
Lecture 5, Part 1:
Stream Codes: Encoding Into Fractional Bits

Robert Bamler · Summer Term of 2023

These slides are part of the course “Data Compression With and Without Deep Probabilistic Models” taught
at University of Tübingen. More course materials—including video recordings, lecture notes, and problem sets
with solutions—are publicly available at https://robamler.github.io/teaching/compress23/.

Faculty of Science · Department of Computer Science · Group of Prof. Robert Bamler

Recall: 4 Kinds of Scalable Probabilistic Models

(1) Markov Process (2) Hidden Markov Model

(3) Autoregressive Model (4) Latent Variable Model

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 1

Recall: Autoregressive Model + Huffman Coding
� Problem 3.2: (link to solutions in video description)

msg. len bits per character
(chars) Huffman Shannon inf. cont. gzip bzip2 bzip2’

validation set 106,864 2.38 2.72 2.12 3.43 2.82 2.40
test set 219,561 2.38 2.73 2.12 3.33 2.65 2.38

wikipedia-en 24,618 4.99 5.67 5.14 3.22 2.92 5.14
wikipedia-de 8,426 6.77 7.70 7.19 3.96 3.76 7.22

� Observation: Huffman coding has overhead over information content of up to 1 bit per symbol.
� Can be substantial in modern ML-based compression methods:

e.g., information content ≈ 0.3 bits per symbol;
but Huffman coding needs ≥ 1 bit per symbol.

�
=⇒ about 200% overhead.

� Solution: amortize compressed bits over symbols −→ “stream code”

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 2



Stream Codes: Amortizing Bits Over Symbols

� Intuitively: stream codes “pack” information content as closely as possible.
� We can no longer associate each bit in the compressed representation with any specific symbol.

� 2 important stream codes with 2 different application domains:
� This lecture: Arithmetic Coding & Range Coding [Pasco, 1976; Rissanen and Langdon, 1979]
� Next lecture: Asymmetric Numeral Systems (ANS) [Duda et al., 2015]

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 3

Arithmetic Coding: Overview [Pasco, 1976]

� Idea: similar to Shannon coding, but on entire message space X∗ instead of alphabet X.
� Thus: overhead now only per message.
� Challenge: computational efficiency

� 2 variants: Arithmetic Coding & Range Coding
� very similar to each other (Range Coding is faster on real hardware);
� both conceptionally simple;
� but a bit tricky in practice due to edge cases.

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 4

Reminder: Shannon Coding (for B = 2)
Input: alphabet X, probability measure P on X

output: prefix code CS : X → {0, 1}∗.
Initialize ξ ← 1
for x ∈ X in order of increasing P(X =x) do

Update ξ ← ξ − 2−�− log2 P(X=x)�

Write out ξ ∈ [0, 1) in binary: ξ = (0.???? . . .)2
end

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 5



Arithmetic Coding: General Idea
� Consider probability measure P on entire message space Xk (with fixed length k , for now).

� Observation: ∀x ∈ Xk : interval
�
P(X<x),P(X≤x)

�
contains a point ξx = (0.????����

R(x) bits
)2 if:

size of interval ≤ spacing between numbers of form (0.????����
R(x) bits

)2

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 6

Arithmetic Coding: Super Naive Algorithm
� Encoder:

Initialize c ← 0 and p ← 1.
for i from 1 to k do

Update c ← c + p P(Xi <xi |X1:i−1=x1:i−1).
Update p ← p P(Xi =xi |X1:i−1=x1:i−1).
� Claim: at this point, we have c = P(X1:i <x1:i) and p = P(X1:i =x1:i)

=⇒ invariant: [c , c + p) =
�
P(X1:i <x1:i),P(X1:i ≤x1:i)

�
⊆ [0, 1)

end
Encode some ξ ∈ [c , c + p) in binary: ξ = (0. ?????� �� �

�− log2 p� bits

)2

� Decoder: Analogous to encoder, but introduce an extra step.

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 7

Caveats
� Unique Decodability:

� not such a big deal as it was with symbol codes
(it’s unusual to concatenate entire compressed messages without deliminators);

� can be solved with 1 extra bit: guarantee that [ξ, ξ + 2−R(x)) ⊆ [c , c + p]

� Variable message length:
� end of bit string �⇐⇒ end of message (since symbols can have information content < 1 bit)
� for variable-length messages, the message length is fundamentally a part of the message
� simple solution: introduce EOF symbol (→ Problem Set 7)

� Numerical precision:
� e.g, if bit rate = 1 Mbit then c and p on last slide are 1-million-bit numbers
� Run-time complexity for encoding k symbols: Θ(k2)

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 8



Arithmetic Coding: Naive Algorithm
� Encoder:

Initialize c ← 0 and p ← 1 (fixed point numbers ∈ [0, 1] with precision bits);
for i from 1 to k do

Update c ← c + p P(Xi <xi |X1:i−1=x1:i−1); (rounding to fixed point precision)
Update p ← p P(Xi =xi |X1:i−1=x1:i−1); (rounding to fixed point precision)
while p < 1

2 do
Emit first bit of c = (0.????)2;
Update p ← 2p;
Update c ← fractional part of 2c ;

end
end
Emit first bit of c = (0.????)2;

� Decoder: exercise
Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 9

Arithmetic Coding: Actual Algorithm
Initialize c ← 0 and p ← 1 (fixed point numbers ∈ [0, 1] with precision bits);
Initialize inverted ← 0 (nonnegative integer);
for i from 1 to k do

Update c ← c + p P(Xi <xi |X1:i−1=x1:i−1);
Update p ← p P(Xi =xi |X1:i−1=x1:i−1);
while p < 1

2 do
Emit first bit of c = (0.????)2;
Update p ← 2p;
Set c � ← fractional part of 2c ;
Update c ← c �;

end
end
Emit first bit of c = (0.????)2;
Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 10

Real Hardware: Range Coding
� CPUs are not optimized to operate on single bits
� mechanical sympathy: to best exploit the capabilities of a tool (e.g., a computer), one

has to understand how the tool works.
� Range Coding: like arithmetic coding, but operating on precision bits at a time

� accumulators c and p become numbers with 2×precision bits
� individual symbol probabilities P(Xi =xi |X1:i−1=x1:i−1) ∈ (0, 1) are precision-bit numbers

=⇒ P(Xi =xi |X1:i−1=x1:i−1) ≥ 2−precision (smallest representable nonzero number)
� Emit precision bits at once when p < 2−precision

=⇒ always restores p ≥ 2−precision, thus at most 1 emission per symbol is necessary.
� inverted keeps track of how many “00000000� �� �

precision
” or “11111111� �� �

precision
” blocks have accumulated.

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 11



Empirical Compression Performances: bit rates

10−3 10−2 10−1 100 101

entropy [bits per symbol]

10−6

10−5

10−4

10−3

10−2

10−1

o
ve

rh
e

a
d

[b
it
s

p
e

r
s
y
m

b
o
l]

Asymmetric Numeral Systems (ANS)

10−3 10−2 10−1 100 101

entropy [bits per symbol]

precision / word_size / head_capacity:

Range Coding (RC) & Arithmetic Coding

24 / 32 / 64 (“default” preset)

32 / 32 / 64

16 / 16 / 32

12 / 16 / 32 (“small” preset)

Arithmetic Coding
(AC; using arcode crate)

1 % relative overhead

0.1 % relative overhead

[Bamler, arXiv:2201.01741 (2022)]

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 12

Empirical Compression Performances: run times

100

20

40

200

e
n

c
o
d
e

r
ru

n
ti
m

e
[n

s
p

e
r

s
y
m

b
o
l]

Asymmetric Numeral Systems (ANS) Range Coding (RC) & Arithmetic Coding

10
−3

10
−2

10
−1

10
0

10
1

entropy [bits per symbol]

10

5

20

40

d
e

c
o
d

e
r

ru
n

ti
m

e
[n

s
p

e
r

s
y
m

b
o
l]

10
−3

10
−2

10
−1

10
0

10
1

entropy [bits per symbol]

precision / word_size / head_capacity:

Decoding with tabulated
entropy models:

24 / 32 / 64 (“default” preset)

32 / 32 / 64

16 / 16 / 32

12 / 16 / 32 (“small” preset)

Arithmetic Coding
(AC; using arcode crate)

16 / 16 / 32

12 / 16 / 32 (“small” preset)

[Bamler, arXiv:2201.01741]

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 13

Outlook
� Next week (Lecture 6): Asymmetric Numeral Systems

� modern stream code that operates as a stack (“last-in-first-out”)
� conceptionally more difficult but easier to implement in real code
� uses “bits-back trick”
� enables “bits-back trick” for latent variable models (→ Lecture 7)

� Problem Set 7: use range coding (from a library) for our autoregressive model of
natural language from Problem Set 3.

Robert Bamler · Lecture 5, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 14


