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Recap: Bounds for Lossless Compression
� Bounds on expected code word length of B-ary symbol codes:

HB[p] ≤ LCopt < HB[p] + 1

� In addition, the Shannon code CS satisfies analogous bounds for each symbol x ∈ X:

− logB p(x) ≤ |CS(x)| < − logB p(x) + 1 ∀x ∈X

� Shannon code is a near optimal symbol code (less than 1 bit of overhead per symbol).
But how do we get an optimal symbol code?
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Huffman Coding (recap from Lecture 1, Part 2 and Problem Set 1)

X = { “a”, “b”, “c”, “d” }
p(x) = 0.15 0.2 0.3 0.35

LC =
�
x∈X

p(x) |C (x)|

or

X = { “a”, “b”, “c”, “d” }
p(x) = 0.15 0.2 0.3 0.35

LC =
�
x∈X

p(x) |C (x)|
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What We’ll Prove in This and the Next Video
� Theorem (informally): [Huffman, 1952]

� The Huffman algorithm constructs an optimal symbol code (i.e., it minimizes LC).
� If there’s more than one Huffman code (due to ties) then all of them are optimal.
� Moreover, all optimal symbol codes are equivalent to some Huffman code

(in terms of their code word lengths |C (x)|).

� Formal theorem: assume we have:
� finite alphabet X with |X| ≥ 2
� probability distribution p : X → [0, 1] with p(x) > 0 ∀x ∈X

then:
∀ uniquely decodable binary symbol codes C : X → {0, 1} that minimize LC =

�
x∈X

p(x) |C (x)|:
∃ Huffman code CH for p with |CH(x)| = |C (x)| ∀x ∈X.

� Credits: Our proof partially follows Jeff Miller,
https://www.youtube.com/watch?v=nvmsK__-qFg&list=PLE125425EC837021F&index=33
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Lemma 1: inverse ordering
� Assume again (�).
� Let C be an optimal prefix code for p.
� Sort the symbols by ascending probability:

p(x (1)) ≤ p(x (2)) ≤ p(x (3)) ≤ . . . ≤ p(x (|X|))

break ties by code word lengths (descendingly):
if p(x (α)) = p(x (α+1)) then: |C (x (α))| ≥ |C (x (α+1))|

(break any still remaining ties arbitrarily).
then:

(i) |C (x (1))| ≥ |C (x (2))| ≥ |C (x (3))| ≥ . . . ≥ |C (x (|X|)|)|
(ii) |C (x (1))| = |C (x (2))|
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Lemma 1: inverse ordering (cont’d)
� Assume again (�).
� Let C be an optimal prefix code for p.
� Sort the symbols by ascending probability:

p(x (1)) ≤ p(x (2)) ≤ p(x (3)) ≤ . . . ≤ p(x (|X|))

break ties by code word lengths (descendingly):
if p(x (α)) = p(x (α+1)) then: |C (x (α))| ≥ |C (x (α+1))|

(break any still remaining ties arbitrarily).
then:

(i) |C (x (1))| ≥ |C (x (2))| ≥ |C (x (3))| ≥ . . . ≥ |C (x (|X|)|)|
(ii) |C (x (1))| = |C (x (2))|
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Lemma 2: weak siblings
� Assume again (�).
� Let C be an optimal prefix code for p.

then ∃ x , x̃ ∈ X with x �= x̃ and:
(i) |C (x)| = |C (x̃)| ≥ |C (x �)| ∀ x � ∈X

(ii) C (x) and C (x̃) only differ on last bit

Proof:
� By contradiction: assume that such a pair does not exists.
� But: from Lemma 1, we know: the pair (x (1), x (2)) satisfies (i)
� Claim: ∃ x̃ �= x (1) such that the pair (x (1), x̃) satisfies both (i) and (ii).
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Lemma 3: inversely ordered weak siblings
� Recall: Lemma 1 (inverse ordering):

Among the least probable symbols, there are two symbols x (1), x (2)

whose code words in an optimal prefix code
� have equal length; and
� are among the longest code words.

� Recall: Lemma 2 (weak siblings):
Among the longest code words of an optimal symbol code,
there are two code words C (x), C (x̃) that
� have equal length; and
� differ only on the last bit.

� Note: in general, x (2) �= x̃ .
But: we can construct a prefix code C � with |C �(x)| = |C (x)| ∀ x ∈X that
satisfies both Lemma 1 and Lemma 2 for the same pair of symbols (x (1), x (2)).
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Taking Stock
� Assume we have:

� finite alphabet X with |X| ≥ 2
� probability distribution p : X → [0, 1] with p(x) > 0 ∀x ∈X

� Lemma 3: assume (�) and let C be an optimal prefix code. Then:
∃ prefix code C � on X with |C �(x)| = |C (x)| ∀x ∈ X, and two symbols x (1) �= x (2) with:
� C �(x (1)) and C �(x (2)) are both longest code words, and they differ only on the last bit.
� p(x (1)) and p(x (2)) have the two lowest probabilities: p(x (1)) ≤ p(x (2)) ≤ p(x �) ∀ x � ∈X \ {x (1)}.

� Theorem (optimality of Huffman coding): assume (�). Then:
∀ uniquely decodable binary symbol codes C : X → {0, 1} that minimize LC =

�
x∈X

p(x) |C (x)|:
∃ Huffman code CH for p with |CH(x)| = |C (x)| ∀x ∈X.

� Proof: by induction over |X|
� Base case (|X| = 2):
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Induction Step (assume |X| > 2 and theorem holds for |X| − 1)

� Let C be a uniquely decodable binary symbol code on X that minimizes LC

� Use corollary to KM-Theorem to construct a prefix code C � with |C �(x)| = |C (x)| ∀x ∈X.
� Use Lemma 3 to construct a prefix code C �� with |C ��(x)| = |C �(x)| = |C (x)| ∀x ∈X and:

� Construct the following prefix code C̃ on an alphabet X̃ := (X \ {x (1), x (2)}) ∪ {�}:

� Claim: C̃ is an optimal prefix code on X̃ (with respect to p̃).

⇒ By induction hypothesis: ∃ Huffman code C̃H on X̃ for p̃ with |C̃H(x)| = |C̃ (x)| ∀ x ∈X̃.
⇒ We can construct a Huffman code CH on X for p with |CH(x)| = |C ��(x)| = |C (x)| ∀x ∈X:
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So What?

You might be thinking: “Professor, why did you just waste an hour of my life to go
through a complicated proof? I would have believed you anyway.”

But:
� Verification is not the point of proofs (in lectures).
� Proofs tell you:

� why things are the way they are;
� how you might be able to analyze similar problems.

(where you don’t yet know if they’re true)

� Proofs force you to think very carefully about the assumptions; this allows you to identify:
� edge cases;
� unnecessary assumptions (→ new applications, see Problem 3.3)
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Remarks on Huffman Coding
� Still widely used in practice (HTTP, zip/gzip, PNG, most JPEGs, ...)
� But: optimality only holds when comparing to other symbol codes.

Symbol codes perform poorly in the
regime of low entropy per symbol.
� Consider, e.g., data source with

H2[p] = 0.3 bit per symbol;
but LCH ≥ 1 bit per symbol.
⇒ ∼ 200% overhead

� Unfortunately, this is the relevant regime for novel machine-learning based compression methods.

� Solution: stream codes (Lectures 5 and 6)
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Theoretical vs. Practical Bounds
� Theoretical bounds for an optimal lossless compression code: (see Lecture 2, Part 2)

H
�
pdata(x)

�
� �� �

“entropy”

≤ expected bit rate < H
�
pdata(x)

�
+ 1

� H [pdata(x)] is an intrinsic property of the data source (i.e., independent of any model).
� We can’t evaluate the true data distribution pdata(x) for any given x ∈ X∗.

=⇒ We can’t use pdata in an entropy coder to construct an optimal code.
=⇒ In fact, we can’t even calculate the theoretical bound H [pdata(x)].

� But: we can draw samples x ∼ pdata (see next slide).
� In practice: (simplest case; more complicated case in Lecture 7)

1. Approximate pdata by some pmodel which we can evaluate for all x ∈ X∗.
2. Optimize a compression code for pmodel.
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Practically Achievable Bit Rate
� Goal: design a compression method for some informally specified data source

� e.g., “text that an English-speaking author might write”
� defines the (extremely complicated) true data generative process with distribution pdata.

� Step 1: Collect a set X of samples from the data generative process (e.g., historic books)
� notation: x ∼ pdata “x is sampled from the data generative process”

� Step 2: Create a probabilistic model pmodel that approximates pdata in some way.
� Step 3: Use pmodel in an entropy coder to build a (near-)optimal code C for it

(and share C between sender & receiver).
� for long messages, essentially: bit rate of code C for message x = − log pmodel(x) ∀ x ∈ X∗

� Step 4: In deployment, compress new data points x ∼ pdata with C

� expected bit rate: H
�
pdata(x), pmodel(x)

�
� �� �

“cross entropy”

:= −
�

x∈X∗

pdata(x) log pmodel(x) ≈ − 1
|X|

�

x∈X

log pmodel(x)
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The Modeling Gap
� Expected bit rate in a practical setup: “cross entropy” = H

�
pdata(x), pmodel(x)

�

� Motivates model training by minimizing H
�
pdata(x), pmodel(x)

�
over pmodel (→ Problem 3.2)

� Problem 3.1: prove that H
�
pdata(x), pmodel(x)

�
� �� �

practical bound

≥ H
�
pdata(x)

�
� �� �
theoretical bound

� equality iff pmodel = pdata (almost everywhere)

� Modeling gap: overhead (in expected bit rate) due to pmodel �= pdata:

DKL
�
pdata(x)

���� pmodel(x)
�

:= H
�
pdata(x), pmodel(x)

�
− H

�
pdata(x)

�

=
�

x∈X∗
pdata(x) log pdata(x)

pmodel(x)

“Kullback-Leibler divergence” aka “relative entropy”
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How Good Are the Models We’ve Used So Far?
So far: x = (x1, x2, . . . , xk(x)) with some probability distribution pmodel(xi) for all symbols xi .
We say: symbols are modeled “i.i.d.”: indepedent and identically distributed.

� identically distributed: same distribution pmodel(xi) for all symbols
� Not actually necessary if we use a prefix code. (→ Problem 0.2 (e))

� independent: each symbol is modeled without regard to the other symbols.
� Highly simplistic assumption; ignores statistical dependencies (aka correlations) between symbols.
� E.g., in English text, pdata(‘u’) is much higher if the previous symbol was a ‘q’. (→ Problem 3.2)
� Quantifying & modeling correlations requires more formal probability theory. → next week
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Outlook
� Problem Set 3:

� proove that DKL(p || q) ≥ 0
� train a machine-learning model by minimizing H

�
pdata(x), pmodel(x)

�

and use it to build a compression method for written natural language

� Next week (in our regular classroom):
� probability theory
� information theoretical quantitative measure of statistical dependencies

� Afterwards: expressive probabilistic (machine-learning) models
Markov Process Hidden Markov Model Autoregressive Model Latent Variable Model
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