Lecture 4, Part 1:

A Primer on Probability Theory

Robert Bamler • Summer Term of 2023

These slides are part of the course "Data Compression With and Without Deep Probabilistic Models" taught at University of Tübingen. More course materials-including video recordings, lecture notes, and problem sets with solutions—are publicly available at https://robamler.github.io/teaching/compress23/.

Recap: Why We Need Good Probabilistic Models

- Bound on practical compression performance: cross entropy

$$
\text { expected bit rate } \geq H\left(p_{\text {data }}(\mathbf{x}), p_{\text {model }}(\mathbf{x})\right):=-\sum_{\mathbf{x}} p_{\text {data }}(\mathbf{x}) \log p_{\text {model }}(\mathbf{x})
$$

- Overhead due to $p_{\text {model }} \neq p_{\text {data }}$: Kullback-Leibler divergence (aka relative entropy)

$$
D_{\mathrm{KL}}\left(p_{\text {data }}(\mathbf{x}) \| p_{\text {model }}(\mathbf{x})\right):=H\left(p_{\text {data }}(\mathbf{x}), p_{\text {model }}(\mathbf{x})\right)-H\left[p_{\text {data }}(\mathbf{x})\right]
$$

- For low overhead, we need $p_{\text {model }}$ to approximate $p_{\text {data }}$
- But so far: only simplistic $p_{\text {model }}$ that ignore correlations between symbols
- This part: mathematical language for probabilistic models
- Next part: information-theoretical quantification of correlations
- Then: machine learning models that describe correlations

Ingredients of a Probabilistic Model

- sample space Ω (abstract space of "all states of the world")
- subsets $E \subseteq \Omega$: "events" ("event E occurs" \Longleftrightarrow "the world is in some state $\omega \in E$ ")
probability measure: a function $P: \Sigma \rightarrow[0,1]$ where
essentrally meaus that
- Σ is a so-called σ-algebra on Ω. (a set of all "expressible" events $E \subseteq \Omega$)
- $P(\emptyset)=0 \quad$ and $\quad P(\Omega)=1$.
- countable additivity: $P\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} P\left(E_{i}\right) \quad$ if all $\begin{gathered}E_{i} \text { are pairwise disjoint. } \\ \text { since we con set }\end{gathered}$
- for finite sums: $P\left(\bigcup^{k} E_{i}\right)=\sum^{k} P\left(E_{i} \leftarrow E_{i}=\varnothing \quad \forall i>k\right.$
\diamond therefore, for finite sums: $P\left(\bigcup_{i=1}^{k} E_{i}\right)=\sum_{i=1}^{k} P\left(E_{i}\right)^{\leftarrow}$ if all E_{i} are pairwise disjoint.
therefore: $P(E)+P(\Omega \backslash E)=P(\Omega)=1 \quad \forall E \in \Sigma$. \quad ince $E_{2}=E_{1} \cup\left(E_{2} \backslash E_{1}\right)$
- therefore: $P\left(E_{1}\right) \leq P\left(E_{2}\right)$ if $E_{1} \subseteq E_{2}$ (and $\left.E_{1}, E_{2} \in \Sigma\right)$ if $E_{2} \subseteq E_{1}$

Examples of Probability Measures

1. Simplified Game of Monopoly: (throw two fair three-sided dice)

- sample space: $\Omega=\{1,2,3\}^{2}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)\}$
- sigma algebra: $\Sigma=2^{\Omega}:=\{$ all subsets of Ω (including \emptyset and Ω) \}
- probability measure P : for all $E \subseteq \Sigma$, let $P(E):=|E| / / \Omega|=|E| / 9$

that all $w \in \Omega$ have equal
probability since the dice are foin

Examples of Probability Measures (contd)

1. Simplified Game of Monopoly

2. Wait times for the next three buses from "Sternwarte": (0.9 , measured in minutes)

- sample space (in a simple model): $\Omega=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\right.$ where $\left.0 \leq x_{1} \leq x_{2} \leq x_{3}\right\}$
- sigma algebra: all "measurable subsets" of Ω
(essentially, all subsets of Ω except for extremely pathological exceptions)
- probability measure P : complicated function, but we know it satisfies certain relations, egg., P ("next bus departs in at most 5 minutes") $=P$ ("next bus departs in at most 2 minutes")
$+P$ ("next bus departs in between 2 and 5 minutes").
- Question: what is the probability that the next bus departs in exactly 3 minutes? ie., what is $P\left(\left(\{3 \mathrm{~min}\} \times \mathbb{R}^{2}\right) \cap \Omega\right) X=0<$ The probability shoo $\left\{\right.$ be continuous $\Rightarrow P$ if $P\left(\left(\{3 \mathrm{minh}\} \times \mathbb{R}^{2}\right) \cap \Omega\right)=: \rho>0$

Robert 1 $\geqslant n \frac{p}{2 \rightarrow}>\frac{2}{p} \frac{p}{2}=1=p(\Omega)$

Random Variables

- Often, we we're not interested in a full description of the state $\omega \in \Omega$, but only in certain properties of it.
- Definition: "random variable": function $X: \Omega \rightarrow \underset{\uparrow}{\mathbb{R}}$ (not necessarily infective)

Examples:

can also be a different value space, e.p., \mathbb{R}^{d} for some integer d, or $*^{k}$ for same

1. Simplified Game of Monopoly; $\Omega=\{(a, b)$ where $a, b \in\{1,2,3\}\}$ alphabet \mathbb{Z} \& message length k

- total value: $X_{\text {sum }}((a, b))=a+b \in\{2,3,4,5,6\}$
- value of the red die: $X_{\text {red }}((a, b))=a$
- value of the blue die: $X_{\text {blue }}((a, b))=b$

2. In our bus schedule model from before; $\Omega=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}\right.$ where $\left.0 \leq x_{1} \leq x_{2} \leq x_{3}\right\}$

- Time between the next bus and the one after it: $X_{\text {gap }}\left(\left(x_{1}, x_{2}, x_{3}\right)\right)=x_{2}-x_{1}$

Properties of Individual Random Variables

- "Probability that a random variable X has some given value x ": $P(X=x):=P\left(X^{-1}(x)\right)=P(\{\omega \in \Omega: X(\omega)=x\})$
- Example 1 (Simplified Game of Monopoly): $P\left(X_{\text {sum }}=3\right)=$
- Example 2 (bus schedule): $P\left(X_{\text {gap }}=20\right.$ minutes $)=$
- When we write just $P(X)$, then we mean the function that maps $x \mapsto P(X=x)$. case (more precisely: $P(X)$ denotes a probability measure on the space of $X)<$ ie., the measure that
- Expectation value of a random variable X under a model P
- discrete case: $\mathbb{E}_{p}[X]:=\sum_{\omega \in \Omega} P(\{\omega\}) X(\omega)=\sum_{x \in X(\Omega)} P(X=x) x$

Properties of Individual Random Variables (cont'd)

- Cumulative Density Function (CDF): $P(X \leq x):=P(\{\omega \in \Omega: X(\omega) \leq x\})$
- Example 1 (Simplified Game of Monopoly): $P\left(X_{\text {sum }} \leq 3\right)=P\left(X_{\text {sum }}=2\right)+P\left(X_{\text {sum }}=3\right)=\frac{1}{9}+\frac{2}{9}=\frac{3}{9}=\frac{1}{3}$
- Example 2 (bus schedule): $P\left(X_{\text {gap }} \leq 20\right.$ minutes) $\in[0,1]$ (nonzero in general)
- Analogous definitions for: $P(X<x), P(X \geq x), P(X>x), P(X \in$ some set $), \ldots$
- Probability Density Function (PDF) of a real-valued random variable X : (in 1 dimension)
$p(x):=\frac{d}{d x} P(X \leq x) \quad$ (if derivative exists)
\rightarrow expectation value: $\mathbb{E}_{P}[X]=\int X(\omega) d P(\omega)=\int_{-\infty}^{\infty} x p(x) d x$
(if a density $p(x)$ exists)

$$
\begin{aligned}
& \text { Mare general definition of a PDF (also for higher dimensions): } \\
& p \text { is a } P D F \text { of } P \text { if } E_{p}[f(x)]=S p(x) f(x) \text { ax for all ('measurable") fundrous } f
\end{aligned}
$$

Multiple Random Variables

- Definition: joint probability distribution of two random variables X and Y : $P(X=x, Y=y):=P(\{\omega \in \Omega: X(\omega)=x \wedge Y(\omega)=y\})$
- Notation: " $P(X, Y)$ ": function that maps $(x, y) \mapsto P(X=X, Y=x)$ on the product spare $X(\Omega) \times Y(\Omega)$ (more precisely: $P(X, Y)$ denotes a probability measure on the product space of X and Y) to an event $E \subseteq X(\Omega) \times Y(\Omega)$
- If we know $P(X, Y)$, then we can calculate $P(X)=\sum_{y} P(X, Y=y) \quad$ (for $\underbrace{\text { discrete }}_{\uparrow} Y$) $\forall x \in X(\Omega): P(X=x)=P(\{\omega \in \Omega: X(\omega)=x\})$

$$
=P\left(\bigcup_{y}\{\omega \in \Omega: X(\omega)=x \wedge Y(\omega)=y\}\right) \quad \text { or coontoully infinite }
$$

$$
=\sum_{y} P(\{\omega \in \Omega: X(\omega)=x \wedge Y(w)=y \xi)
$$

- This process is called "marginalization".

$$
=\sum_{y} P(X=x, Y=y) \quad \Rightarrow \text { in short, we write: } P(X)=\sum_{y} P(X, Y=y)
$$

- for continuous random variables: $p(X)=\int p(X, y) d y$

Statistical Independence

－Definition：X and Y are（statistically）independent iff：$P(X, Y)=P(X) P(Y)$
（i．e．，if $P(X \in \mathbb{X}, Y \in \mathbb{Y})=P(X \in \mathbb{X}) P(Y \in \mathbb{Y}) \forall \mathbb{X}, \mathbb{Y}$ ）
－Examples（Simplified Game of Monopoly）：
－$X_{\text {red }}$ and $X_{\text {blue }}$ are statistically independent．
－$X_{\text {red }}$ and $X_{\text {sum }}$ are not statistically independent．（proof：Problem 4．1）
－Definition：conditional independence of X and Y given Z ：see later

Conditional Probability Distributions：Examples

＂$X \& Y$ are not statistically independent＂\Longleftrightarrow＂knowing X reveals something about Y＂

Examples：（Simplified Game of Monopoly；$P(E)=\frac{|E|}{9}$ ）

	$x=$	1	2	3	4			6
What are the（marginal）probability distributions $P\left(X_{\text {red }}\right)$ and $P\left(X_{\text {sum }}\right)$ of the red die and the sum，respectively？	$P\left(X_{\text {red }}=x\right)=$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0			0
	$P\left(X_{\text {sum }}=x\right)=$	0	$\frac{1}{9}$	碞	$\frac{1}{3}$			$\frac{1}{9}$
Assume that you only accept throws where the red die comes up with value 1 ，and you keep rethrowing both dice until this condition is satisfied．What is the probability distribution of $X_{\text {sum }}$ in your first accepted throw？We call this the conditional probability distribution $P\left(X_{\text {sum }} \mid X_{\text {red }}=1\right)$ ．	$P\left(X_{\text {sum }}=x \mid X_{\text {red }}=1\right)=$	$\begin{array}{l\|l\|l} 1 & \frac{1}{3} & \frac{1}{3} \\ \hline \end{array}$				0	0	
Now you only accept throws where the sum of both dies is at least 5．What is the conditional probability distribution of $X_{\text {red }}$ ？	$P\left(X_{\text {red }}=x \mid X_{\text {sum }} \geq 5\right)=$	0						－
Finally，assume you only accept throws where $X_{\text {blue }}=1$ ． What is the conditional probability distribution of $X_{\text {red }}$ ？	$P\left(X_{\text {red }}=x \mid X_{\text {blue }}=1\right)=$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0			

Conditional Probability Distributions：Definition

－Definition：＂conditional probability of event E_{2} given event E_{1}＂：$P\left(E_{2} \mid E_{1}\right):=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{1}\right)}$
－Thus，$P\left(E_{2} \mid E_{1}\right)$ is a（properly normalized）probability distribution w．r．t．the first parameter， i．e．，$P\left(E_{2} \mid E_{1}\right)+P\left(\Omega \backslash E_{2} \mid E_{1}\right)=\frac{P\left(E_{2} \cap E_{1}\right)+P\left(\left(\Omega \backslash E_{2}\right) \cap E_{1}\right)}{P\left(E_{1}\right)}=\frac{P\left(E_{1}\right)}{P\left(E_{1}\right)}=1$ ．
－Definition：＂conditional probability distribution of a random variable Y given another random variable $X^{\prime \prime}: P(Y \mid X):=\frac{P(X, Y)}{P(X)} \quad$ i．e．，$P(Y=y \mid X=x):=\frac{P(X=x, Y=y)}{P(X=x)} \quad \forall x, y$
－Thus，if X and Y are statistically independent（but only then！）： $P(Y \mid X)=\frac{P(X, Y)}{P(X)}=\frac{P(X) P(Y)}{P(X)}=P(Y) \quad$（＂knowing X reveals no new information about Y＂）
－In the general case：＂chain rule＂of probability theory：（follows directly from above definition）

$$
P\left(x_{1}, x_{2}, x_{3}, \ldots\right)=\underbrace{P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right)}_{=P\left(x_{1}, x_{2}\right)} P\left(x_{3} \mid x_{1}, x_{2}\right) \ldots
$$

Conditional Independence

- Reminder: X and Z are (statistically) independent $: \Longleftrightarrow P(X, Z)=P(X) P(Z)$
- Analogous definition:
X and Z are conditionally independent given $Y: \Longleftrightarrow P(X, Z \mid Y)=P(X \mid Y) P(Z \mid Y)$
- equivalently: chain rule simplifies:

$$
P(X, Y, Z)=P(X) P(Y \mid X) P(Z \mid X, Y)=P(Y) P(X \mid Y) P(Z \mid Y)
$$

$$
\text { edged does not exist if } x, z \text { are cond. indep. given } Y
$$

- Problem Set 5: comparison to normal (i.e., unconditional) independence
- Problem Set 10: propagation of information along $X \longrightarrow Y \longrightarrow Z$ ("lata prorossing inequalily")

Warning: Conditionality \neq Causation

- We'll often specify a joint probability distribution as, e.g., $P(X, Y)=P(X) P(Y \mid X)$.
- But just because we write " $P(Y \mid X)$ ", this does not necessarily mean that X is the cause of Y.
- Example: (Simplified Game of Monopoly):
- $X_{\text {red }}$ and $X_{\text {blue }}$ can be considered to cause $X_{\text {sum }}$.
- But, in the examples three slides ago, we were still able to calculate, e.g., $P\left(X_{\text {red }} \mid X_{\text {sum }}\right)$.
(i.e., the probability of the cause $X_{\text {red }}$ given its effect $X_{\text {sum }}$)

$$
\begin{aligned}
& P\left(x_{\text {red }} \mid x_{\text {sum }}\right)=\frac{P\left(x_{\text {red }}, x_{\text {sum }}\right)}{P\left(x_{\text {sum }}\right)}=\frac{P\left(x_{\text {red }}, x_{\text {sum }}\right)}{\sum_{x^{\prime}} P\left(x_{\text {red }}=x^{\prime}, x_{\text {sum }}\right)}=\frac{P\left(x_{\text {red }}\right) P\left(x_{\text {sum }} \mid x_{\text {red }}\right)}{\sum_{x^{\prime}} P\left(x_{\text {red }}=x^{\prime}\right) P\left(x_{\text {sum }} \mid x_{\text {red }}=x^{\prime}\right)} \\
& \rightarrow \text { This is called "posterior inference". (more in Lectures } 7 \text { and 8) (ar "Bayesian inference") }
\end{aligned}
$$

- Causality goes beyond the scope of a probabilistic model; understanding causal structures generally requires interventions in the generative process.

Outlook

- Problem 4.1: probability measures \& statistical independence

- Next part:

- information-theoretical quantification of correlations
- machine-learning models that can capture correlations

Lecture 4, Part 2:

Mutual Information and Taxonomy of Probabilistic (Machine-Learning) Models

Robert Bamler • Summer Term of 2023

These slides are part of the course "Data Compression With and Without Deep Probabilistic Models" taught at University of Tübingen. More course materials-including video recordings, lecture notes, and problem sets with solutions—are publicly available at https://robamler.github.io/teaching/compress23/

Recap: Random Variables, Conditional Probabilities

- Random variables: (uppercase letters X, Y, Z, \ldots)
- Think "placeholders" for values: $P\left(X_{i}\right)$ is a probability measure for symbol X_{i}.
- $P(X=x)$: probability $(\in[0,1])$ that the random variable X assumes value x.
- Expectation value: $\mathbb{E}_{P}[f(X)]=\sum_{x} P(X=x) f(x) \quad$ (discrete case)
- Multiple random variables:
- joint distribution: $P(X, Y) \quad P(X)=\sum_{y} P(X, Y=y)$
- marginal distributions: $P(X), P(Y) \in P(Y)=\sum_{X} P(X=x, Y)$
- conditional distribution: $P(Y \mid X)=\frac{P(X, Y)}{P(X)} \quad$ ("How is Y distributed if I know the value of X ?")
- Statistical (in-)dependencies between random variables: me any thely about Y
- (unconditional) (statistical) independence: if $P(X, Y)=P(X) P(Y) \quad(\Longleftrightarrow P(Y \mid X) \stackrel{\nu}{=} P(Y))$
- conditional independence: if $P(X, Z \mid Y)=P(X \mid Y) P(Y \mid Y) \quad(\Longleftrightarrow P(Z \mid X, Y)=P(Z \mid Y))$
- Goal now: quantify statistical dependencies

Quantification of Statistical Dependencies

- Use information theory:
- information content of the statement " $X=x$ ": $-\log _{2} P(X=x)$
- entropy of a random variable X under a model $P: H_{P}(X):=\mathbb{E}_{p}\left[-\log _{2} P(X=x)\right.$
- analogously: joint and conditional information content and entropy (see Problems 4.2 and 4.3).
\rightarrow defin: Arons are as you'd expect, but propatios are somewhat subtle

Modeling Statistical Dependencies

- Assume that the message is a sequence of symbols: $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$
- Subadditivity of entropies: $\underbrace{H(\mathbf{X})} \leq \sum_{i=1}^{k} H\left(X_{i}\right)$

$$
\begin{array}{ll}
\text { optimal expected } & \underbrace{i=1}_{\text {optimal expected bit rate if we model }} \\
\text { bit rate if we use } & \text { the symbols as being statistically independent } \\
\text { a perfect model } & \text { (proof: problem } 5.2(a))
\end{array}
$$

- Thus: instead of modeling each symbol X_{i} independently, we should model the message \mathbf{X} as a whole (without completely sacrificing computational efficiency).
- autoregressive models (e.g., Problem 3.3)
- latent variable models (planned for Problem Set 6; also: basis for variational autoencoders)

Probabilistic Models at Scale

- All probability distributions P over messages $\mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ satisfy the chain rule: $P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) P\left(X_{4} \mid X_{1}, X_{2}, X_{3}\right) \cdots P\left(X_{k} \mid X_{1}, X_{2}, \ldots, X_{k-1}\right)$

- Example: assume each symbol is from alphabet $\mathfrak{X}=\{1,2,3\}$.
- How many model parameters do we need to specify an arbitrary distribution $P\left(X_{1}\right)$? $\rightarrow 2$

Cone per symbol $x \in \nexists$ to specify $P(x=x)$, but $P(x=3)=1-P(x=1)-P(x=2)$ can be inferred from narmaticatron)

- How many parameters for an arbitrary conditional distribution $P\left(X_{2} \mid X_{1}\right)$? $\rightarrow 2 \times 3=6$ 2 parameters as above per distribution $P\left(x_{2} \mid x_{1}=x_{1}\right) \forall x_{1} \in \neq$
- How many parameters for an arbitrary conditional distribution $P\left(X_{k} \mid x_{1}, x_{2}, \ldots, x_{k}\right)$? $\rightarrow O\left(|\nexists|^{k}\right)$ EXPONENTIAL:

Expressive Yet Efficient Probabilistic Models

- Goal: Find approximation to arbitrary models $P(\mathbf{X})$ that
- captures relevant correlations
- but is still computationally efficient:
\rightarrow reasonably compact representation of the model in memory
\rightarrow reasonably efficient evaluation of probabilities $P(\mathbf{X}=\mathbf{x})$
\rightarrow suitable for entropy coding (later)
- General Strategy: enforce conditional independence:
$X \& Z$ are conditionally independent given $Y: \Longleftrightarrow P(X, Z \mid Y)=P(X \mid Y) P(Z \mid Y)$
$\Longleftrightarrow P(X, Y, Z)=P(X) P(Y \mid X) P(Z \mid Y) \quad$ (proof: Problem 5.1 (a))

(1) Markov Process

Modeling assumption: symbols X_{i} are generated by a memoryless process.

- Each symbol X_{i} depends on its immediate precessor X_{i-1} but not on any earlier symbols:

$$
P(\mathbf{X})=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right) \cdots P\left(X_{k} \mid X_{k-1}\right)
$$

- i.e., for all $j<i$, the symbols X_{i+1} and X_{j} are conditionally independent given X_{i}.
() only $O\left(k|\mathfrak{X}|^{2}\right)$ (or even $O\left(|\mathfrak{X}|^{2}\right)$) model parameters;
© simplistic assumption; e.g., in English text, the string "the" is very frequent.
$\Rightarrow P_{\text {data }}\left(X_{i}={ }^{\prime} \mathrm{e}^{\prime} \mid X_{i-2}={ }^{\prime} \mathrm{t}\right.$ ', $\left.X_{i-1}=\mathrm{h} \mathrm{h}\right)>P_{\text {data }}\left(X_{i}={ }^{\prime} \mathrm{e}^{\prime} \mid X_{i-1}=\mathrm{h} \mathrm{h}\right.$) (i.e., not cond. indep.)

(2) Hidden Markov Model

Modeling assumption: there is some memoryless hidden process, which is observed indirectly.
$P(\mathbf{X})=\int P(\mathbf{X}, \mathbf{H}) d \mathbf{H}$ with $P(\mathbf{X}, \mathbf{H})=P\left(H_{1}\right) P\left(X_{1} \mid H_{1}\right) \prod_{i=2}^{k} P\left(H_{i} \mid H_{i-1}\right) P\left(X_{i} \mid H_{i}\right)$
;) can model long-range correlations, i.e., X_{i}, X_{i-2} not cond. indep. given X_{i-1} (exercise);
; bit-rate overhead: in order to model $P\left(X_{i} \mid H_{i}\right)$, decoder has to first decode H_{i}, even though it's not part of the message (solution: "bits-back coding", see Lecture 7).

Modeling assumption: memoryless hidden process with (typically) deterministic transitions; but: transitions are also conditioned on the previous symbol. \leftarrow

model wauld
be fully
〇part of the message ("observed")
factorized

$$
P(\mathbf{X})=\prod_{i=1}^{k} P\left(X_{i} \mid H_{i}\right) \quad \text { where } \quad H_{1}=\text { fixed; } \quad H_{i}=f\left(H_{i-1}, X_{i-1}\right)
$$

(;) no compression overhead for reconstructing H_{i} (see Problem 3.3) calso an issue for
; encoding \& decoding are not parallelizable (\Rightarrow slow on modern hardware). ${ }^{\measuredangle}$

Martoo chaiss \& hidden Mordeov models)

(4) Latent Variable Model

Modeling assumption: there is some unobserved higher level of abstraction Z.

$$
P(\mathbf{X})=\int P(\mathbf{X}, \mathbf{Z}) d \mathbf{Z} \quad \text { where } \quad P(\mathbf{X}, \mathbf{Z})=P(\mathbf{Z}) \prod_{i=1}^{k} P\left(X_{i} \mid \mathbf{Z}\right)
$$can model long-range correlations (see Problem 5.2 (c));parallelizable;

; bit-rate overhead for encoding \mathbf{Z} (solution: "bits-back coding", see Lecture 7).

Summary: 4 Kinds of Scalable Probabilistic Models

- Each architecture makes different assumption about conditional independence of symbols.
(1) Markov Process
$x_{1} \rightarrow x_{2} \rightarrow x_{2} \rightarrow\left(x_{2}\right) \cdots \rightarrow x_{3}$
(3) Autoregressive Model

Opart of the message ("observed")
\bigcirc deterministic function of its inputs
(2) Hidden Markov Model

(4) Latent Variable Model

Opart of the message ("observed")
Onot part of the message ("Iatent")

Outlook

- Problem Set 4:

| $H_{P}(X)$ | $H_{P}(Y)$ |
| :---: | :---: | :---: |
| $H_{P}((X, Y))$ | $I_{P}(X ; Y)$ |
| $H_{P}(X)$ | $H_{P}(Y \mid X)$ |
| $I_{P}(X ; Y)$
 $H_{P}(X \mid Y)$ $H_{P}(Y)$ | |

- Now and next 3 lectures: lossless compression with deep probabilistic models
- Different model architectures require different entropy coding algorithms.
- Afterwards: Lossy compression

