

Lecture 4, Part 1: **A Primer on Probability Theory**

Robert Bamler • Summer Term of 2023

These slides are part of the course "Data Compression With and Without Deep Probabilistic Models" taught at University of Tübingen. More course materials-including video recordings, lecture notes, and problem sets with solutions—are publicly available at https://robamler.github.io/teaching/compress23/.

Recap: Why We Need Good Probabilistic Models UNIVERSITAT TUBINGEN

Bound on practical compression performance: cross entropy

 $\mathsf{expected \ bit \ rate} \geq H\big(p_{\mathsf{data}}(\mathbf{x}), p_{\mathsf{model}}(\mathbf{x})\big) := -\sum_{\mathbf{x}} p_{\mathsf{data}}(\mathbf{x}) \log p_{\mathsf{model}}(\mathbf{x})$

Overhead due to $p_{\text{model}} \neq p_{\text{data}}$: Kullback-Leibler divergence (aka relative entropy)

$$\|D_{\mathsf{KL}}(p_{\mathsf{data}}(\mathbf{x}) \parallel p_{\mathsf{model}}(\mathbf{x})) := H(p_{\mathsf{data}}(\mathbf{x}), p_{\mathsf{model}}(\mathbf{x})) - H[p_{\mathsf{data}}(\mathbf{x})]$$

- For low overhead, we need p_{model} to approximate p_{data}
- But so far: only simplistic p_{model}s that ignore correlations between symbols

Robert Bamler · Lecture 4, Part 1 of the course "Data Compression With and Without Deep Probabilistic Models" · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23,

- **This part:** mathematical language for probabilistic models
- **Next part:** information-theoretical quantification of correlations
- **Then:** machine learning models that describe correlations

Ingredients of a Probabilistic Model

- sample space Ω (abstract space of "all states of the world")
 - subsets $E \subseteq \Omega$: "events" ("event E occurs" \iff "the world is in some state $\omega \in E$ ") essentrally means that
- probability measure: a function $P: \Sigma \to [0,1]$ where well defined all statements below are
 - **Σ** is a so-called σ -algebra on Ω . (a set of all "expressible" events $E \subseteq \Omega$)
 - \triangleright $P(\emptyset) = 0$ and $P(\Omega) = 1$
 - countable additivity: $P\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} P(E_i)$ if all E_i are pairwise disjoint. therefore, for finite sums: $P\left(\bigcup_{i=1}^{k} E_i\right) = \sum_{i=1}^{k} P(E_i)$ if all E_i are pairwise disjoint.

 - therefore: $P(E) + P(\Omega \setminus E) = P(\Omega) = 1$ $\forall E \in \Sigma$. therefore: $P(E_1) \leq P(E_2)$ if $E_1 \subseteq E_2$ (and $E_1, E_2 \in \Sigma$) if $E_2 \subseteq E_1$

| 1

UNIVERSITÄT TUBINGEN

Examples of Probability Measures

- 1. Simplified Game of Monopoly: (throw two fair three-sided dice)
 - sample space: $\Omega = \{1, 2, 3\}^2 = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)\}$
 - sigma algebra: $\Sigma = 2^{\Omega} := \{ all \text{ subsets of } \Omega \text{ (including } \emptyset \text{ and } \Omega) \}$
 - probability measure *P*: for all $E \subseteq \Sigma$, let $P(E) := |E|/|\Omega| = |E|/9$

reflocts an assumption that all wER have equal probability since the dice are fair

Examples of Probability Measures (cont'd)

UNIVERSITAT TUBINGEN

| 3

- 1. Simplified Game of Monopoly
- 2. Wait times for the next three buses from "Sternwarte": (0.9., measured in minutes)

Robert Bamler, Lecture 4. Part 1 of the course "Data Compression With and Without Deep Probabilistic Models", Summer Term of 2023, more course materials at https://robemler.github.io/teaching/compress22

- sample space (in a simple model): $\Omega = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \text{ where } 0 \le x_1 \le x_2 \le x_3\}$
- sigma algebra: all "measurable subsets" of $\boldsymbol{\Omega}$ (essentially, all subsets of Ω except for extremely pathological exceptions)
- probability measure P: complicated function, but we know it satisfies certain relations, e.g., P(``next bus departs in at most 5 minutes'') = P(``next bus departs in at most 2 minutes'')+ P("next bus departs in between 2 and 5 minutes").
- Question: what is the probability that the next bus departs in exactly 3 minutes?
 i.e., what is P(({3 min} × ℝ²) ∩ Ω) X = 0 < The polyholity show of be continuous ⇒ if P(({3 min3×R²}) ∩ Ω) =: p>0 then ∃ε>0 s.t. P(({x3×R²}) ∩ Ω) ≥ 2 ∀ x ∈ [3 min = ε, 3 min + ε] =: 1 ⇒we can bick some inleger n > 2/p and n distrat points x, ∈ X
 Question: what is the probability that the next bus departs in between 2 and 5 minutes?
 P((U(x) × ℝ²) ∩ Ω) = 0 $P((\underbrace{[2 \min, 5 \min]}_{=:\mathcal{I}} \times \mathbb{R}^2) \cap \Omega) = P(\bigcup_{x_1 \in \mathcal{I}} ((\{x_1\} \times \mathbb{R}^2) \cap \Omega)) \stackrel{?}{\neq} \sum_{x_1 \in \mathcal{I}} P((\{x_1\} \times \mathbb{R}^2) \cap \Omega) = 0 \stackrel{?}{=:\mathcal{I}} P((\underbrace{\{x_1\} \times \mathbb{R}^2}_{i=1}) \cap \Omega) = 0 \stackrel{?}{=:\mathcal{I}} P((\underbrace{\{x_1\} \times \mathbb{R}^2}_{i=1}) \cap \Omega) = 0$ Robert Bamler - Lecture 4 Part 1 of the course "Data Compression With and Without Deep Probabilistic

Random Variables

- Often, we we're not interested in a *full* description of the state $\omega \in \Omega$, but only in certain properties of it.
- **Definition:** "random variable": function $X : \Omega \to \mathbb{R}$ (not necessarily injective)

Examples:

- **xamples:** 1. Simplified Game of Monopoly; $\Omega = \{(a, b) \text{ where } a, b \in \{1, 2, 3\}\}$ alphabet \mathcal{X} & message length k
 - total value: $X_{sum}((a, b)) = a + b \in \{2, 3, 4, 5, 6\}$
 - value of the red die: $X_{red}((a, b)) = a$
 - value of the blue die: X_{blue}((a, b)) = b
- 2. In our bus schedule model from before; $\Omega = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \text{ where } 0 \le x_1 \le x_2 \le x_3\}$
 - Fine between the next bus and the one after it: $X_{gap}((x_1, x_2, x_3)) = x_2 x_1$

>violates axiom

UNIVERSITÄT Tübingen

Properties of Individual Random Variables

6

- "Probability that a random variable X has some given value x":
 - $P(X = x) := P(X^{-1}(x)) = P(\{\omega \in \Omega : X(\omega) = x\})$
 - Example 1 (Simplified Game of Monopoly): P(X_{sum} = 3) =
- When we write just P(X), then we mean the function that maps $x \mapsto P(X = x)$. (more precisely: P(X) denotes a probability measure on the space of X) –

Expectation value of a random variable X under a model P $= \sum_{w \in \Omega} P(\{\omega\}) X(\omega) = \sum_{x \in X(\Omega)} P(X=x) x$ $= \sum_{w \in \Omega} P(\{\omega\}) X(\omega) = \sum_{x \in X(\Omega)} P(X=x) x$ $= \sum_{w \in \Omega} P(\{\omega\}) X(\omega) = \sum_{x \in X(\Omega)} P(X=x) x$

Properties of Individual Random Variables (cont'd) T

"Data Compression With and Without Deep Probabilistic Models" . Summer Term of 2023 . more course materials at https://robamler.github.io/teaching/compress23.

- Cumulative Density Function (CDF): $P(X \le x) := P(\{\omega \in \Omega : X(\omega) \le x\})$
 - Example 1 (Simplified Game of Monopoly): $P(X_{sum} \le 3) = P(X_{sum} = 2) + P(X_{sum} = 3) = \frac{1}{2} + \frac{2}{3} = \frac{3}{4} = \frac{1}{2}$
 - ► Example 2 (bus schedule): P(X_{gap} ≤ 20 minutes) ∈ [0,1] (nonzero in general)
- ▶ Analogous definitions for: P(X < x), $P(X \ge x)$, P(X > x), $P(X \in \text{some set})$, ...
- Probability Density Function (PDF) of a real-valued random variable X: (in 1 dimension) $p(x) := \frac{d}{dx} P(X \le x)$ (if derivative exists)
 - \rightarrow expectation value: $\mathbb{E}_{P}[X] = \int X(\omega) dP(\omega) = \int_{-\infty}^{\infty} x p(x) dx$

(if a density p(x) exists)

More general definition of a PDF (also for higher dimensions): p is a PDF of P if Ep[f(X)] = Sp(W) f(X) dx for all ("measurable") fundations f

Compression With and Without Deep Probabilistic Models" • Summer Term of 2023 • more course materials at https://robamler.github.io/teaching/compress23

Multiple Random Variables

Definition: *joint probability distribution* of two random variables X and Y:

Definition: joint probability distribution of two random variables X and T. $P(X = x, Y = y) := P(\{\omega \in \Omega : X(\omega) = x \land Y(\omega) = y\}) \xrightarrow{aggin, more precisely:} P(X,Y) denotes the probability measure$ Notation: "P(X, Y)": function that maps (x, y) $\mapsto P(X = x, Y = x)$ and the product space $X(\Omega) \times Y(\Omega)$ (more precisely: P(X,Y) denotes a probability measure on the product space of X and Y) to an event $E \subseteq X(\Omega) \times Y(\Omega)$

► If we know P(X, Y), then we can calculate $P(X) = \sum_{y} P(X, Y = y)$ (for discrete Y) $\forall_{x} \in X(\mathcal{X})$; $P(X=_{x}) = P(\{\omega \in \mathcal{X} : X(\omega) = x \})$ $= P(\bigcup_{y} \{\omega \in \mathcal{X} : X(\omega) = x \land Y(\omega) = y \})$ $= \sum_{\gamma} P([\omega \in \mathcal{A}: X(\omega) = \chi \land Y(\omega) = \gamma 3)$ $= \sum_{y} P(X=x, Y=y) \qquad \Rightarrow in short, we write: P(X) = \sum_{y} P(X, Y=y)$ This process is called "marginalization".

• for continuous random variables: $p(X) = \int p(X, y) dy$

UNIVERSITÄT Ţ

| 7

Statistical Independence

9

- ▶ Definition: X and Y are (statistically) independent iff: P(X, Y) = P(X)P(Y)(i.e., if $P(X \in \mathbb{X}, Y \in \mathbb{Y}) = P(X \in \mathbb{X})P(Y \in \mathbb{Y}) \forall \mathbb{X}, \mathbb{Y})$
- Examples (Simplified Game of Monopoly):
 - X_{red} and X_{blue} are statistically independent.
 - X_{red} and X_{sum} are *not* statistically independent. (proof: Problem 4.1)
- Definition: conditional independence of X and Y given Z: see later

Robert Bamler · Lecture 4. Part 1 of the course "Data Compression With and Without Deep Probabilistic Models" · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23.

Conditional Probability Distributions: Examples

$\begin{array}{c} ``X \& Y \text{ are } not \text{ statistically independent''} \\ \Leftrightarrow \\ \hline ``know \\ \end{array}$	ing X reveals somethin	ng a	abou	t Y	"	
Examples: (Simplified Game of Monopoly; $P(E) = \frac{ E }{9}$)	<i>x</i> =	1	2 3	4	5	6
What are the (marginal) probability distributions $P(X_{red})$	$P(X_{red}\!=\!x)=$	$\frac{1}{3}$	$\frac{1}{3}$ $\frac{1}{3}$		0	0
and $P(X_{sum})$ of the red die and the sum, respectively?	$P(X_{sum}=x) =$	0	$\frac{1}{9}$ $\frac{2}{9}$	$\frac{1}{3}$	$\frac{2}{9}$	$\frac{1}{9}$
Assume that you only accept throws where the red die comes up with value 1, and you keep rethrowing both dice until this condition is satisfied. What is the probability distribution of X_{sum} in your first accepted throw? We call this the <i>conditional</i> probability distribution $P(X_{sum} X_{red} = 1)$.	$P(X_{\rm sum}\!=\!x X_{\rm red}\!=\!1)=$		<u>-</u> 		0	0
Now you only accept throws where the sum of both dies is at least 5. What is the conditional probability distribution of X_{red} ?	$P(X_{\rm red}\!=\!x X_{\rm sum}\!\geq\!5)=$		3 2 1/3 2/	3 3 3	0	0
Finally, assume you only accept throws where $X_{blue} = 1$. What is the conditional probability distribution of X_{red} ?	$P(X_{red}\!=\!x X_{blue}\!=\!1)=$	⊡. '₃		0	0	0
Robert Bamler - Lecture 4, Part 1 of the course "Data Compression With and Without Deep Probabilistic Models" - Summer Term of 2023 - more course materials at https://robanler.github.io/teaching/compress23/ 10						10

Conditional Probability Distributions: Definition

▶ **Definition:** "conditional probability of event E_2 given event E_1 ": $P(E_2 | E_1) := \frac{P(E_1 \cap E_2)}{P(E_1)}$

▶ Thus, $P(E_2 | E_1)$ is a (properly normalized) probability distribution w.r.t. the first parameter,

i.e.,
$$P(E_2 | E_1) + P(\Omega \setminus E_2 | E_1) = \frac{P(E_2 \cap E_1) + P((\Omega \setminus E_2) \cap E_1)}{P(E_1)} = \frac{P(E_1)}{P(E_1)} = 1.$$

- ► **Definition:** "conditional probability distribution of a random variable *Y* given another random variable *X*": $P(Y | X) := \frac{P(X,Y)}{P(X)}$ i.e., $P(Y=y | X=x) := \frac{P(X=x,Y=y)}{P(X=x)}$ $\forall x, y$
 - ► Thus, if X and Y are statistically independent (but only then!): $P(Y | X) = \frac{P(X,Y)}{P(X)} = \frac{P(X)P(Y)}{P(X)} = P(Y) \quad ("knowing X reveals no new information about Y")$

UNIVERSITAT TUBINGEN

Conditional Independence

- **Reminder:** X and Z are (statistically) independent : $\iff P(X, Z) = P(X) P(Z)$
- Analogous definition:

X and Z are conditionally independent given Y : $\iff P(X, Z | Y) = P(X | Y) P(Z | Y)$

- equivalently: chain rule simplifies: P(X, Y, Z) = P(X) P(Y | X) P(Z | X, Y) = P(Y) P(X | Y) P(Z | Y) $() \rightarrow () \rightarrow (2)$ edge does not exist if X, Z are cond. indep. given Y
- **Problem Set 5:** comparison to normal (i.e., unconditional) independence

Robert Bamler - Lecture 4, Part 1 of the course "Data Compression With and Without Deep Probabilistic Models" - Summer Term of 2023 - more course materials at https://robamler.github.io/teaching/compress23/

Problem Set 10: propagation of information along $X \longrightarrow Y \longrightarrow Z$ ("later processing inequality")

Warning: Conditionality \neq Causation

- We'll often specify a joint probability distribution as, e.g., P(X, Y) = P(X) P(Y | X).
- But just because we write "P(Y | X)", this does *not* necessarily mean that X is the cause of Y.
- Example: (Simplified Game of Monopoly):
 - X_{red} and X_{blue} can be considered to cause X_{sum}.
 - But, in the examples three slides ago, we were still able to calculate, e.g., $P(X_{red} | X_{sum})$. (i.e., the probability of the cause X_{red} given its effect X_{sum})

$$P(X_{red} | X_{sun}) = \frac{P(X_{red}, X_{sun})}{P(X_{sun})} = \frac{P(X_{red}, X_{sun})}{\sum_{x'} P(X_{red} = x', X_{sun})} = \frac{P(X_{red}) P(X_{sun} | X_{red})}{\sum_{x'} P(X_{red} = x') P(X_{sun} | X_{red} = x')}$$

 \rightarrow This is called "posterior inference". (more in Lectures 7 and 8) (or "Bayesian inference")

Causality goes beyond the scope of a probabilistic model; understanding causal structures generally requires interventions in the generative process. Robert Bamler · Lecture 4, Part 1 of the course "Data Compression With and Without Deep Probabilistic Models" · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/

Outlook

UNIVERSITÄT TUBINGEN

| 13

- **Problem 4.1:** probability measures & statistical independence
- Next part:
 - information-theoretical quantification of correlations
 - machine-learning models that can capture correlations

| 12

T

UNIVERSITAT TÜBINGEN

Lecture 4, Part 2: Mutual Information and Taxonomy of **Probabilistic (Machine-Learning) Models**

Robert Bamler • Summer Term of 2023

These slides are part of the course "Data Compression With and Without Deep Probabilistic Models" taught at University of Tübingen. More course materials-including video recordings, lecture notes, and problem sets with solutions—are publicly available at https://robamler.github.io/teaching/compress23/.

Recap: Random Variables, Conditional Probabilities UNIVERSITAT

- Think "placeholders" for values: $P(X_i)$ is a probability measure for symbol X_i .
- ▶ P(X=x): probability (∈ [0, 1]) that the random variable X assumes value x.
- Expectation value: $\mathbb{E}_{P}[f(X)] = \sum_{x} P(X=x) f(x)$ (discrete case)

Multiple random variables:

- joint distribution: P(X, Y)
 P(X) = ≥ P(X, Y=y)
 marginal distributions: P(X), P(Y) ← P(Y) = ≥ P(X=x, Y)

• conditional distribution: $P(Y | X) = \frac{P(X,Y)}{P(X)}$ ("How is Y distributed if I know the value of X?") atistical (in-)dependencies between random variables:

- Statistical (in-)dependencies between random variables:
 - (unconditional) (statistical) independence: if P(X, Y) = P(X)P(Y) ($\iff P(Y|X) \stackrel{\flat}{=} P(Y)$)

Robert Bamler · Lecture 4, Part 2 of the course "Data Compression With and Without Deep Probabilistic Models" · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23,

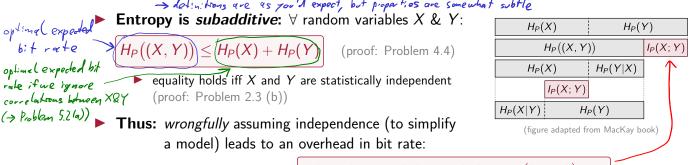
- ► conditional independence: if P(X, Z | Y) = P(X | Y) P(Y | Y) ($\iff P(Z | X, Y) = P(Z | Y)$) i.e., if $\int already know Y$, then the additional knowledge of X does not tell one and the
- **Goal now:** *quantify* statistical dependencies

Quantification of Statistical Dependencies

UNIVERSITÄT TÜBINGEN T

Use information theory:

- information content of the statement "X = x": $-log_{z} P(x = x)$
- entropy of a random variable X under a model P: $H_P(X) := \mathbb{E}_p \left[\log_p P(X = x) \right]$ ►
- ▶ analogously: joint and conditional information content and entropy (see Problems 4.2 and 4.3). -> definitions are as you'l expect, but proparties are somewhat subtle



Def. "mutual information": $|I_P(X; Y) := H_P(X) + H_P(Y) - H_P((X, Y)) \ge 0$

(Problem 4.4)

Modeling Statistical Dependencies

UNIVERSITAT TÜBINGEN

3

UNIVERSITAT TUBINGEN

UNIVERSITÄT TÜBINGEN

T

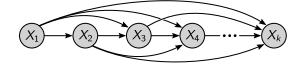
- Assume that the message is a sequence of symbols: $\mathbf{X} = (X_1, X_2, \dots, X_k)$
- ► Subadditivity of entropies: H(X) ≤ ∑^k_{i=1} H(X_i) optimal expected optimal expected bit rate if we model bit rate if we use the symbols as being statistically independent a perfect model (prof: problem 5.2 (a))
- ► **Thus:** instead of modeling each symbol X_i independently, we should model the message **X** as a whole (without completely sacrificing computational efficiency).
 - ▶ autoregressive models (e.g., Problem 3.3)
 - Iatent variable models (planned for Problem Set 6; also: basis for variational autoencoders) Leotures Z+8

ssion With and Without Deep Probabilistic Models". Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23

Probabilistic Models at Scale

Robert Bamler - Lecture 4, Part 2 of the course "Data Compr

• All probability distributions P over messages $\mathbf{X} = (X_1, X_2, \dots, X_k)$ satisfy the chain rule: $P(\mathbf{X}) = P(X_1) P(X_2 | X_1) P(X_3 | X_1, X_2) P(X_4 | X_1, X_2, X_3) \cdots P(X_k | X_1, X_2, \dots, X_{k-1})$



Example: assume each symbol is from alphabet $\mathfrak{X} = \{1, 2, 3\}$.

- ► How many model parameters do we need to specify an arbitrary distribution P(X₁)? → Z (one par symbol x ∈ X to specify P(X=x), but P(X=3) = 1-P(X=1)-P(X=2) can be inferred from normalization)
- ► How many parameters for an arbitrary conditional distribution $P(X_2 | X_1)$? → 2×3=6 Z parameters as above per distribution $P(X_2 | X_1 = x_1) \forall x_1 \in X$
- How many parameters for an arbitrary conditional distribution $P(X_k | X_1, X_2, ..., X_k)$? $\rightarrow O(1*1)$ Exponential

Expressive Yet Efficient Probabilistic Models

Robert Bamler - Lecture 4, Part 2 of the course "Data Compression With and Without Deep Probabilistic Models" - Summer Term of 2023 - more course materials at https://robamler.github.io/teaching/compress23

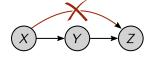
Goal: Find approximation to arbitrary models $P(\mathbf{X})$ that

- captures relevant correlations
- but is still computationally efficient:
 - ightarrow reasonably compact representation of the model in memory
 - \rightarrow reasonably efficient evaluation of probabilities $P(\mathbf{X} = \mathbf{x})$
 - \rightarrow suitable for entropy coding (later)

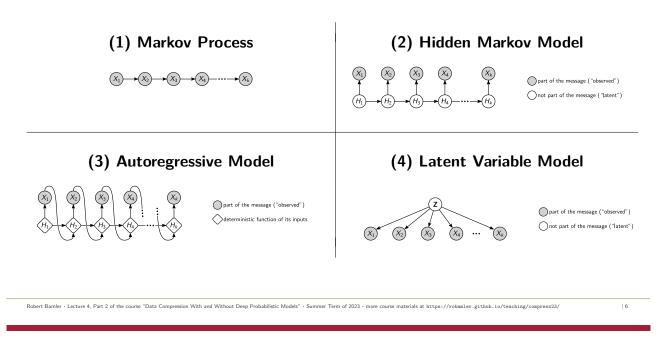
General Strategy: enforce conditional independence:

X & Z are conditionally independent given $Y : \iff P(X, Z \mid Y) = P(X \mid Y) P(Z \mid Y)$

 $\iff P(X, Y, Z) = P(X) P(Y | X) P(Z | Y) \quad (\text{proof: Problem 5.1 (a)})$



Four Kinds of Scalable Probabilistic Models



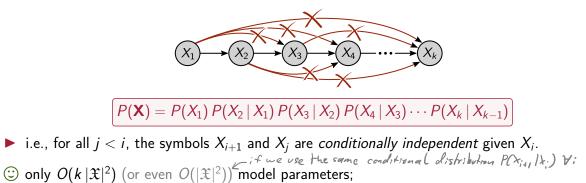
(1) Markov Process

UNIVERSITAT TUBINGEN

UNIVERSITÄT TÜBINGEN

Modeling assumption: symbols X_i are generated by a *memoryless* process.

Each symbol X_i depends on its immediate precessor X_{i-1} but not on any earlier symbols:



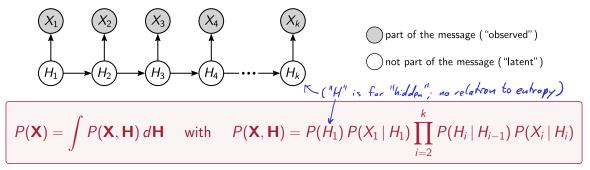
© simplistic assumption; e.g., in English text, the string "the" is very frequent.

 $\Rightarrow P_{\mathsf{data}}(X_i = \mathbf{\hat{e}'} \mid X_{i-2} = \mathbf{\hat{t}'}, X_{i-1} = \mathbf{\hat{h}'}) > P_{\mathsf{data}}(X_i = \mathbf{\hat{e}'} \mid X_{i-1} = \mathbf{\hat{h}'}) \quad (i.e., not \text{ cond. indep.})$ Robert Bamler - Lecture 4, Part 2 of the course "Data Compression With and Without Deep Probabilistic Models" - Summer Term of 2023 - more course materials at https://roballer.github.io/teaching/compress23/

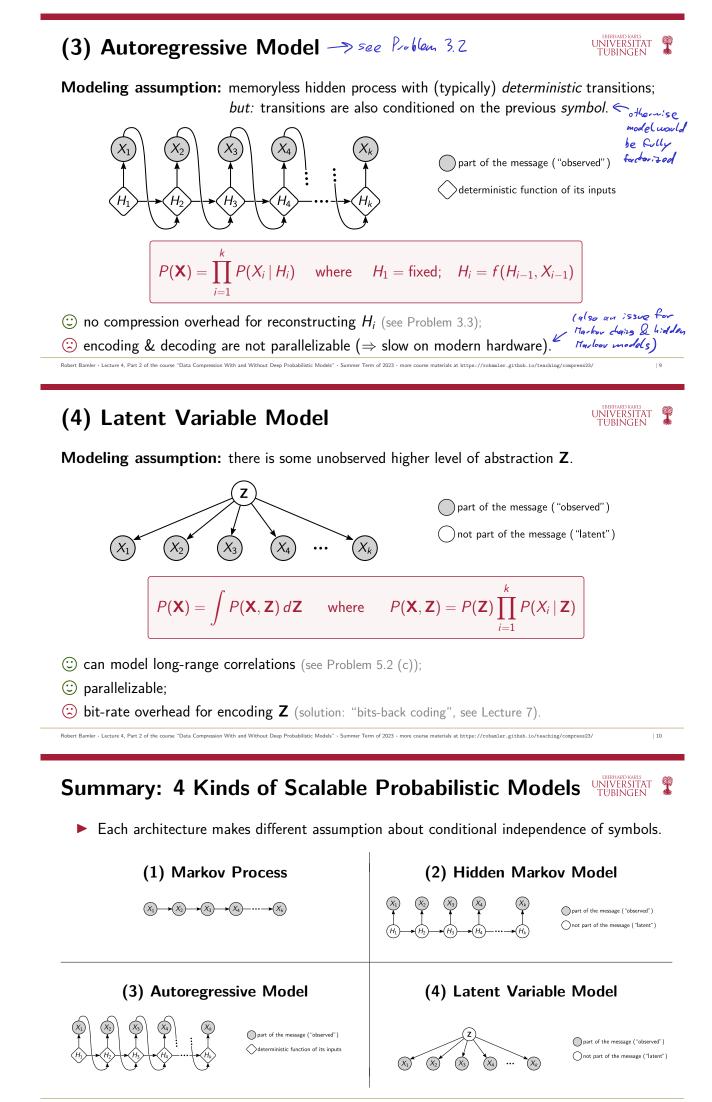
(2) Hidden Markov Model

UNIVERSITÄT TÜBINGEN

Modeling assumption: there is some memoryless hidden process, which is observed indirectly.



- \bigcirc can model long-range correlations, i.e., X_i , X_{i-2} not cond. indep. given X_{i-1} (exercise);
- \bigcirc bit-rate overhead: in order to model $P(X_i | H_i)$, decoder has to first decode H_i , even though it's not part of the message (solution: "bits-back coding", see Lecture 7).



Outlook

Problem Set 4:

$H_P(X)$	$H_P(Y)$		
$H_P((X, Y$))	$I_P(X;Y)$	
$H_P(X)$	$H_P(Y X)$		
$I_P(X;Y)$			
$H_P(X Y)$ $H_P(X Y)$	Р(Y)		

- ▶ Now and next 3 lectures: lossless compression with deep probabilistic models
 - ▶ Different model architectures require different entropy coding algorithms.

Robert Bamler - Lecture 4, Part 2 of the course "Data Compression With and Without Deep Probabilistic Models" - Summer Term of 2023 - more course materials at https://robamler.github.io/teaching/compress23/

► Afterwards: Lossy compression

| 12