are suboptimal.

- Always generate an integer number of bits per symbol.
- Thus, overhead of up to 1 bit applies per symbol.

- Practical solution: stream codes (Lectures 5 and 6)
- For theoretical analysis: consider entire message $\mathbf{x} \in \mathcal{X}^{*}$ as a single symbol.
- New alphabet \mathfrak{X}^{*} is still countable, thus theorems still apply. $\mathbb{i n f i n f i n t e l y ~ l a r g e ; ~ a n d ~ e v e n ~ i f ~ w e ~}^{\text {n }}$
- Probability distribution p^{*} an x^{*} an be complicated, but we'll Set a maximum messege length k assume it has a finite entropy $H_{B}\left[p^{*}\right]=-\sum_{X \in X^{*}} p^{*}(\mathbf{x}) \log _{B} p^{*}(\mathbf{x})$. Carge \Rightarrow Huffman coding dircectlp on
this space would be astononomically expersive.
\Rightarrow The optimal uniq. dec. code $C_{\text {opt }}$ on \mathfrak{X}^{*} (typically not a symbol code on \mathfrak{X}) satisfies: $(\Leftrightarrow$ neod

$$
\left.H_{B}\left[p^{*}\right] \leq \text { expected bit rate of } C_{\text {opt }}<H_{B}\left[p^{*}\right]+1 \quad \begin{array}{c}
\text { stream } \\
\text { codes }
\end{array}\right)
$$

Outlook

- Problem Set 2:

- simple examples of Shannon coding
- entropy and information content
- Next week (on zoom!):
- proof of optimality of Huffman coding
- machine-learning models for lossless compression (continued in Lectures 4 and 7-9)
- Lectures 5 \& 6: beyond symbol codes: stream codes
- Lecture 11: theoretical bounds for lossy compression ("Rate/Distortion Theory")

