Lecture 5，Part 1：

Stream Codes：Encoding Into Fractional Bits

Robert Bamler • Summer Term of 2023

These slides are part of the course＂Data Compression With and Without Deep Probabilistic Models＂taught at University of Tübingen．More course materials—including video recordings，lecture notes，and problem sets with solutions—are publicly available at https：／／robamler．github．io／teaching／compress23／．

Recall： 4 Kinds of Scalable Probabilistic Models
（1）Markov Process
$x_{1} \rightarrow x_{2} \rightarrow x_{6} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{0}$
（3）Autoregressive Model

Opart of the messege（＂observed＂）
detesminisicic finction of its inputs
（2）Hidden Markov Model

（4）Latent Variable Model

－Problem 3．2：（link to solutions in video description）

	msg．len （chars）	Huffman	Shannon	inf．cont．	gzip	bzip2	bzip2＇
validation set	106,864	$\mathbf{2 . 3 8}$	2.72	2.12	3.43	2.82	2.40
test set	219,561	$\mathbf{2 . 3 8}$	2.73	2.12	3.33	2.65	$\mathbf{2 . 3 8}$
wikipedia－en	24,618	4.99	5.67	5.14	3.22	$\mathbf{2 . 9 2}$	5.14
wikipedia－de	8,426	6.77	7.70	7.19	3.96	$\mathbf{3 . 7 6}$	7.22

－Observation：Huffman coding has overhead over information content of up to 1 bit per symbol．
－Can be substantial in modern ML－based compression methods：
$\left.\begin{array}{l}\text { e．g．，information content } \approx 0.3 \text { bits per symbol；} \\ \text { but Huffman coding needs } \geq 1 \text { bit per symbol．}\end{array}\right\} \Longrightarrow$ about 200% overhead．（ \rightarrow useloss）
－Solution：amortize compressed bits over symbols \longrightarrow＂stream code＂

Intuitively: stream codes "pack" information content as closely as possible.

- We can no longer associate each bit in the compressed representation with any specific symbol.
- 2 important stream codes with 2 different application domains:
- This lecture: Arithmetic Coding \& Range Coding [Pasco, 1976; Rissanen and Langdon, 1979]
- Next lecture: Asymmetric Numeral Systems (ANS) [Dada et al., 2015]

Arithmetic Coding: Overview [Pasco, 1976]

Idea: similar to Shannon coding, but on entire message space \mathfrak{X}^{*} instead of alphabet \mathfrak{X}.

- Thus: overhead now only per message.
- Challenge: computational efficiency

$$
\begin{aligned}
\text { assume message of length } k \rightarrow & \text { wed have to iterate Over } O\left(|x|^{k}\right) \text { messages } \\
& \text { (astronomically expensive) }
\end{aligned}
$$

- 2 variants: Arithmetic Coding \& Range Coding
- very similar to each other (Range Coding is faster on real hardware);
- both conceptionally simple;
- but a bit tricky in practice due to edge cases.

Reminder: Shannon Coding (for $B=2$)

Input: alphabet \mathfrak{X}, probability measure P on \mathfrak{X}
output: prefix code $C_{S}: \mathfrak{X} \rightarrow\{0,1\}^{*}$.
Initialize $\xi \leftarrow 1$
for $x \in \mathfrak{X}$ in order of increasing $P(X=x)$ do
Update $\xi \leftarrow \xi-2^{-\left\lceil-\log _{2} P(X=x)\right\rceil}$
Write out $\xi \in[0,1)$ in binary: $\xi=(0 . ? ? ? ? ? \ldots)_{2}$
end

symbol x

Arithmetic Coding: General Idea

- Consider probability measure P on entire message space \mathfrak{X}^{k} (with fixed length k, for now).

 to encode this
- Observation: $\forall \mathbf{x} \in \mathfrak{X}^{k}$: interval $[P(\mathbf{X}<\mathbf{x}), P(\mathbf{X} \leq \mathbf{x}))$ contains a point $\xi_{\mathbf{x}}=(0 . \underbrace{? ? ? ?})_{2}$ if: size of interval \leq spacing between numbers of form (0.???? $)_{2} \quad \mathcal{R}(x)$ bits

Robert Bamler - Lecture 5, Part 1 of the course "Data Compression With and Without Deep Probabilistic Models". Summer Term of 2023 . more course materials at https://robamler.github. io/teaching/compress23/ SUfficient Cond: fion

Arithmetic Coding: Super Naive Algorithm

- Encoder:

Initialize $c \leftarrow 0$ and $p \leftarrow 1$.
for i from 1 to k do $\quad\left\{\begin{array}{l}\text { identify symbol } x_{;} \in \mathcal{*} \text { for which } \\ \xi \in\left[c+p P\left(x_{i}<x_{i} \mid \underline{x}_{1: i-1}=\underline{x}_{1: i-1}\right), c+p p\left(x_{i} \leqslant x_{i} \mid \underline{x}_{1 ; i-1}=\underline{x}_{1 ;-1}\right)\right)\end{array}\right.$
Update $c \leftarrow c+p P\left(X_{i}<x_{i} \mid \mathbf{X}_{1: i-1}=\mathbf{x}_{1: i-1}\right)$.
Update $p \leftarrow p P\left(X_{i}=x_{i} \mid \mathbf{X}_{1: i-1}=\mathbf{x}_{1: i-1}\right)$.
\triangleright Claim: at this point, we have $c=P\left(\mathbf{X}_{1: i}<\mathbf{x}_{1: i}\right)$ and $p=P\left(\mathbf{X}_{1: i}=\mathbf{x}_{1: i}\right)$
\Longrightarrow invariant: $[c, c+p)=\left[P\left(\mathbf{X}_{1: i}<\mathbf{x}_{1: i}\right), P\left(\mathbf{X}_{1: i} \leq \mathbf{x}_{1: i}\right)\right) \subseteq[0,1)$
end
Encode some $\xi \in[c, c+p)$ in binary: $\xi=(0 . \underbrace{? ? ? ? ?})_{2}$
$\left\lceil-\log _{2} p\right\rceil$ bits

- Decoder: Analogous to encoder, but introduce an extra step

Robert Bamler • Lecture 5, Part 1 of the course "Data Compression With and Without Deep Probabilistic Models" . Summer Term of 2023 • more course materials at https: //robamler.github. io/teaching/compress $23 /$

Caveats

- Unique Decodability:

- not such a big deal as it was with symbol codes (it's unusual to concatenate entire compressed messages without deliminators);
- can be solved with 1 extra bit: guarantee that $\left[\xi, \xi+2^{-\mathcal{R}(x)}\right) \subseteq[c, c+p]$ (rather than just $\xi \in[c, c+p)$)

- Variable message length:

\checkmark end of bit string \Longleftrightarrow end of message (since symbols can have information content <1 bit)

- for variable-length messages, the message length is fundamentally a part of the message
- simple solution: introduce EOF symbol $(\rightarrow$ Problem Set 7)

- Numerical precision:

- e.g, if bit rate $=1$ Mbit then c and p on last slide are 1-million-bit numbers
- Run-time complexity for encoding k symbols: $\Theta\left(k^{2}\right)$

Arithmetic Coding: Naive Algorithm

- Encoder:

Initialize $c \leftarrow 0$ and $p \leftarrow 1$ (fixed point numbers $\in[0,1]$ with precision bits);
for i from 1 to k do
Update $c \leftarrow c+p P\left(X_{i}<x_{i} \mid \mathbf{X}_{1: i-1}=\mathbf{x}_{1: i-1}\right)$; (rounding to fixed point precision) Update $p \leftarrow p P\left(X_{i}=x_{i} \mid \mathbf{X}_{1: i-1}=\mathbf{x}_{1: i-1}\right)$; (rounding to fixed point precision) while $p<\frac{1}{2}$ do
"rescaling"

Emit first bit of $c=(0 . ? ? ? ?)_{2}$; Update $p \leftarrow 2 p$; Update $c \leftarrow$ fractional part of $2 c$, end
end
Emit first bit of $c=(0 . ? ? ? ?)_{2}$;

- Decoder: exercise

Arithmetic Coding: Actual Algorithm

Real Hardware: Range Coding

- CPUs are not optimized to operate on single bits
- mechanical sympathy: to best exploit the capabilities of a tool (e.g., a computer), one has to understand how the tool works.
- Range Coding: like arithmetic coding, but operating on precision bits at a time
- accumulators c and p become numbers with $2 \times$ precision bits
- individual symbol probabilities $P\left(X_{i}=x_{i} \mid \mathbf{X}_{1: i-1}=\mathbf{x}_{1: i-1}\right) \in(0,1)$ are precision-bit numbers $\Longrightarrow P\left(X_{i}=x_{i} \mid \mathbf{X}_{1: i-1}=\mathbf{x}_{1: i-1}\right) \geq 2^{- \text {precision }}$ (smallest representable nonzero number)
- Emit precision bits at once when $p<2^{- \text {precision }}$
\Longrightarrow always restores $p \geq 2^{- \text {precision }}$, thus at most 1 emission per symbol is necessary.
- inverted keeps track of how many " $\underbrace{00000000}$ " or " $\underline{c}^{11111111}$ " blocks have accumulated. (instead of how many "O" or "11" pits have accumulatad, as in our implementation of arithmetre coding on the last slide)

[Bamler, arXiv:2201.01741 (2022)]

Empirical Compression Performances: run times

Robert Bamler • Lecture 5, Part 1 of the course "Data Compression With and Without Deep Probabilistic Models" - Summer Term of 2023 - more course materials at https: ://robamler.github. io/teaching/compress $23 /$

Outlook

- Next week (Lecture 6): Asymmetric Numeral Systems
- modern stream code that operates as a stack ("last-in-first-out")
- conceptionally more difficult but easier to implement in real code \rightarrow (which we will
- uses "bits-back trick"
- enables "bits-back trick" for latent variable models (\rightarrow Lecture 7)
- Problem Set 7: use range coding (from a library) for our autoregressive model of natural language from Problem Set 3.

$$
\begin{aligned}
& \rightarrow \text { removes orechead of symbol codes and achieves bit rates very } \\
& \text { close to the infurmation content (Less than } 0.1 \% \text { overhead) }
\end{aligned}
$$

