

# Lecture 8, Part 1: Variational Inference

Robert Bamler • Summer Term of 2023

These slides are part of the course "Data Compression With and Without Deep Probabilistic Models" taught at University of Tübingen. More course materials-including video recordings, lecture notes, and problem sets with solutions—are publicly available at https://robamler.github.io/teaching/compress23/.



#### Variational Inference

- **Problem:** calculating the posterior  $P(\mathbf{Z} | \mathbf{X} = \mathbf{x})$  is often computationally infeasible.
- **Idea:** use a different distribution  $Q_{\phi}(\mathbf{Z})$  instead of the posterior.
  - 1. Consider the space of *all* probability distributions over Z. 2. Choose a subspace Q of "simple" distributions. mize this distance ightarrow e.g., if  $\mathbf{Z} \in \mathbb{R}^d$ : choose  $\mathcal{Q} := \{Q_{\mu,\sigma}\}_{\mu,\sigma \in \mathbb{R}^d}$ with PDF  $q_{\mu,\sigma}(\mathbf{z}) = \prod_{i=1}^{d} \mathcal{N}(z_i; \mu_i, \sigma_i^2)$ 
    - ightarrow general notation:  $Q_{\phi}(Z)$ "variational distribution" "variational parameters"
  - 3. Find optimal variational parameters  $\phi^*$  such that  $Q_{\phi^*}(Z) \approx P(Z | \mathbf{X} = \mathbf{x})$  for a given message  $\mathbf{x}$ .

#### Bits-Back Coding With an Approximate Posterior UNIVERSITAT Tübingen



- 1.  $\mathbf{z} \leftarrow \text{decode from } \mathbf{s} \text{ with ANS using posterior } \overline{P(\mathbf{z} + \mathbf{x} = \mathbf{x})} \cdot \mathcal{Q}_{\mathbf{b}}(\mathbf{z}) \leftarrow \operatorname{consumes} \operatorname{log}_{\mathbf{z}} \mathcal{Q}_{\mathbf{b}}(\mathbf{z} \mathbf{z}) \cdot \mathbf{b} \cdot \mathbf{b}$

- 2. Encode x using likelihood  $P(\mathbf{X} | \mathbf{Z} = \mathbf{z})$ . 3. Encode z using prior  $P(\mathbf{Z})$ . Net bit rate:  $R_{\phi}^{\text{net}}(\mathbf{x} | \mathbf{s}) = -\log_2 P(\mathbf{Z} = \mathbf{z}, \mathbf{X} = \mathbf{x}) + \log_2 Q_{\phi}(\mathbf{Z} = \mathbf{z})$ 
  - ► Naive idea: find  $\phi^*$  = arg min  $R_{\phi}^{\text{net}}(\mathbf{x} | \mathbf{s})$ ; then run above encoder using model  $Q_{\phi^*}(\mathbf{Z})$  in step 1.

\$ depends on bith x and s have ...

- 1.  $\mathbf{z} \leftarrow$  decode using prior  $P(\mathbf{Z})$ .
- 2.  $\mathbf{x} \leftarrow$  decode using likelihood  $P(\mathbf{X} | \mathbf{Z} = \mathbf{z})$ .
- 3. Encode **z** using approximate posterior  $Q_{\phi^*}(\mathbf{Z})$  to reconstruct side information **s**. Decoder has to use same of that encoder used, but that one depended on 2, which the decoder only gets one it knows of ".

Robert Bamler - Lecture 8, Part 1 of the course "Data Compression With and Without Deep Probabilistic Models" - Summer Term of 2023 - more course materials at https://robamler.github.io/teaching/compress23/

```
Problem: \phi^* depends on s.
            \implies cyclic dependency
```

## **Expected** Net Bit Rate

**Idea:** minimize the *expected* net bit rate for random **s** (but still for a fixed message **x**): 

$$\phi^* := \arg\min_{\phi} \left( \mathbb{E}_{\mathbf{s}} \left[ R_{\phi}^{\mathsf{net}}(\mathbf{x} \mid \mathbf{s}) \right] \right) = \arg\min_{\phi} \left( \mathbb{E}_{\mathbf{s}} \left[ -\log_2 P(\mathbf{Z} = \mathbf{z}, \mathbf{X} = \mathbf{x}) + \log_2 Q_{\phi}(\mathbf{Z} = \mathbf{z}) \right] \right)$$

- What is the distribution of the bit string **s**?
- hat is the distribution of the bit string s? Generic argument: we have no idea  $\Rightarrow$  uniform distribution
  if we regard probabilisative models
  as (subjective) expressions of
  our lack of knowledge.
  - Example: assume  $\mathbf{s}$  is the compressed representation of some previously encoded data. > 2 can't be further compressed > 2 has information content 1s1, i.e., all bits S; are independent and have information content -log  $P(S_1 = s_1) = 1$  bit  $\Rightarrow P(S_1 = s_1) = \frac{1}{2} \forall i_1, s_1 \in EQ_13$
- What distribution does this induce for  $\mathbf{z}$ ?
  - ► Assume decoding with model  $Q_{\phi}(\mathbf{Z})$  results in a value  $\mathbf{z}$ .  $\Rightarrow$  Consume  $\mathbf{s} \log_{\mathbf{z}} Q_{\phi}(\mathbf{z} = \mathbf{z})$  bits from  $\mathbf{s}$
  - For an optimal coder, only 1 bit string corresponds to z.  $\Rightarrow$  probability that each one of the  $-\log_2 Q_{\phi}(\mathbf{Z} = \mathbf{z})$  consumed bits matches:  $\left(\frac{1}{2}\right)$

Decoding from a uniform random bit string with a code that is optimal for some model probabilistic model

Robert Bamler · Lecture 8. Part 1 of the course "Data Compression With and Without Deep Probabilistic Models" · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress2

# Evidence Lower Bound (ELBO)

UNIVERSITAT TÜBINGEN

| 4

sampling from the same

probabilistic model

UNIVERSITÄT TÜBINGEN

I

Minimize the *expected net bit rate* for encoding a given message **x**:

$$\phi^{*} := \arg \min_{\phi} \mathbb{E}_{\mathcal{G}} \left[ R_{\phi}^{\text{net}}(\mathbf{x} \mid \mathbf{s}) \right] = \arg \min_{\phi} \mathbb{E}_{\mathcal{Q}_{\phi}(\mathbf{Z})} \left[ -\log_{2} P(\mathbf{Z}, \mathbf{X} = \mathbf{x}) + \log_{2} Q_{\phi}(\mathbf{Z}) \right]$$
Some except for global syn in the (non-compression) literature, one typically maximizes the negative net bit rate:  

$$\phi^{*} = \arg \max_{\phi} \text{ELBO}(\phi, \mathbf{x}) \text{ where } \text{ELBO}(\phi, \mathbf{x}) := \mathbb{E}_{\mathcal{Q}_{\phi}(\mathbf{Z})} \left[ \log P(\mathbf{Z}, \mathbf{X} = \mathbf{x}) - \log Q_{\phi}(\mathbf{Z}) \right]$$
Froblem 8.1: derive and interpret three equivalent expressions for the ELBO:  

$$\text{maximum a-posteriori (MAP) + entropy: } \mathbb{E} \text{LBO}(\phi, \mathbf{x}) = \mathbb{E}_{\mathcal{Q}_{\phi}(\mathbf{Z})} \left[ \log P(\mathbf{Z}, \mathbf{X} = \mathbf{x}) \right] + H_{\mathcal{Q}_{\phi}} \left[ \mathbf{Z} \right]$$

$$\text{regularized maximum likelihood: } \mathbb{E} \text{LBO}(\phi, \mathbf{x}) = \mathbb{E}_{\mathcal{Q}_{\phi}(\mathbf{Z})} \left[ \log P(\mathbf{X} = \mathbf{x} \mid \mathbf{Z}) \right] - D_{\mathsf{KL}} \left( \mathcal{Q}_{\phi}(\mathbf{Z}) \mid P(\mathbf{Z}) \right)$$

$$\text{evidence lower bound: } \mathbb{E} \text{LBO}(\phi, \mathbf{x}) = \log P(\mathbf{X} = \mathbf{x}) - D_{\mathsf{KL}} \left( \mathcal{Q}_{\phi}(\mathbf{Z}) \mid P(\mathbf{Z} \mid \mathbf{X} = \mathbf{x}) \right) \leq \log P(\mathbf{X} = \mathbf{x})$$

loner bou Robert Bamler • Lecture 8, Part 1 of the course "Data Compression With and Without Deep Probabilistic Models" • Summer Term of 2023 • more course materials at https://robamler.github.io/tea

 $\Rightarrow Q_{\phi^*}(\mathbf{Z})$  minimizes KL-divergence from true posterior  $\Rightarrow$  "variational inference"



### Outlook

UNIVERSITAT TUBINGEN

- Next Week:
  - $\blacktriangleright$  How can we learn the generative model?  $\rightarrow$  variational expectation maximization
  - How can we learn to do inference?  $\rightarrow$  amortized variational inference
  - Combined: Variational Autoencoders (VAEs)
- Afterwards: lossy data compression (in theory & in practice)