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Recall From Last Week: Stream Codes

� Reduces overhead from ≤ 1 bit per symbol to ≤ 1 bit per message (in theory)
� In practice: larger overhead due to finite precision & technical limitations (more on this

today), but much smaller than for symbol codes
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Recall: Arithmetic Coding & Range Coding

� Simple algorithm in principle: iteratively refine interval
�
P(X<x),P(X≤x)

�

� Tricky to implement in practice (finite precision arithmetic, edge cases)
� Operates as a queue: “first in first out”
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Recall: Probabilistic Model Architectures

(1) Markov Process (2) Hidden Markov Model

(3) Autoregressive Model (4) Latent Variable Model

� Problem 7.3: use range coding for our autoregressive model of natural language
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Positional Numeral Systems
Consider a data source that generates a random message X ≡ (X1,X2, . . . ,Xk) of length k ;
symbols are i.i.d., with each Xi uniformly distributed over X = {0, 1, 2, . . . , 9}.
(a) What is the entropy per symbol? 1

k HP [X] = HP [Xi ] =

(b) What is the expected code word length of an optimal symbol code for this data source?
LCopt. symbol code := EP

�
|Copt. symbol code(Xi)|

�
=

(c) Can you do better than an optimal symbol code? Describe your approach first in words,
then implement it in Python or in pseudo code.

� Don’t think about arithmetic/range coding; it’s much simpler.
� About 4 lines of code for encoding + 4 lines of code for decoding;

no library function calls necessary.
(d) What is the expected bit rate per symbol of your method from part (c) in the limit of

long messages? lim
k→∞

1
k EP [RCpart (c)(X)] =
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Positional Numeral Systems: Implementation
� Implementation in Python:

� Usage example:
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Observations About Positional Numeral Systems
� encoding & decoding operates as a stack (“last in first out”)
� encoding amortizes bit rate over several symbols ( �= symbol codes)

� positional numeral systems are an optimal lossless compression methods if:
(i) all symbols are from the same (finite) alphabet X
(ii) all symbols are uniformly distributed over X
(iii) all symbols are statistically independent

� Goal today: remove constraints (i) and (ii)
� Goal next lecture: remove constraint (iii)
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Limitation (i): symbols from different alphabets
Not a real limitation: just make base position-dependent: Usage example:
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Limitation (ii): Non-uniformly Distributed Symbols
� Consider a single symbol xi
� Step 1: approximate P(Xi) in fixed point arithmetic:

� compression overhead:

� Step 2: interpret Q(Xi) as the marginal distribution of a latent variable model:
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Limitation (ii): Non-uniformly Distributed Symbols
� Consider a single symbol xi

� Step 1: approximate P(Xi) in fixed point arithmetic:
� Step 2: interpret Q(Xi) as the marginal distribution of a latent variable model.
� Step 3: Bits-back trick:

� {mi(xi)} partition the range {1, 2, . . . , n − 1} into |Xi | non-overlapping subranges Zi(xi):

� Naive idea: encode arbitrary zi ∈ Zi(xi)

� Better idea: piggy-back some information into choice of zi
by decoding zi from previously encoded data, using a uniform model over Zi(xi)

−→ “bits-back trick” (more general discussion next lecture)
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(Slow) Implementation of ANS in Python
Usage example:
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Streaming ANS
� SlowAnsCoder is slow (run-time O(k2))
� Idea (“streaming ANS”): operate mostly on a compressed representation with finite

capacity. If it would overflow, push an integer number of bits to a growable buffer.
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Empirical Compression Performances: bit rates
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Asymmetric Numeral Systems (ANS)
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precision / word_size / head_capacity:

Range Coding (RC) & Arithmetic Coding

24 / 32 / 64 (“default” preset)

32 / 32 / 64

16 / 16 / 32

12 / 16 / 32 (“small” preset)

Arithmetic Coding
(AC; using arcode crate)

1 % relative overhead

0.1 % relative overhead

[Bamler, arXiv:2201.01741 (2022)]
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Empirical Compression Performances: run times
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Asymmetric Numeral Systems (ANS) Range Coding (RC) & Arithmetic Coding
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precision / word_size / head_capacity:

Decoding with tabulated
entropy models:

24 / 32 / 64 (“default” preset)

32 / 32 / 64

16 / 16 / 32

12 / 16 / 32 (“small” preset)

Arithmetic Coding
(AC; using arcode crate)

16 / 16 / 32

12 / 16 / 32 (“small” preset)

[Bamler, arXiv:2201.01741]
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Outlook
� Problem Set:

� Prove correctness and analyze compression performance of our SlowAnsCoder implementation.
� Illustrate an example of streaming ANS.

� Next Lecture: revisit & generalize the bits-back trick

� Afterwards: use ANS for (net) optimal lossless compression with latent variable models
(e.g., variational autoencoders)
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