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Recap: Why We Need Good Probabilistic Models
� Bound on practical compression performance: cross entropy

expected bit rate ≥ H
�
pdata(x), pmodel(x)

�
:= −

�

x
pdata(x) log pmodel(x)

� Overhead due to pmodel �= pdata: Kullback-Leibler divergence (aka relative entropy)

DKL
�
pdata(x)

���� pmodel(x)
�
:= H

�
pdata(x), pmodel(x)

�
− H

�
pdata(x)

�

� For low overhead, we need pmodel to approximate pdata

� But so far: only simplistic pmodels that ignore correlations between symbols

� This part: mathematical language for probabilistic models
� Next part: information-theoretical quantification of correlations
� Then: machine learning models that describe correlations
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Ingredients of a Probabilistic Model
� sample space Ω (abstract space of “all states of the world”)

� subsets E ⊆ Ω: “events” (“event E occurs” ⇐⇒ “the world is in some state ω ∈ E”)

� probability measure: a function P : Σ → [0, 1] where
� Σ is a so-called σ-algebra on Ω. (a set of all “expressible” events E ⊆ Ω)
� P(∅) = 0 and P(Ω) = 1.

� countable additivity: P
�∞�

i=1
Ei

�
=

∞�
i=1

P(Ei) if all Ei are pairwise disjoint.

� therefore, for finite sums: P
� k�

i=1
Ei

�
=

k�
i=1

P(Ei) if all Ei are pairwise disjoint.

� therefore: P(E ) + P(Ω \ E ) = P(Ω) = 1 ∀E ∈ Σ.
� therefore: P(E1) ≤ P(E2) if E1 ⊆ E2 (and E1,E2 ∈ Σ)
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Examples of Probability Measures

1. Simplified Game of Monopoly: (throw two fair three-sided dice)
� sample space: Ω = {1, 2, 3}2 =

�
(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)

�

� sigma algebra: Σ = 2Ω :=
�

all subsets of Ω (including ∅ and Ω)
�

� probability measure P: for all E ⊆ Σ, let P(E ) := |E |/|Ω| = |E |/9
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Examples of Probability Measures (cont’d)
1. Simplified Game of Monopoly
2. Wait times for the next three buses from “Sternwarte”:

� sample space (in a simple model): Ω = {(x1, x2, x3) ∈ R3 where 0 ≤ x1 ≤ x2 ≤ x3}
� sigma algebra: all “measurable subsets” of Ω

(essentially, all subsets of Ω except for extremely pathological exceptions)
� probability measure P: complicated function, but we know it satisfies certain relations, e.g.,

P(“next bus departs in at most 5 minutes”) =P(“next bus departs in at most 2 minutes”)
+P(“next bus departs in between 2 and 5 minutes”).

� Question: what is the probability that the next bus departs in exactly 3 minutes?
i.e., what is P

�
({3 min} ×R2) ∩ Ω

�
?

� Question: what is the probability that the next bus departs in between 2 and 5 minutes?
P
�
([2 min, 5 min]� �� �

=:I

×R2) ∩ Ω
�
= P

��

x1∈I

�
({x1} ×R2) ∩ Ω

�� ?
=
�

x1∈I
P
�
({x1} ×R2) ∩ Ω

�
= 0
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Random Variables
� Often, we we’re not interested in a full description of the state ω ∈ Ω, but only in certain

properties of it.
� Definition: “random variable”: function X : Ω → R (not necessarily injective)

Examples:

1. Simplified Game of Monopoly; Ω =
�
(a, b) where a, b ∈ {1, 2, 3}

�

� total value: Xsum
�
(a, b)

�
= a + b ∈ {2, 3, 4, 5, 6}

� value of the red die: Xred
�
(a, b)

�
= a

� value of the blue die: Xblue
�
(a, b)

�
= b

2. In our bus schedule model from before; Ω = {(x1, x2, x3) ∈ R3 where 0 ≤ x1 ≤ x2 ≤ x3}
� Time between the next bus and the one after it: Xgap

�
(x1, x2, x3)

�
= x2 − x1
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Properties of Individual Random Variables
� “Probability that a random variable X has some given value x”:

P(X = x) := P
�
X−1(x)

�
= P

�
{ω ∈ Ω : X (ω) = x}

�

� Example 1 (Simplified Game of Monopoly): P(Xsum = 3) =
� Example 2 (bus schedule): P(Xgap = 20 minutes) =

� When we write just P(X ), then we mean the function that maps x �→ P(X = x).
(more precisely: P(X ) denotes a probability measure on the space of X )

� Expectation value of a random variable X under a model P
� discrete case: EP [X ] :=

�
ω∈Ω

P({ω})X (ω) =
�

x∈X(Ω)

P(X =x) x

examples: EP [Xred] = ; EP [Xblue] = ; EP [Xsum] =

� continuous case: EP [X ] :=
�
Ω X (ω) dP(ω) (see next slide)
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Properties of Individual Random Variables (cont’d)
� Cumulative Density Function (CDF): P (X ≤ x) := P

�
{ω ∈ Ω : X (ω) ≤ x}

�

� Example 1 (Simplified Game of Monopoly): P(Xsum ≤ 3) =

� Example 2 (bus schedule): P(Xgap ≤ 20 minutes) ∈ [0, 1] (nonzero in general)

� Analogous definitions for: P(X < x), P(X ≥ x), P(X > x), P(X ∈ some set), . . .

� Probability Density Function (PDF) of a real-valued random variable X :
p(x) := d

dx P(X ≤ x) (if derivative exists)
→ expectation value: EP [X ] =

�
X (ω) dP(ω) =

∞�
−∞

x p(x) dx

(if a density p(x) exists)
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Multiple Random Variables
� Definition: joint probability distribution of two random variables X and Y :

P(X =x ,Y =y ) := P
�
{ω ∈ Ω : X (ω) = x ∧ Y (ω) = y}

�

� Notation: “P(X ,Y )”: function that maps (x , y ) �→ P(X =x ,Y =x)
(more precisely: P(X ,Y ) denotes a probability measure on the product space of X and Y )

� If we know P(X ,Y ), then we can calculate P(X ) =
�

y
P(X ,Y =y ) (for discrete Y )

� This process is called “marginalization”.
� for continuous random variables: p(X ) =

�
p(X , y) dy
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Statistical Independence
� Definition: X and Y are (statistically) independent iff: P (X ,Y ) = P(X )P(Y )

(i.e., if P(X ∈X,Y ∈Y) = P(X ∈X)P(Y ∈Y) ∀X,Y)

� Examples (Simplified Game of Monopoly):
� Xred and Xblue are statistically independent.
� Xred and Xsum are not statistically independent. (proof: Problem 4.1)

� Definition: conditional independence of X and Y given Z : see later
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Conditional Probability Distributions: Examples
“X & Y are not statistically independent” ⇐⇒ “knowing X reveals something about Y ”

Examples: (Simplified Game of Monopoly; P(E ) = |E |
9 )

x = 1 2 3 4 5 6
What are the (marginal) probability distributions P(Xred)
and P(Xsum) of the red die and the sum, respectively?

P(Xred=x) = 1
3

1
3

1
3 0 0 0

P(Xsum=x) = 0 1
9

2
9

1
3

2
9

1
9

Assume that you only accept throws where the red die comes
up with value 1, and you keep rethrowing both dice until this
condition is satisfied. What is the probability distribution of
Xsum in your first accepted throw? We call this the
conditional probability distribution P(Xsum |Xred=1).

P(Xsum=x |Xred=1) =

Now you only accept throws where the sum of both dies is at
least 5. What is the conditional probability distribution of Xred?

P(Xred=x |Xsum≥5) =

Finally, assume you only accept throws where Xblue = 1.
What is the conditional probability distribution of Xred?

P(Xred=x |Xblue=1) =
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Conditional Probability Distributions: Definition
� Definition: “conditional probability of event E2 given event E1”: P(E2 |E1) :=

P(E1∩E2)
P(E1)

� Thus, P(E2 |E1) is a (properly normalized) probability distribution w.r.t. the first parameter,

i.e., P(E2 |E1) + P(Ω \ E2 |E1) =
P(E2 ∩ E1) + P((Ω \ E2) ∩ E1)

P(E1)
=

P(E1)

P(E1)
= 1.

� Definition: “conditional probability distribution of a random variable Y given another
random variable X”: P(Y |X ) := P(X ,Y )

P(X ) i.e., P(Y =y |X =x) := P(X=x ,Y=y)
P(X=x) ∀x , y

� Thus, if X and Y are statistically independent (but only then!):
P(Y |X ) = P(X ,Y )

P(X) = P(X)P(Y )
P(X) = P(Y ) (“knowing X reveals no new information about Y ”)

� In the general case: “chain rule” of probability theory: (follows directly from above definition)
P(X1,X2,X3, . . .) =
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Conditional Independence
� Reminder: X and Z are (statistically) independent :⇐⇒ P(X ,Z ) = P(X )P(Z )

� Analogous definition:
X and Z are conditionally independent given Y :⇐⇒ P(X ,Z |Y ) = P(X |Y )P(Z |Y )

� equivalently: chain rule simplifies:
P(X ,Y ,Z ) = P(X )P(Y |X )P(Z |X ,Y ) = P(Y )P(X |Y )P(Z |Y )

� Problem Set 5: comparison to normal (i.e., unconditional) independence
� Problem Set 10: propagation of information along X −→ Y −→ Z
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Warning: Conditionality �= Causation
� We’ll often specify a joint probability distribution as, e.g., P (X ,Y ) = P(X )P(Y |X ).
� But just because we write “P(Y |X )”, this does not necessarily mean

that X is the cause of Y .
� Example: (Simplified Game of Monopoly):

� Xred and Xblue can be considered to cause Xsum.
� But, in the examples three slides ago, we were still able to calculate, e.g., P(Xred |Xsum).

(i.e., the probability of the cause Xred given its effect Xsum)

→ This is called “posterior inference”. (more in Lectures 7 and 8)

� Causality goes beyond the scope of a probabilistic model;
understanding causal structures generally requires interventions in the generative process.
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Outlook
� Problem 4.1: probability measures & statistical independence

� Next part:
� information-theoretical quantification of correlations
� machine-learning models that can capture correlations
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Recap: Random Variables, Conditional Probabilities
� Random variables: (uppercase letters X ,Y ,Z , . . .)

� Think “placeholders” for values: P(Xi) is a probability measure for symbol Xi .
� P(X =x): probability (∈ [0, 1]) that the random variable X assumes value x .
� Expectation value: EP [f (X )] =

�
x P(X =x) f (x) (discrete case)

� Multiple random variables:
� joint distribution: P(X ,Y )

� marginal distributions: P(X ), P(Y )

� conditional distribution: P(Y |X ) = P(X ,Y )
P(X) (“How is Y distributed if I know the value of X?”)

� Statistical (in-)dependencies between random variables:
� (unconditional) (statistical) independence: if P(X ,Y ) = P(X )P(Y ) (⇐⇒ P(Y |X ) = P(Y ))
� conditional independence: if P(X ,Z |Y ) = P(X |Y )P(Y |Y ) (⇐⇒ P(Z |X ,Y ) = P(Z |Y ))

� Goal now: quantify statistical dependencies
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Quantification of Statistical Dependencies
� Use information theory:

� information content of the statement “X = x”:
� entropy of a random variable X under a model P: HP(X ) :=

� analogously: joint and conditional information content and entropy (see Problems 4.2 and 4.3).

� Entropy is subadditive: ∀ random variables X & Y :

HP
�
(X ,Y )

�
≤ HP(X ) + HP(Y ) (proof: Problem 4.4)

� equality holds iff X and Y are statistically independent
(proof: Problem 2.3 (b))

� Thus: wrongfully assuming independence (to simplify
a model) leads to an overhead in bit rate:

Def. “mutual information”: IP(X ;Y ) := HP(X ) + HP(Y )− HP
�
(X ,Y )

�
≥ 0 (Problem 4.4)

(figure adapted from MacKay book)
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Modeling Statistical Dependencies
� Assume that the message is a sequence of symbols: X = (X1,X2, . . . ,Xk)

� Subadditivity of entropies: H(X) ≤
k�

i=1
H(Xi)

� Thus: instead of modeling each symbol Xi independently, we should model the
message X as a whole (without completely sacrificing computational efficiency).

� autoregressive models (e.g., Problem 3.3)
� latent variable models (planned for Problem Set 6; also: basis for variational autoencoders)
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Probabilistic Models at Scale
� All probability distributions P over messages X = (X1,X2, . . . ,Xk) satisfy the chain rule:

P(X) = P(X1)P(X2 |X1)P(X3 |X1,X2)P(X4 |X1,X2,X3) · · ·P(Xk |X1,X2, . . . ,Xk−1)

� Example: assume each symbol is from alphabet X = {1, 2, 3}.
� How many model parameters do we need to specify an arbitrary distribution P(X1)?

� How many parameters for an arbitrary conditional distribution P(X2 |X1)?

� How many parameters for an arbitrary conditional distribution P(Xk |X1,X2, . . . ,Xk)?
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Expressive Yet Efficient Probabilistic Models
� Goal: Find approximation to arbitrary models P (X) that

� captures relevant correlations
� but is still computationally efficient:

→ reasonably compact representation of the model in memory
→ reasonably efficient evaluation of probabilities P(X = x)
→ suitable for entropy coding (later)

� General Strategy: enforce conditional independence:
X & Z are conditionally independent given Y :⇐⇒ P(X ,Z |Y ) = P(X |Y )P(Z |Y )

⇐⇒ P(X ,Y ,Z ) = P(X )P(Y |X )P(Z |Y ) (proof: Problem 5.1 (a))
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Four Kinds of Scalable Probabilistic Models

(1) Markov Process (2) Hidden Markov Model

(3) Autoregressive Model (4) Latent Variable Model
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(1) Markov Process
Modeling assumption: symbols Xi are generated by a memoryless process.
� Each symbol Xi depends on its immediate precessor Xi−1 but not on any earlier symbols:

P(X) = P(X1)P(X2 |X1)P(X3 |X2)P(X4 |X3) · · ·P(Xk |Xk−1)

� i.e., for all j < i , the symbols Xi+1 and Xj are conditionally independent given Xi .

� only O(k |X|2) (or even O(|X|2)) model parameters;
� simplistic assumption; e.g., in English text, the string “the” is very frequent.

⇒ Pdata(Xi = ‘e’ |Xi−2= ‘t’,Xi−1= ‘h’) > Pdata(Xi = ‘e’ |Xi−1= ‘h’) (i.e., not cond. indep.)
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(2) Hidden Markov Model
Modeling assumption: there is some memoryless hidden process, which is observed indirectly.

P(X) =

�
P(X,H) dH with P(X,H) = P(H1)P(X1 |H1)

k�

i=2
P(Hi |Hi−1)P(Xi |Hi)

� can model long-range correlations, i.e., Xi , Xi−2 not cond. indep. given Xi−1 (exercise);

� bit-rate overhead: in order to model P (Xi |Hi), decoder has to first decode Hi , even
though it’s not part of the message (solution: “bits-back coding”, see Lecture 7).
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(3) Autoregressive Model
Modeling assumption: memoryless hidden process with (typically) deterministic transitions;

but: transitions are also conditioned on the previous symbol.

P(X) =

k�

i=1
P(Xi |Hi) where H1 = fixed; Hi = f (Hi−1,Xi−1)

� no compression overhead for reconstructing Hi (see Problem 3.3);

� encoding & decoding are not parallelizable (⇒ slow on modern hardware).
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(4) Latent Variable Model
Modeling assumption: there is some unobserved higher level of abstraction Z.

P(X) =

�
P(X,Z) dZ where P(X,Z) = P(Z)

k�

i=1
P(Xi |Z)

� can model long-range correlations (see Problem 5.2 (c));

� parallelizable;
� bit-rate overhead for encoding Z (solution: “bits-back coding”, see Lecture 7).
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Summary: 4 Kinds of Scalable Probabilistic Models
� Each architecture makes different assumption about conditional independence of symbols.

(1) Markov Process (2) Hidden Markov Model

(3) Autoregressive Model (4) Latent Variable Model
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Outlook
� Problem Set 4:

� Now and next 3 lectures: lossless compression with deep probabilistic models
� Different model architectures require different entropy coding algorithms.

� Afterwards: Lossy compression
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