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Recall: Bits-Back Coding & Latent Variable Models

� Latent variable model: P(Z,X) = P(Z)

k�

i=1
P(Xi |Z)

� Encoding a message x & side information s ∈ {0, 1}∗:
1. z ← decode from s with ANS using posterior P(Z |X=x).
2. Encode x using likelihood P(X |Z=z).
3. Encode z using prior P(Z).

� Net bit rate: Rnet(x | s) =
� optimal & independent of s =⇒ justifies our use of posterior P(Z |X=x) in step 1.

� Problem: calculating the posterior (“Bayesian inference”) is often infeasible:

� P(Z |X=x) = P(Z,X=x)
P(X=x) where P(X=x) =





�
z

P(Z=z,X=x) if Z is discrete;
�

p(z, x) dz if Z is continuous.
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Variational Inference
� Problem: calculating the posterior P (Z |X=x) is often computationally infeasible.

� Idea: use a different distribution Qφ(Z) instead of the posterior.
1. Consider the space of all probability

distributions over Z.
2. Choose a subspace Q of “simple” distributions.

→ e.g., if Z ∈ Rd : choose Q := {Qµ,σ}µ,σ∈Rd

with PDF qµ,σ(z) =
d�

i=1
N (zi ;µi , σ2

i )

→ general notation: Qφ(Z )

3. Find optimal variational parameters φ∗ such that Qφ∗(Z ) ≈ P(Z |X=x) for a given message x.
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Bits-Back Coding With an Approximate Posterior
� Encoding a message x & side information s ∈ {0, 1}∗ (copied from first slide):

1. z ← decode from s with ANS using posterior P(Z |X=x).
2. Encode x using likelihood P(X |Z=z).
3. Encode z using prior P(Z).

� Net bit rate: Rnet
φ (x | s) = − log2 P(Z=z,X=x) + log2 Qφ(Z=z)

� Naive idea: find φ∗ := argmin
φ

Rnet
φ (x | s); then run above encoder using model Qφ∗(Z) in step 1.

� Decoding:
1. z ← decode using prior P(Z).
2. x ← decode using likelihood P(X |Z=z).
3. Encode z using approximate posterior Qφ∗(Z) to reconstruct side information s.

Problem: φ∗ depends on s.
=⇒ cyclic dependency

Robert Bamler · Lecture 8, Part 1 of the course “Data Compression With and Without Deep Probabilistic Models” · Summer Term of 2023 · more course materials at https://robamler.github.io/teaching/compress23/ | 3

Expected Net Bit Rate
� Idea: minimize the expected net bit rate for random s (but still for a fixed message x):

φ∗ := arg min
φ

�
Es
�
Rnet
φ (x | s)

��
= argmin

φ

�
Es
�
− log2 P(Z=z,X=x) + log2 Qφ(Z=z)

��

� What is the distribution of the bit string s?
� Generic argument: we have no idea =⇒ uniform distribution
� Example: assume s is the compressed representation of some previously encoded data.

� What distribution does this induce for z?
� Assume decoding with model Qφ(Z) results in a value z.
� For an optimal coder, only 1 bit string corresponds to z.

⇒ probability that each one of the − log2 Qφ(Z=z) consumed bits matches:
Decoding from a uniform random bit string with a code

that is optimal for some model probabilistic model ⇐⇒ sampling from the same
probabilistic model
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Evidence Lower Bound (ELBO)
� Minimize the expected net bit rate for encoding a given message x:

φ∗ := arg min
φ

Es
�
Rnet
φ (x | s)

�
= argmin

φ
EQφ(Z)

�
− log2 P(Z,X=x) + log2 Qφ(Z)

�

� In the (non-compression) literature, one typically maximizes the negative net bit rate:

φ∗ = argmax
φ

ELBO(φ, x) where ELBO(φ, x) := EQφ(Z)

�
logP(Z,X=x)− logQφ(Z)

�

� Problem 8.1: derive and interpret three equivalent expressions for the ELBO:
� maximum a-posteriori (MAP) + entropy: ELBO(φ, x) = EQφ(Z)

�
logP(Z,X=x)

�
+ HQφ

�
Z
�

� regularized maximum likelihood: ELBO(φ, x) = EQφ(Z)
�
logP(X=x |Z)

�
− DKL

�
Qφ(Z)

����P(Z)
�

� evidence lower bound: ELBO(φ, x) = logP(X=x)− DKL
�
Qφ(Z)

����P(Z |X=x)
�
≤ logP(X=x)

⇒ Qφ∗(Z) minimizes KL-divergence from true posterior ⇒ “variational inference”
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How Can We Maximize the ELBO?
ELBO(φ, x) := Ez∼Qφ(Z)

�
�(φ, x, z)

�
where �(φ, x, z) = logP(Z=z,X=x)− logQφ(Z=z)

� Goal: find φ∗ := arg maxφ ELBO(φ, x) (or at least an approximate maximum).
� Gradient Descent: (technically here: gradient ascent)

1. initialize φ ← random
2. repeat: ◦ calculate gradient g = ∇φ ELBO(φ, x)

◦ update φ ← φ+ ρ g with some “learning rate” ρ > 0
� Stochastic Gradient Descent (SGD): the naive way

1. initialize φ ← random
2. repeat: ◦ draw a random z ∼ Qφ(Z)

◦ calculate gradient estimate ĝ(z) = ∇φ �(φ, x, z)
◦ update φ ← φ+ ρ g with some (decaying) learning rate ρ > 0

� Problem: SGD only works if ĝ(z) is an unbiased gradient estimate: if EQφ(Z)

�
ĝ(Z)

�
= g .

� But we have: EQφ(Z)
�
ĝ(Z)

�
=

and: g =
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Black-Box Variational Inference (BBVI)
� Problems 8.2 & 8.3: derive 2 unbiased gradient estimators for variational inference:

(8.2) Reparameterization gradients: [Kingma and Welling, 2014]
In SGD, express z ∼ Qφ(Z) as z = f (�,φ) where � ∼ Q0.

=⇒ g = ∇φEz∼Qφ(Z)
�
�(φ, x, z)

�
= ∇φE�∼Q0

�
�(φ, x, f (�,φ))

�
= E�∼Q0

�
∇φ �(φ, x, f (�,φ))

�

� Typically low gradient variance EQφ(Z)
�
(ĝ(Z)− g)2� =⇒ fast(-ish) convergence of SGD.

� Doesn’t work for discrete Z (without an additional approximation called “Gumbel-softmax”).

(8.3) Score function gradients (aka “REINFORCE method”): [Ranganath et al., 2014]
ĝ(z) =

�
∇φ logQφ(Z=z)

�
�(φ, x, z)

� Typically higher gradient variance than reparameterization gradients.
� Works for all (explicit) variational families.

� Remark: for some models, Ez∼Qφ(Z)

�
�(φ, x, z)

�
can be calculated analytically.

−→ much faster optimization with “coordinate ascent variational inference” (CAVI) [Blei et al. (2017)]
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Outlook
� Next Week:

� How can we learn the generative model? → variational expectation maximization
� How can we learn to do inference? → amortized variational inference
� Combined: Variational Autoencoders (VAEs)

� Afterwards: lossy data compression (in theory & in practice)
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