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Admin Stuff
� Important: next lecture only on zoom, not in classroom

� Sign up to course using (new) Ilias link to get zoom link by email
(link will also be on website ∼30 minutes before next week’s lecture starts)

� You’ll have to sign up for exam on Alma starting 5 June (independently of whether you
signed up to the course on Ilias)

� More details will follow.
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Recap: Symbol Codes
� alphabet X (discrete set) with probabilities p(x) for all symbols x ∈ X

� message x = (x1, x2, . . . , xk(x)) ∈ X∗

� code book C maps any x ∈ X to its code word C (x) ∈ {0, . . . , B − 1}∗ (usually: B = 2)
� induces a symbol code C ∗: X∗ → {0, . . . , B − 1}∗ by concatenation (without delimiters):

C ∗(x) := C (x1) ||C (x2) || . . . ||C (xk(x))

� properties of symbol codes:
� unique decodability: C ∗ is injective
� prefix code: no code word C (x) is a prefix of another code word C (x �) with x � �= x
� C is a prefix code ⇒ C is uniquely decodable (but reverse is in general not true)

� expected code word length LC :=
�
x∈X

p(x) |C (x)|

� Huffman coding generates an optimal symbol code (that minimizes LC) for a given p
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Theoretical Bounds for Lossless Compression
� Goal of this lecture: Source Coding Theorem [Shannon, 1948]

� Relates LC to the so-called entropy HB[p] (which we’ll define later today).
� The Bad News: a uniquely decodable B-ary symbol code C cannot have LC < HB[p].
� The Good News: ∀p, one can make LC close to HB[p] with less than 1 bit per symbol overhead.

� Step 1: proof bound on code word lengths, independent of p (KM-Theorem)
� Step 2: proof bound on expected code word length for a given model p
� Credits: Our proof follows:

https://www.youtube.com/watch?v=yHw1ka-4g0s&list=PLE125425EC837021F&index=14
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The Kraft-McMillan Theorem [Kraft, 1949; McMillan, 1956]

(a) ∀ B-ary uniquely decodable symbol codes over some discrete alphabet X:
�

x∈X

1
B |C (x)| ≤ 1 (“Kraft inequality”). (1)

Interpretation: we have a finite budget of “shortness” for code words:
� interpret 1

B|C(x)| as the “shortness” of code word C (x);
� the sum of all “shortnesses” must not exceed 1;
� if we shorten one code word then we may have to make another

code word longer so that we don’t exceed our “shortness budget”.

(b) ∀ functions � : X → N that satisfy the Kraft inequality (i.e.,
�

x∈X
1

B�(x) ≤ 1):
∃ B-ary prefix code C� with |C�(x)| = �(x) ∀x ∈X.

Corollary: ∀ uniquely decodable B-ary symbol codes C :
∃ a B-ary prefix code C � with same code word lengths (i.e., |C �(x)| = |C (x)| ∀x ∈X)
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Lemma

� let:





C be a B-ary uniquely decodable symbol code over X;

s ∈ N0;
Ys :=

�
x ∈ X∗ with |C ∗(x)| = s

�
.

� then: |Ys | ≤ Bs .

Proof:
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Proof of Part (a) of KM Theorem
Claim (reminder): C is uniquely decodable =⇒ �

x∈X

1
B|C(x)| ≤ 1.

(i) if X is finite:

(ii) if X is countably infinite:
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Proof of Part (b) of KM Theorem
Claim (reminder):

�
x∈X

1
B�(x) ≤ 1 =⇒ ∃ B-ary prefix code C� with |C�(x)| = �(x) ∀x ∈X.

Constructive proof: we show existence of C by showing how it can be obtained.

Claim: The resulting code book C� is prefix free (proof: Problem 2.1).
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Example: Simplified Game of Monopoly (SGoM)
x �(x) C�(x)

2 3
3 2
4 2
5 2
6 3

� Check Kraft inequality for B = 2:

� Question: how should we choose � : X → N for a given probabilistic model p?
� optimally: via Huffman coding
� near-optimally: via information content (next part).
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Outlook
� Problem Set 2:

� complete proof of part (b) of KM-Theorem
� implement Huffman decoder in Python

� Next part:
� theoretical bounds on the expected code word length LC (“The Bad News” & “The Good News”)
� theoretical bounds beyond symbol codes: Source Coding Theorem
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Recap: Kraft-McMillan (KM) Theorem

(a) ∀ B-ary uniquely decodable symbol codes over some discrete alphabet X:
�

x∈X

1
B |C (x)| ≤ 1 (“Kraft inequality”). (1)

(b) ∀ functions � : X → N that satisfy the Kraft inequality (i.e.,
�
x∈X

1
B�(x) ≤ 1):

∃ B-ary prefix code C� with |C�(x)| = �(x) ∀x ∈X.

� Question: how should we choose � : X → N for a given probabilistic model p?
� optimally: via Huffman coding (problem: no closed-form solution)
� near-optimally (this part): via information content

spoiler: �S(x) := �− logB p(x)�
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Optimal Choice of �
� Constrained optimization problem: (�)

� minimize: LC�
=

�
x∈X

p(x) |C�(x)| =
�
x∈X

p(x) �(x)

� constraints: (i)
�
x∈X

1
B�(x) ≤ 1; (ii) �(x) ∈ N ∀x ∈X.

� Idea: relax constraint (ii): (�)

� minimize: L� :=
�
x∈X

p(x) �(x)

� constraints: (i)
�
x∈X

1
B�(x) ≤ 1; (ii’) �(x) ∈ R>0 ∀x ∈X.

⇒ yields lower bound: solution L� of (�) ≤ solution LC�
of (�)

� Observation: solution of (�) satisfies: (i’)
�
x∈X

1
B�(x) = 1.

� Enforce via Lagrange multiplier λ:
find stationary point of L�,λ := L� + λ

��
x∈X

1
B�(x) − 1

�
w.r.t. λ ∈ R and all �(x) ∈ R≥0 ∀x ∈X.
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Lower Bound on Expected Code Word Length LC

� Solution of relaxed optimization problem (�): �(x) = − logB p(x)� �� �
“information content of the symbol x”

(under model p and to base B)� L� =
�

x∈X

p(x) �(x) = −
�

x∈X

p(x) logB p(x)

� �� �
=:HB[p] (“entropy”)

� Let’s now restore the constraints from (�), i.e., � : X → N must be integer valued.
� Recall: solution LC�

of (�) ≥ solution L� of (�)

� Thus, for all integer valued � that satisfy Kraft inequality: LC�
≥ HB[p]

� By part (a) of the KM-Theorem:
lower bound on the expected code word length LC
of any uniquely decodable B-ary symbol code C :

LC ≥ HB[p]
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Shannon Coding [Shannon, 1948]

� Last slide:
� Lower bound for uniquely decodable B-ary symbol code: LC ≥ HB[p] = − �

x∈X

p(x) logB p(x)

� We would achieve equality (LC = HB[p]) if we were able to set �(x) = − logB p(x)� �� �
/∈ N (in general)

∀x ∈X.

� Question: How closely can we approach this bound?
� Idea: choose �S : X → N as follows: �S(x) = �− logB p(x)�

� Satisfies Kraft inequality:
�
x∈X

B−�S(x) =
�
x∈X

B−�− logB p(x)� ≤ �
x∈X

B logB p(x) =
�
x∈X

p(x) = 1

� By part (b) of KM-Theorem: ∃ B-ary prefix code CS with |CS(x)| = �S(x) ∀x ∈X.
� LCS =

�
x∈X

p(x) �S(x) =
�
x∈X

p(x)
�
− logB p(x)

�
<

�
x∈X

p(x)
�
− logB p(x) + 1

�
= HB[p] + 1

� in short: LCS < HB[p] + 1
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Symmary: Theoretical Bounds for symbol codes
� The Bad News: no (uniquely decodable B-ary) symbol code can have an

expected code word length smaller than the entropy HB[p] of a symbol.
� The Good News: one can always approach this lower bound with less than

1 bit of overhead per symbol (e.g., by using the Shannon code CS).
� Thus, the optimal code Copt (that minimizes LC) satisfies:

HB[p] ≤ LCopt < HB[p] + 1

� Note: The above bounds are in expectation over all symbols x ∈ X.
� For any specific symbol x ∈ X, a code C can “violate the lower bound”: |C (x)| < − logB p(x).
� But: Shannon code satisfies − logB p(x) ≤ |CS(x)| < − logB p(x) + 1 for each individual x ∈ X.
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The Source Coding Theorem [Shannon, 1948]

� So far: theoretical bounds for symbol codes: HB[p] ≤ LCopt < HB[p] + 1
� Symbol codes are suboptimal.

� Always generate an integer number of bits per symbol.
� Thus, overhead of up to 1 bit applies per symbol.

� Practical solution: stream codes (Lectures 5 and 6)
� For theoretical analysis: consider entire message x ∈ X∗ as a single symbol.

� New alphabet X∗ is still countable, thus theorems still apply.
� Probability distribution p∗ on X∗ can be complicated, but we’ll

assume it has a finite entropy HB[p∗] = −�
x∈X∗

p∗(x) logB p∗(x).

⇒ The optimal uniq. dec. code Copt on X∗ (typically not a symbol code on X) satisfies:
HB[p∗] ≤ expected bit rate of Copt < HB[p∗] + 1
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Outlook
� Problem Set 2:

� simple examples of Shannon coding
� entropy and information content

� Next week (on zoom!):
� proof of optimality of Huffman coding
� machine-learning models for lossless compression (continued in Lectures 4 and 7-9)

� Lectures 5 & 6: beyond symbol codes: stream codes

� Lecture 11: theoretical bounds for lossy compression (“Rate/Distortion Theory”)
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