
Lecture 3, Part 1:
Optimality of Huffman Coding

Robert Bamler · Summer Term of 2023

These slides are part of the course “Data Compression With and Without Deep Probabilistic Models” taught
at University of Tübingen. More course materials—including video recordings, lecture notes, and problem sets
with solutions—are publicly available at https://robamler.github.io/teaching/compress23/.

Faculty of Science · Department of Computer Science · Group of Prof. Robert Bamler

Recap: Bounds for Lossless Compression
� Bounds on expected code word length of B-ary symbol codes:

HB[p] ≤ LCopt < HB[p] + 1

� In addition, the Shannon code CS satisfies analogous bounds for each symbol x ∈ X:

− logB p(x) ≤ |CS(x)| < − logB p(x) + 1 ∀x ∈X

� Shannon code is a near optimal symbol code (less than 1 bit of overhead per symbol).
But how do we get an optimal symbol code?

Robert Bamler · Lecture 3, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 1

Huffman Coding (recap from Lecture 1, Part 2 and Problem Set 1)

X = { “a”, “b”, “c”, “d” }
p(x) = 0.15 0.2 0.3 0.35

LC =
�
x∈X

p(x) |C (x)|

or

X = { “a”, “b”, “c”, “d” }
p(x) = 0.15 0.2 0.3 0.35

LC =
�
x∈X

p(x) |C (x)|

Robert Bamler · Lecture 3, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 2

What We’ll Prove in This and the Next Video
� Theorem (informally): [Huffman, 1952]

� The Huffman algorithm constructs an optimal symbol code (i.e., it minimizes LC).
� If there’s more than one Huffman code (due to ties) then all of them are optimal.
� Moreover, all optimal symbol codes are equivalent to some Huffman code

(in terms of their code word lengths |C (x)|).

� Formal theorem: assume we have:
� finite alphabet X with |X| ≥ 2
� probability distribution p : X → [0, 1] with p(x) > 0 ∀x ∈X

then:
∀ uniquely decodable binary symbol codes C : X → {0, 1} that minimize LC =

�
x∈X

p(x) |C (x)|:
∃ Huffman code CH for p with |CH(x)| = |C (x)| ∀x ∈X.

� Credits: Our proof partially follows Jeff Miller,
https://www.youtube.com/watch?v=nvmsK__-qFg&list=PLE125425EC837021F&index=33

Robert Bamler · Lecture 3, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 3

Lemma 1: inverse ordering
� Assume again (�).
� Let C be an optimal prefix code for p.
� Sort the symbols by ascending probability:

p(x (1)) ≤ p(x (2)) ≤ p(x (3)) ≤ . . . ≤ p(x (|X|))

break ties by code word lengths (descendingly):
if p(x (α)) = p(x (α+1)) then: |C (x (α))| ≥ |C (x (α+1))|

(break any still remaining ties arbitrarily).
then:

(i) |C (x (1))| ≥ |C (x (2))| ≥ |C (x (3))| ≥ . . . ≥ |C (x (|X|)|)|
(ii) |C (x (1))| = |C (x (2))|

Robert Bamler · Lecture 3, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 4

Lemma 1: inverse ordering (cont’d)
� Assume again (�).
� Let C be an optimal prefix code for p.
� Sort the symbols by ascending probability:

p(x (1)) ≤ p(x (2)) ≤ p(x (3)) ≤ . . . ≤ p(x (|X|))

break ties by code word lengths (descendingly):
if p(x (α)) = p(x (α+1)) then: |C (x (α))| ≥ |C (x (α+1))|

(break any still remaining ties arbitrarily).
then:

(i) |C (x (1))| ≥ |C (x (2))| ≥ |C (x (3))| ≥ . . . ≥ |C (x (|X|)|)|
(ii) |C (x (1))| = |C (x (2))|

Robert Bamler · Lecture 3, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 5

Lemma 2: weak siblings
� Assume again (�).
� Let C be an optimal prefix code for p.

then ∃ x , x̃ ∈ X with x �= x̃ and:
(i) |C (x)| = |C (x̃)| ≥ |C (x �)| ∀ x � ∈X

(ii) C (x) and C (x̃) only differ on last bit

Proof:
� By contradiction: assume that such a pair does not exists.
� But: from Lemma 1, we know: the pair (x (1), x (2)) satisfies (i)
� Claim: ∃ x̃ �= x (1) such that the pair (x (1), x̃) satisfies both (i) and (ii).

Robert Bamler · Lecture 3, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 6

Lemma 3: inversely ordered weak siblings
� Recall: Lemma 1 (inverse ordering):

Among the least probable symbols, there are two symbols x (1), x (2)

whose code words in an optimal prefix code
� have equal length; and
� are among the longest code words.

� Recall: Lemma 2 (weak siblings):
Among the longest code words of an optimal symbol code,
there are two code words C (x), C (x̃) that
� have equal length; and
� differ only on the last bit.

� Note: in general, x (2) �= x̃ .
But: we can construct a prefix code C � with |C �(x)| = |C (x)| ∀ x ∈X that
satisfies both Lemma 1 and Lemma 2 for the same pair of symbols (x (1), x (2)).

Robert Bamler · Lecture 3, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 7

Lecture 3, Part 2:
Proof of Optimality of Huffman Coding

Robert Bamler · Summer Term of 2023

These slides are part of the course “Data Compression With and Without Deep Probabilistic Models” taught
at University of Tübingen. More course materials—including video recordings, lecture notes, and problem sets
with solutions—are publicly available at https://robamler.github.io/teaching/compress23/.

Faculty of Science · Department of Computer Science · Group of Prof. Robert Bamler

Taking Stock
� Assume we have:

� finite alphabet X with |X| ≥ 2
� probability distribution p : X → [0, 1] with p(x) > 0 ∀x ∈X

� Lemma 3: assume (�) and let C be an optimal prefix code. Then:
∃ prefix code C � on X with |C �(x)| = |C (x)| ∀x ∈ X, and two symbols x (1) �= x (2) with:
� C �(x (1)) and C �(x (2)) are both longest code words, and they differ only on the last bit.
� p(x (1)) and p(x (2)) have the two lowest probabilities: p(x (1)) ≤ p(x (2)) ≤ p(x �) ∀ x � ∈X \ {x (1)}.

� Theorem (optimality of Huffman coding): assume (�). Then:
∀ uniquely decodable binary symbol codes C : X → {0, 1} that minimize LC =

�
x∈X

p(x) |C (x)|:
∃ Huffman code CH for p with |CH(x)| = |C (x)| ∀x ∈X.

� Proof: by induction over |X|
� Base case (|X| = 2):

Robert Bamler · Lecture 3, Part 2 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 1

Induction Step (assume |X| > 2 and theorem holds for |X| − 1)

� Let C be a uniquely decodable binary symbol code on X that minimizes LC

� Use corollary to KM-Theorem to construct a prefix code C � with |C �(x)| = |C (x)| ∀x ∈X.
� Use Lemma 3 to construct a prefix code C �� with |C ��(x)| = |C �(x)| = |C (x)| ∀x ∈X and:

� Construct the following prefix code C̃ on an alphabet X̃ := (X \ {x (1), x (2)}) ∪ {�}:

� Claim: C̃ is an optimal prefix code on X̃ (with respect to p̃).

⇒ By induction hypothesis: ∃ Huffman code C̃H on X̃ for p̃ with |C̃H(x)| = |C̃ (x)| ∀ x ∈X̃.
⇒ We can construct a Huffman code CH on X for p with |CH(x)| = |C ��(x)| = |C (x)| ∀x ∈X:

Robert Bamler · Lecture 3, Part 2 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 2

So What?

You might be thinking: “Professor, why did you just waste an hour of my life to go
through a complicated proof? I would have believed you anyway.”

But:
� Verification is not the point of proofs (in lectures).
� Proofs tell you:

� why things are the way they are;
� how you might be able to analyze similar problems.

(where you don’t yet know if they’re true)

� Proofs force you to think very carefully about the assumptions; this allows you to identify:
� edge cases;
� unnecessary assumptions (→ new applications, see Problem 3.3)

Robert Bamler · Lecture 3, Part 2 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 3

Remarks on Huffman Coding
� Still widely used in practice (HTTP, zip/gzip, PNG, most JPEGs, ...)
� But: optimality only holds when comparing to other symbol codes.

Symbol codes perform poorly in the
regime of low entropy per symbol.
� Consider, e.g., data source with

H2[p] = 0.3 bit per symbol;
but LCH ≥ 1 bit per symbol.
⇒ ∼ 200% overhead

� Unfortunately, this is the relevant regime for novel machine-learning based compression methods.

� Solution: stream codes (Lectures 5 and 6)

Robert Bamler · Lecture 3, Part 2 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 4

Lecture 3, Part 3:
Practical Compression Performance:
The Modelling Gap (Kullback-Leibler Divergence)

Robert Bamler · Summer Term of 2023

These slides are part of the course “Data Compression With and Without Deep Probabilistic Models” taught
at University of Tübingen. More course materials—including video recordings, lecture notes, and problem sets
with solutions—are publicly available at https://robamler.github.io/teaching/compress23/.

Faculty of Science · Department of Computer Science · Group of Prof. Robert Bamler

Theoretical vs. Practical Bounds
� Theoretical bounds for an optimal lossless compression code: (see Lecture 2, Part 2)

H
�
pdata(x)

�
� �� �

“entropy”

≤ expected bit rate < H
�
pdata(x)

�
+ 1

� H [pdata(x)] is an intrinsic property of the data source (i.e., independent of any model).
� We can’t evaluate the true data distribution pdata(x) for any given x ∈ X∗.

=⇒ We can’t use pdata in an entropy coder to construct an optimal code.
=⇒ In fact, we can’t even calculate the theoretical bound H [pdata(x)].

� But: we can draw samples x ∼ pdata (see next slide).
� In practice: (simplest case; more complicated case in Lecture 7)

1. Approximate pdata by some pmodel which we can evaluate for all x ∈ X∗.
2. Optimize a compression code for pmodel.

Robert Bamler · Lecture 3, Part 3 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 1

Practically Achievable Bit Rate
� Goal: design a compression method for some informally specified data source

� e.g., “text that an English-speaking author might write”
� defines the (extremely complicated) true data generative process with distribution pdata.

� Step 1: Collect a set X of samples from the data generative process (e.g., historic books)
� notation: x ∼ pdata “x is sampled from the data generative process”

� Step 2: Create a probabilistic model pmodel that approximates pdata in some way.
� Step 3: Use pmodel in an entropy coder to build a (near-)optimal code C for it

(and share C between sender & receiver).
� for long messages, essentially: bit rate of code C for message x = − log pmodel(x) ∀ x ∈ X∗

� Step 4: In deployment, compress new data points x ∼ pdata with C

� expected bit rate: H
�
pdata(x), pmodel(x)

�
� �� �

“cross entropy”

:= −
�

x∈X∗

pdata(x) log pmodel(x) ≈ − 1
|X|

�

x∈X

log pmodel(x)

Robert Bamler · Lecture 3, Part 3 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 2

The Modeling Gap
� Expected bit rate in a practical setup: “cross entropy” = H

�
pdata(x), pmodel(x)

�

� Motivates model training by minimizing H
�
pdata(x), pmodel(x)

�
over pmodel (→ Problem 3.2)

� Problem 3.1: prove that H
�
pdata(x), pmodel(x)

�
� �� �

practical bound

≥ H
�
pdata(x)

�
� �� �
theoretical bound

� equality iff pmodel = pdata (almost everywhere)

� Modeling gap: overhead (in expected bit rate) due to pmodel �= pdata:

DKL
�
pdata(x)

���� pmodel(x)
�

:= H
�
pdata(x), pmodel(x)

�
− H

�
pdata(x)

�

=
�

x∈X∗
pdata(x) log pdata(x)

pmodel(x)

“Kullback-Leibler divergence” aka “relative entropy”
Robert Bamler · Lecture 3, Part 3 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 3

How Good Are the Models We’ve Used So Far?
So far: x = (x1, x2, . . . , xk(x)) with some probability distribution pmodel(xi) for all symbols xi .
We say: symbols are modeled “i.i.d.”: indepedent and identically distributed.

� identically distributed: same distribution pmodel(xi) for all symbols
� Not actually necessary if we use a prefix code. (→ Problem 0.2 (e))

� independent: each symbol is modeled without regard to the other symbols.
� Highly simplistic assumption; ignores statistical dependencies (aka correlations) between symbols.
� E.g., in English text, pdata(‘u’) is much higher if the previous symbol was a ‘q’. (→ Problem 3.2)
� Quantifying & modeling correlations requires more formal probability theory. → next week

Robert Bamler · Lecture 3, Part 3 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 4

Outlook
� Problem Set 3:

� proove that DKL(p || q) ≥ 0
� train a machine-learning model by minimizing H

�
pdata(x), pmodel(x)

�

and use it to build a compression method for written natural language

� Next week (in our regular classroom):
� probability theory
� information theoretical quantitative measure of statistical dependencies

� Afterwards: expressive probabilistic (machine-learning) models
Markov Process Hidden Markov Model Autoregressive Model Latent Variable Model

Robert Bamler · Lecture 3, Part 3 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 5

