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Recall: Variational Inference
� Idea:

� approximate the (inaccessible) true posterior P(Z |X=x) with a variational distribution Qφ(Z).
� Find the best approximation φ∗ := argmaxφ ELBO(φ, x).

� Evidence Lower Bound: ELBO(φ, x) = EQφ(Z)

�
logP(Z,X=x)− logQφ(Z)

�

� negative expected net bit rate of bits-back coding: ELBO(φ, x) = −Es
�
Rnet
φ (x | s)

�

� bound on the evidence: ELBO(φ, x) = logP(X=x)− DKL
�
Qφ(Z)

����P(Z |X=x)
�
≤ logP(X=x)

� regularized maximum likelihood: ELBO(φ, x) = EQφ(Z)
�
logP(X=x |Z)

�
− DKL

�
Qφ(Z)

����P(Z)
�

� today: rate/distortion-tradeoff: ELBOβ(φ, x) = EQφ(Z)
�
logP(X=x |Z)

�
− βDKL

�
Qφ(Z)

����P(Z)
�

� Problems:
� What’s the generative model P(Z,X)? −→ variational expectation maximization
� Expensive “argmaxφ” for each message x in both encoder & decoder. −→ amortized inference
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Part 1: Learning the Generative Model
� Goal: learn optimal parameters θ∗ of the generative model Pθ(Z,X) = Pθ(Z)Pθ(X |Z).

� Thus, the ELBO now depends on θ, i.e., ELBO(θ,φ, x) = Qφ(Z)
�
logPθ(Z,X=x)− logQφ(Z)]

� Example: data X = (Xi)i are binarized images, i.e., each Xi is a pixel value ∈ {0, 1}.
→ Prior is fixed: P(Z=z) = N (z; 0, I) (standard normal distribution)
→ Likelihood is parameterized by a (deconvolutional) neural network gθ:

Pθ(X |Z) =
�

i Pθ(Xi |Z) with Pθ(Xi =1 |Z=z) = σ(gθ,i(z))

� Distinguish:
� global parameters θ∗ (“model parameters”):

→ specify the generative model Pθ∗(Z,X)

→ same for all data points x =⇒ known to both sender & receiver
� local parameters φ∗ (“variational parameters”):

→ specify an approximation Qφ∗(Z) to the posterior Pθ∗(Z |X=x) for a specific data point x
→ different for each data point x =⇒ not available to the receiver until it has decoded x
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Variational Expectation Maximization

1. In order to develop a new compression method:
� learn optimal parameters θ∗ of the generative model Pθ(Z,X):

2. Share the learned generative model Pθ∗(Z,X) between sender & receiver.
3. In deployment: encode / decode a given data point x

� Use entropy model Qφ∗(Z).
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Part 2: Learning How to Do Inference (Fast)
� Problems:

1. Learning the generative model requires an expensive inner loop for every training step.
2. Expensive optimization over φ for each message x we want compress / decompress.

� Solution: amortized variational inference
� learn a mapping f from x to variational parameters

such that setting φ ← f (x) approximately maximizes ELBO(θ∗,φ, x) for a given x.
� Notation: inference network fφ(x); variational distribution Qφ(Z |X=x)
� Example: Gaussian mean field variational distribution:

→ inference network fφ(x) = (µφ(x), logσ2
φ(x)) outputs means and (log) variances

→ these parameterize a variational distribution Qφ(Z | x) = N
�
µφ(x), diag

�
σ2
φ,1(x), . . . , σ2

φ,k(x)
��
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Variational Autoencoders (VAEs)
Combine variational expectation maximization with amortized variational inference.
� Lossless compression with variational autoencoders:

� use bits-back trick → Problem 9.2

� Lossy compression with variational autoencoders:
� Example: data X = (Xi)i are color images, i.e., each Xi is a continuous RGB value ∈ [0, 1].

→ Prior may be learned, e.g.: Pθ(Z=z) = N
�
z; 0, diag(σ2

1, . . . , σ
2
num_channels)

⊗spatial_dim�

→ Likelihood is parameterized by a (deconvolutional) neural network gθ:
Pθ(X |Z) =

�
i Pθ(Xi |Z) with density function pθ(xi |Z=z) = N (xi ; gθ,i(z), β2 I)

� Idea: just use gθ,i(z) as the reconstruction of an image.
(Don’t bother using the likelihood Pθ(X |Z=z) to encode the true image.)

� Likelihood no longer has a probabilistic meaning. But − logPθ(X |Z=z) is a distortion metric.
=⇒ ELBO becomes a rate-distortion trade-off

� next week
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